The Antimicrobial Efficacy of Elaeis guineensis: Characterization, in Vitro and in Vivo Studies
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity
Microorganisms | Zone of Inhibition (mm) a | Minimum Inhibitory Concentration (mg/mL) | ||
---|---|---|---|---|
Leaf extract | C | M | ||
BACTERIA | ||||
Gram-positive | ||||
Staphylococcus aureus | 14 | 21 | ND | 12.5 |
Bacillus subtilis | 12 | 22 | ND | 6.25 |
Gram-negative | ||||
Escherichia coli | 13 | 21 | ND | 12.5 |
Klebsiella pneumoniae | 11 | 24 | ND | >50.0 |
Pseudomonas aeruginosa | 14 | 24 | ND | 12.5 |
Salmonella typhi | 12 | 22 | ND | 6.25 |
Proteus mirabilis | 13 | 23 | ND | >50.0 |
YEAST | ||||
Candida albicans | 15 | ND | 24 | 6.25 |
Saccharomyces cerevisiae | - | ND | 24 | - |
FUNGI | ||||
Fusarium sp. | - | ND | 23 | - |
Fusarium oxysporium | - | ND | 22 | - |
Aspergillus niger | 13 | ND | 24 | 12.5 |
Aspergillus flavus | - | ND | 23 | - |
Microsporum canis | - | ND | 24 | - |
Mucor sp. | - | ND | 22 | - |
Penicillium sp. | - | ND | 23 | - |
Rhizophus sp. | - | ND | 22 | - |
Trichoderma viride | - | ND | 24 | - |
Trichophyton mentagrophytes | - | ND | 24 | - |
2.2. Time Kill Study
2.3. In Vivo Antifungal Activity
2.4. SEM Observation
2.5. TEM Observation
2.6. Identification of Antifungal Bioactive Compound (s)
2.6.1. FTIR Analysis
2.6.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
3. Discussion
4. Experimental
4.1. Plant Collection
4.2. Preparation of Plant Extract
4.3. Determination of the Antimicrobial Activity
4.3.1. Antimicrobial Disc Diffusion Assay
4.3.2. Minimum Inhibitory Concentration (MIC) Determination
4.4. Time-Kill Study
4.5. In Vivo Antifungal Assay
4.5.1. Laboratory Animals
4.5.2. Antifungal Assay
Group | Treatment |
---|---|
Group 1 (Negative control) | i.v. Candida 24h gap, follow by treatment with PBS (o.a. once daily for 7 days) |
Group 2 (Positive control) | i.v. Candida 24h gap, follow by treatment with ketoconazole, 10 mg/kg body weight (o.a. Once daily for 7 days) |
Group 3 (curative) | i.v. Candida 24h gap, follow by treatment with E. guineensis extract, 2.5 g/kg body weight (o.a. once daily for 7 days) |
4.6. Scanning Electron Microscope (SEM) Observation
4.7. Transmission Electron Microscope (TEM) Observation
4.8. Identification of Antifungal Bioactive Compound(s)
4.8.1. FTIR Analysis
4.8.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
4.9. Statistical Analysis
5. Conclusions
Acknowledgments
- Sample Availability: Samples of the extract of E. guineensis are available from the authors.
References and Notes
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Bradley, J.S.; Guidos, R.; Baragona, S.; Bartlett, J.G.; Rubinstein, E.; Zhanel, G.G.; Tino, M.D.; Pompliano, D.L.; Tally, F.; Tipirneni, P.; et al. Anti-infective research and development: problems, challenges, and solutions. Lancet Infect. Dis. 2007, 7, 68–78. [Google Scholar] [CrossRef]
- Cars, O.; Hogberg, L.D.; Murray, M.; Nordberg, O.; Sivaraman, S.; Lundborg, C.S.; So, A.D.; Tomson, G. Meeting the challenge of antibiotic resistance. BMJ 2008, 337, 1438. [Google Scholar] [CrossRef]
- Belay, G.; Tariku, Y.; Kebede, T.; Hymete, A.; Mekonnen, Y. Ethnopharmacological investigations of essential oils isolated from five Ethiopian medicinal plants against eleven pathogenic bacterial strains. Phytopharmacology 2011, 1, 166–176. [Google Scholar]
- Amato-Gauci, A.; Ammon, A. The First European Communicable Disease Epidemiological Report; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2007. [Google Scholar]
- Lepape, A.; Monnet, D.L. Experience of European intensive care physicians with infections due to antibiotic resistant bacteria. Eur. Surveill. 2009, 14, 1–2. [Google Scholar]
- Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 2009, 9, 228–236. [Google Scholar] [CrossRef]
- Yoga Latha, L.; Darah, I.; Jain, K.; Sasidharan, S. Effects of Vernonia cinerea Less methanol extract on growth and morphogenesis of Candida albicans. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 543–549. [Google Scholar]
- Irvin, T.T. Wound healing. Arch. Emerg. Med. 1985, 2, 3–10. [Google Scholar]
- Sasidharan, S.; Sharmini, R.; Vijayarathna, S.; Yoga Latha, L.; Vijenthi, R.; Amala, R.; Amutha, S. Antioxidant and hepatoprotective activity of methanolic extracts of Elaeis guineensis Jacq leaf. Pharmacologyonline 2009, 3, 84–90. [Google Scholar]
- Chong, K.H.; Zuraini, Z.; Sasidharan, S.; Devi, P.V.K.; Latha, L.Y.; Ramanathan, S. Antimicrobial of Elaeis guineensis leaf. Pharmacologyonline 2008, 3, 379–386. [Google Scholar]
- Sasidharan, S.; Nilawatyi, R.; Xavier, R.; Latha, L.Y.; Amala, R. Wound healing potential of Elaeis guineensis jacq leaves in an infected albino rat model. Molecules 2010, 15, 3186–3199. [Google Scholar] [CrossRef]
- Rajoo, A.; Ramanathan, S.; Sasidharan, S.; Mansor, S.M. Standardization of Elaeis guineensis with respect to authenticity, assay and chemical constituent analysis. Afr. J. Biotechnol. 2010, 9, 7544–7549. [Google Scholar]
- Syahmi, A.R.M.; Vijayarathna, S.; Sasidharan, S.; Latha, L.Y.; Kwan, Y.P.; Lau, Y.L.; Shin, L.N.; Chen, Y. Acute oral toxicity and brine shrimp lethality of Elaeis guineensis jacq., (oil palm leaf) methanol extract. Molecules 2010, 15, 8111–8121. [Google Scholar]
- Tian, F.; Li, B.; Ji, B.P.; Yang, J.H.; Zhang, G.Z.; Chen, Y.; Luo, Y.C. Antioxidant and antimicrobial activities of consecutive extracts from Galla chinensis: The polarity affects the bioactivities. Food Chem. 2009, 113, 173–179. [Google Scholar] [CrossRef]
- Geissman, T.A. Flavonoid Compounds, Tannins, Lignins and Related Compounds. In Pyrrole Pigments, Isoprenoid Compounds and Phenolic Plant Constituents; Florkin, M., Stotz, E.H., Eds.; Elsevier: New York, NY, USA, 1963. [Google Scholar]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Urs, N.V.R.R.; Dunleavy, J.M. Enhancement of the bactericidal activity of a peroxidase system by phenolic compounds. Phytopathology 1975, 65, 686–690. [Google Scholar] [CrossRef]
- Mason, T.L; Wasserman, B.P. Inactivation of red beet betaglucan synthase by native and oxidized phenolic compounds. Phytochemistry 1987, 26, 2197–2202. [Google Scholar] [CrossRef]
- Pathak, D.; Pathak, K.; Singla, A.K. Flavonoids as medicinal agents-recent advances. Fitoterapia 1991, 62, 371–389. [Google Scholar]
- Tranter, H.S.; Tassou, S.C.; Nychas, G.J. The effect of the olive phenolic compound, oleuropein, on growth and enterotoxin B production by Staphylococcus aureus. J. Appl. Bacteriol. 1993, 74, 253–259. [Google Scholar] [CrossRef]
- Tassou, C.; Nychas, G.J.E. Inhibition of Staphylococcus aureus by olive phenolic in broth and in a model food system. J. Food Prot. 1994, 57, 120–124. [Google Scholar]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar]
- Zheng, C.J.; Sohn, M.J.; Kim, K.Y.; Yu, H.E.; Kim, W.G. Olean-27-carboxylic acid-type triterpenes with potent antibacterial activity from Aceriphyllum rossii. J. Agric. Food Chem. 2008, 24, 11752–11756. [Google Scholar]
- Sultana, T.; Rashid, M.A.; Ali, M.A.; Mahmood, S.F. Hepatoprotective and antibacterial activity of ursolic acid extracted from Hedyotis corymbosa L. Bangladesh J. Sci. Ind. Res. 2010, 4, 27–34. [Google Scholar]
- Jabeen, R.; Shahid, M.; Jamil, A.; Ashraf, M. Microscopic evaluation of the antimicrobial activity of seed extracts of Moringa Oleifere. Pak. J. Bot. 2008, 40, 1349–1358. [Google Scholar]
- Shittu, L.A.J.; Bankole, M.A.; Ahmed, T.; Bankole, M.N.; Shittu, R.K.; Saalu, C.L.; Ashiru, O.A. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic microorganisms. Iran J. Pharmacol. Ther. 2007, 6, 165–170. [Google Scholar]
- Schein, C.H. Solubility as a function of protein structure and solvent components. Biotechnology 1990, 8, 308–317. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Vadivel, E. GC-MS analysis of some bioactive constituents of Mussaenda frondosa Linn. Int. J. Pharm. BioSci. 2011, 2, 314–318. [Google Scholar]
- Rigal, L.; Gaset, A. Direct preparation of 5-hydroxymethyl-2-furancarboxaldehyde from polyholosides: A chemical valorisation of the Jerusalem artichoke (Helianthus tuberosus L.). Biomass 1983, 3, 151–163. [Google Scholar]
- Kabir, A.K.M.S.; Dutta, P.; Anwar, M.N. Antibacterial and antifungal evaluation of some derivatives of methyl α-D-mannopyranoside. Int. J. Agric. Biol. 2005, 7, 754–756. [Google Scholar]
- Dongmo, A.B.; Charleux, J.L.; Crozier-Wili, G.; Kok, F.J.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Vina-Ribes, J. Fungicidal food science and defense against reactive oxidative species. Br. J. Nutr. 1998, 80, 77–112. [Google Scholar] [CrossRef]
- Alzoreky, N.S.; Nakahara, K. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 2003, 80, 23–230. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by standardized single disc method. Am. J. Clin. Pathol. 1996, 36, 493–496. [Google Scholar]
- Zhu, X.; Lo, H.Z.R.; Lu, Y. Antimicrobial activities of Cynara scolymus L. leaf, head, and stem extracts. J. Food Sci. 2005, 70, 149–152. [Google Scholar]
- Abubakar, E.M. Antibacterial activity of crude extracts of Euphoria hirta against some bacteria associated with enteric infections. J. Med. Plants Res. 2009, 3, 498–505. [Google Scholar]
- NCCLS (National Committee for Clinical Laboratory Standards). Methods Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 3rd Standard NCCLS document M100-S12. NC-275 CLS: Wayne, PA, USA, 2002.
- Yoga Latha, L.; Darah, I.; Jain, K.; Sasidharan, S. Effects of Vernonia cinerea Less methanol extract on growth and morphogenesis of Candida albicans. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 543–549. [Google Scholar]
- Anaissie, E.R.; Hachem, C.K.; Tin, L.U.; Stephens, C.; Bodey, G.P. Experimental hematogenous candidiasis caused by Candida krusei and Candida albicans: Species differences in pathogenicity. Infect.Immun. 1993, 61, 1268–1271. [Google Scholar]
- Borgers, M.; Van De Ven, M.A.; Van Cutsen, J. Structural degeneration of Aspergillus fumigatus after exposure to saperconazole. J. Med. Vet. Mycol. 1989, 27, 381–389. [Google Scholar] [CrossRef]
- Mares, D. Electron microscopy of Microsporum cookie after in vitro treatment with protoanemonin: A combined SEM and TEM study. Mycopathologia 1989, 108, 37–46. [Google Scholar] [CrossRef]
- Soetardjo, S.; Chan, J.P.; Noor, A.M.; Lachimanan, Y.L.; Sreenivasan, S. Chemical composition and biological activity of the Centipeda minima (Asteraceae). Malays. J. Nutr. 2007, 13, 81–87. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vijayarathna, S.; Zakaria, Z.; Chen, Y.; Latha, L.Y.; Kanwar, J.R.; Sasidharan, S. The Antimicrobial Efficacy of Elaeis guineensis: Characterization, in Vitro and in Vivo Studies. Molecules 2012, 17, 4860-4877. https://doi.org/10.3390/molecules17054860
Vijayarathna S, Zakaria Z, Chen Y, Latha LY, Kanwar JR, Sasidharan S. The Antimicrobial Efficacy of Elaeis guineensis: Characterization, in Vitro and in Vivo Studies. Molecules. 2012; 17(5):4860-4877. https://doi.org/10.3390/molecules17054860
Chicago/Turabian StyleVijayarathna, Soundararajan, Zuraini Zakaria, Yeng Chen, Lachimanan Yoga Latha, Jagat R. Kanwar, and Sreenivasan Sasidharan. 2012. "The Antimicrobial Efficacy of Elaeis guineensis: Characterization, in Vitro and in Vivo Studies" Molecules 17, no. 5: 4860-4877. https://doi.org/10.3390/molecules17054860
APA StyleVijayarathna, S., Zakaria, Z., Chen, Y., Latha, L. Y., Kanwar, J. R., & Sasidharan, S. (2012). The Antimicrobial Efficacy of Elaeis guineensis: Characterization, in Vitro and in Vivo Studies. Molecules, 17(5), 4860-4877. https://doi.org/10.3390/molecules17054860