Microbial Transformations of 7-Methoxyflavanone
Abstract
:1. Introduction
2. Results and Discussion
Compound | δ H-2 | δ H-4 | δ H-3ax | δ H-3eq | J3ax-3eq | J2-3ax | J 2-3eq | J 4-3ax | J4-3eq |
---|---|---|---|---|---|---|---|---|---|
2,4-cis-Flavan-4-ol | 5.17 | 5.08 | 2.13 | 2.51 | 13.1 | 11.6 | 1.8 | 10.6 | 6.3 |
2,4-cis-7-Hydroxyflavan- 4-ol | 5.15 | 5.00 | 2.09 | 2.49 | 13.2 | 11.4 | 1.8 | 9.7 | 6.2 |
2,4-cis-6-Hydroxyflavan-4-ol | 5.09 | 4.98 | 1.98 | 2.35 | 12.9 | 11.9 | 1.9 | 10.8 | 6.4 |
2,4-cis-7-Methoxyflavan-4-ol | 5.17 | 5.05 | 2.13 | 2.52 | 13.2 | 11.4 | 2.0 | 10.2 | 6.3 |
Microorganism | Time of Incubation (days) | Biotransformation products (%) | Unreacted substrate | |
---|---|---|---|---|
4 | 3 | (%) | ||
Aspergillus ochraceus 456 | 1 | 0 | 0 | 82.0 |
3 | 2.1 | 0 | 35.7 | |
6 | 2.3 | 3.7 | 18.7 | |
9 | 2.5 | 5.3 | 9.1 |
Compound | δ H-2 | δ H-4 | δ H-3ax | δ H-3eq | J3ax-3eq | J2-3ax | J2-3eq | J4-3ax | J4-3eq |
---|---|---|---|---|---|---|---|---|---|
(±)-2,4-cis-7-Methoxy- flavan-4-ol (2) | 5.17 | 5.05 | 2.13 | 2.52 | 13.2 | 11.4 | 2.0 | 10.2 | 6.3 |
(+)-2,4-trans-7-Methoxy- flavan-4-ol (3) | 5.17 | 5.07 | 2.95 | 2.52 | 13.2 | 11.5 | 1.8 | 3.2 | 6.2 |
Compound | 1st band | 2nd band | 3rd band | |||
---|---|---|---|---|---|---|
λmax [nm] | log ε | λmax [nm] | log ε | λmax [nm] | log ε | |
7-Methoxyflavanone (1) | 235 | 4.18 | 273 | 4.19 | 310 | 3.89 |
2,4-cis-7-Methoxyflavan-4-ol (2) | 229 | 3.89 | 282 | 3.85 | - | - |
2,4-trans-7-Methoxyflavan-4-ol (3) | 234 | 3.81 | 281 | 3.87 | - | - |
4’-Hydroxy-7-methoxyflavone (4) | 234 | 4.37 | 276 | 4.58 | 309 | 4.29 |
4,2’-Dihydroxy-4’-methoxydihydrochalcone (5) | 254 | 4.24 | 282 | 4.43 | 325 | 4.13 |
Substrate | Product | IC50* (± SD) [μM] |
---|---|---|
7-Methoxyflavanone (1) | 9.50 (± 0.03) | |
4’-Hydroxy-7-methoxyflavone (4) | 7.66 (± 0.05) | |
4,2’-Dihydroxy-4’-methoxydihydrochalcone (5) | 7.75 (± 0.03) | |
2,4-cis-7-Methoxyflavan-4-ol (2) | 8.20 (± 0.06) | |
2,4-trans-7-Methoxyflavan-4-ol (3) | 8.42 (± 0.06) |
3. Experimental
3.1. Analysis
3.2. Materials
Microorganisms
3.3. Biotransformations
3.3.1. Screening Procedure
3.3.2. Preparative Biotransformation
3.4. Measurement of Antioxidant Properties of the Substrate and the Products
4. Conclusions
Acknowledgments
References
- Qiu, M.; Xie, R.S.; Xhi, Y.; Zhang, H.; Chen, H.M. Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Ann Microbiol. 2010, 60, 143–150. [Google Scholar] [CrossRef]
- Harborne, J.B.; Baxter, H. The Handbook of Natural Flavonoids; John Wiley & Sons: Chichester, UK, 1999. [Google Scholar]
- Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, Food content, and metabolism. Nutrition 2002, 18, 75–81. [Google Scholar] [CrossRef]
- Delmulle, L.; Bellahcene, A.; Dhooge, W.; Comhaire, F.; Roelens, F.; Huvaere, K.; Heyerick, A.; Castronovo, V.; Dekeukeleire, D. Antiproliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in prostate cancer cell lines. Phytomedicine 2006, 13, 732–734. [Google Scholar] [CrossRef]
- Kostrzewa-Susłow, E.; Białońska, A.; Janeczko, T. 4-Oxo-2-phenylchroman-6-yl propionate. Acta Cryst. 2010, E66, o1401. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar]
- Wiczkowski, W.; Piskuta, M.K. Food Flavonoids. Pol. J. Food Nutr. Sci. 2004, 21, 539–573. [Google Scholar]
- Lakshman, M.; Xu, L.; Ananthanarayanan, V.; Cooper, J.; Takimoto, C.H.; Helenowski, I.; Pelling, J.C.; Bergan, R.C. Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res. 2008, 68, 2024–2032. [Google Scholar] [CrossRef]
- Messina, M.; McCaskill-Stevens, W.; Lampe, J.W. Addressing the soy and breast cancer relationship: Review, Commentary, and workshop proceedings. J. Natl. Cancer Inst. 2006, 98, 1275–1284. [Google Scholar] [CrossRef]
- Mikell, J.R.; Khan, I.A. Bioconversion of 7-hydroxyflavanone: isolation, characterization and bioactivity evaluation of twenty-one phase I and phase II microbial metabolites. Chem. Pharm. Bull. 2012, 60, 1139–1145. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, F.; Huang, L.; Yin, X.; Li, H.; Wang, Q.; Zeng, Z.; Xie, T. New progress in biocatalysis and biotransformation of flavonoids. J. Med. Plant Res. 2010, 4, 847–856. [Google Scholar]
- Kostrzewa-Susłow, E.; Dmochowska-Gładysz, J.; Oszmiański, J. Microbial transformation of baicalin and baicalein. J. Mol. Catal. B Enzym. 2007, 49, 113–117. [Google Scholar]
- Walle, T. Absorption and metabolism of flavonoids. Free Rad. Biol. Med. 2004, 36, 829–837. [Google Scholar] [CrossRef]
- Herath, W.; Mikell, J.R.; Hale, A.L.; Ferreira, D.; Khan, I.A. Microbial metabolism. Part 9. Structure and antioxidant significance of the metabolites of 5,7-dihydroxyflavone (chrysin), and 5- and 6-hydroxyflavones. Chem. Pharm. Bull. 2007, 56, 418–422. [Google Scholar]
- Kostrzewa-Susłow, E.; Dmochowska-Gładysz, J.; Białońska, A.; Ciunik, Z. Microbial transformations of flavanone by Aspergillus niger and Penicillium chermesinum cultures. J. Mol. Catal. B: Enzym. 2008, 52, 34–39. [Google Scholar] [CrossRef]
- Kostrzewa-Susłow, E.; Dmochowska-Gładysz, J.; Janeczko, T. Microbial transformation of selected flavanones as a method of increasing the antioxidant properties. Z. Naturforsch. 2010, 65c, 55–60. [Google Scholar]
- Kostrzewa-Susłow, E.; Dmochowska-Gładysz, J.; Janeczko, T.; Środa, K.; Michalak, K.; Palko, A. Microbial transformations of 6- and 7-methoxyflavone in Aspergillus niger and Penicillium chermesinum cultures. Z. Naturforsch. 2012, 67c, 411–417. [Google Scholar]
- Ibrahim, A.R.; Galal, A.M.; Ahmed, M.S.; Mossa, G.S. O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans. Chem. Pharm. Bull. 2003, 51, 203–206. [Google Scholar] [CrossRef]
- Kostrzewa-Susłow, E.; Janeczko, T. Microbial transformations of 7-hydroxyflavanone. ScientificWorldJournal 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Kostrzewa-Susłow, E.; Dmochowska-Gładysz, J.; Białońska, A.; Ciunik, Z.; Rymowicz, W. Microbial transformations of flavanone and 6-hydroxyflavanone by Aspergillus niger strains. J. Mol. Catal. B: Enzym. 2006, 39, 18–23. [Google Scholar] [CrossRef]
- Pouget, Ch.; Fagnere, C.; Basly, J.P.; Leveque, H.; Chulia, A.J. Synthesis and structure of flavan-4-ols and 4-methoxyflavans as new potential anticancer drugs. Tetrahedron 2000, 56, 6047–6052. [Google Scholar] [CrossRef]
- Park, Y.; Moon, B.; Yang, H.; Lee, Y.; Lee, E.; Lim, Y. Spectral assignments and reference data. Complete assignments of NMR data of 13 hydroxymethoxyflavones. Magn. Reson. Chem. 2007, 45, 1072–1075. [Google Scholar] [CrossRef]
- Jang, D.; Su, B.; Pawlus, A.; Kang, Y.; Kardono, L.; Riswan, S.; Afriastini, J.; Fong, H.; Pezzuto, J.; Kinghorn, A. Beccaridiol, An unusual 28-nortriterpenoid from the leaves of Diplectria beccariana. Phytochemistry 2006, 67, 1832–1837. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available by Edyta Kostrzewa-Susłow from Department of Chemistry, Wrocław University of Environmental and Life Science.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kostrzewa-Susłow, E.; Janeczko, T. Microbial Transformations of 7-Methoxyflavanone. Molecules 2012, 17, 14810-14820. https://doi.org/10.3390/molecules171214810
Kostrzewa-Susłow E, Janeczko T. Microbial Transformations of 7-Methoxyflavanone. Molecules. 2012; 17(12):14810-14820. https://doi.org/10.3390/molecules171214810
Chicago/Turabian StyleKostrzewa-Susłow, Edyta, and Tomasz Janeczko. 2012. "Microbial Transformations of 7-Methoxyflavanone" Molecules 17, no. 12: 14810-14820. https://doi.org/10.3390/molecules171214810
APA StyleKostrzewa-Susłow, E., & Janeczko, T. (2012). Microbial Transformations of 7-Methoxyflavanone. Molecules, 17(12), 14810-14820. https://doi.org/10.3390/molecules171214810