Synthesis, Molecular Properties Prediction, and Anti-staphylococcal Activity of N-Acylhydrazones and New 1,3,4-Oxadiazole Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Silico Study of Molecular Properties and Drug-Likeness
2.3. Antibacterial Activity
3. Experimental
3.1. Chemistry
3.2. General Procedure for the Preparation of N-Acylhydrazones of 4a–e
3.3. General Procedure for the Preparation of 1-(2-(5-Nitrofuran-2-yl)-5-(4-substituted-phenyl)-1,3,4-oxadiazol-3(2H)-yl)ethanones 5a–e
3.4. Bacterial Strains
3.5. Antibacterial Activity
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Cohen, F.L.; Tartasky, D. Microbial resistance to drug therapy: A review. Am. J. Infect. Control 1997, 25, 51–64. [Google Scholar] [CrossRef]
- Simoens, S. Health economics of antibiotics. Pharmaceuticals 2010, 3, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- McBride, W.J.H. Chemoprophylaxis of tropical infectious diseases. Pharmaceuticals 2010, 3, 1561–1575. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Williamson, M.; Zloh, M.; Gibbons, S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother. Res. 2005, 19, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, S.; Moser, E.; Kaatz, G.W. Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Plant Lett. 2004, 70, 1–3. [Google Scholar]
- Ortega, E.; Abriouel, H.; Lucas, R.; Gálvez, A. Multiple roles of Staphylococcus aureus enterotoxins: Pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins 2010, 2, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Masunari, A.; Tavares, L.C. 3D QSAR studies of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus. Braz. J. Pharm. Sci. 2007, 43, 281–294. [Google Scholar]
- Saadeh, H.A.; Mosleh, I.M.; Mubarak, M.S. Synthesis of novel hybrid molecules from precursors with known antiparasitic activity. Molecules 2009, 14, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Salomon, C.J. First century of Chagas’ disease: An overview on novel approaches to nifurtimox and benznidazole delivery systems. J. Pharm. Sci. 2012, 101, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Ancizu, S.; Moreno, E.; Torres, E.; Burguete, A.; Pérez-Silanes, S.; Benítez, D.; Villar, R.; Solano, B.; Marín, A.; Aldana, I.; et al. Heterocyclic-2-carboxylic acid (3-cyano-1,4-di-N-oxidequinoxalin-2-yl)amide derivatives as hits for the development of neglected disease drugs. Molecules 2009, 14, 2256–2272. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.S.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P.; Harding, D.P.; Lira, B.F.; Lorenzo, J.G.F.; Barbosa-Filho, J.M.; Athayde-Filho, P.F. Drug resistance modulation in Staphylococcus aureus, a new biological activity for mesoionic hydrochloride compounds. Molecules 2011, 16, 2023–2031. [Google Scholar] [CrossRef]
- Kadi, A.A.; El-Frollosy, N.R.; Al-Deeb, O.A.; Habib, E.E.; Ibrahim, T.M.; El-Emam, A.A. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles. Eur. J. Med. Chem. 2007, 42, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Chandrakantha, B.; Shetty, P.; Nambiyar, V.; Isloor, N.; Isloor, A.M. Synthesis, characterization and biological activity of some new 1,3,4-oxadiazole bearing 2-fluoro-4-methoxy phenyl moiety. Eur. J. Med. Chem. 2010, 45, 1206–1210. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.V.S.; Rajendraprasad, Y.; Mallikarjuna, B.P.; Chandrashekar, S.M.; Kistayya, C. Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem. 2010, 45, 2063–2074. [Google Scholar] [CrossRef] [PubMed]
- Bektaş, H.; Karaali, N.; Şahin, D.; Demirbaş, A.; Karaoglu, S.A.; Demirbaş, N. Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Molecules 2010, 15, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, N.K.; Singh, V.; Shaharyar, M.; Ali, M. Synthesis and antimicrobial evaluation of some new oxadiazoles derived from phenylpropionohydrazides. Molecules 2009, 14, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.-Q.; Liu, X.-H.; Huang, H.; Tan, C.-X.; Chen, J. Synthesis, structure and antifungal activity of new 3-[(5-aryl-1,3,4-oxadiazol-2-yl)methyl]benzo[d]thiazol-2(3H)-ones. Molecules 2012, 17, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, K.; Poojary, B.; Lobo, P.L.; Fernandes, J.; Kumari, N.S. Synthesis and biological evaluation of some 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 5225–5233. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.; Ahmad, A.; Alam, M.M.; Ajmal, M.; Ahuja, P. Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl)]-1-(biphenyl-4-yl)propan-1-ones as safer antiinflammatory and analgesic agents. Eur. J. Med. Chem. 2009, 44, 3798–3804. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Zareef, M.; Ahmed, S.; Zaidi, J.H.; Arfan, M.; Shafique, M.; AL-Masoudi, N.A. Synthesis, antimicrobial and anti-HIV activity of some novel benzenesulfonamides bearing 2,5-disubstituted-1,3,4-oxadiazole moiety. J. Chin. Chem. Soc. 2006, 53, 689–696. [Google Scholar] [CrossRef]
- Johns, B.; Weatherhead, J.G.; Allen, S.H.; Thompson, J.B.; Garvey, E.P.; Foster, S.A.; Jeffrey, J.L.; Miller, W.H. 1,3,4-Oxadiazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 2: SAR of the C5 position. Bioorg. Med. Chem. Lett. 2009, 19, 1807–1810. [Google Scholar] [CrossRef] [PubMed]
- Savariz, F.C.; Formagio, A.S.N.; Barbosa, V.A.; Foglio, M.A.; Carvalho, J.E.; Duarte, M.C.T.; Filho, B.P.D.; Sarragiotto, M.H. Synthesis, antitumor and antimicrobial activity of novel 1-substituted phenyl-3-[3-alkylamino(methyl)-2-thioxo-1,3,4-oxadiazol-5-yl]-b-carboline derivatives. J. Braz. Chem. Soc. 2010, 21, 288–298. [Google Scholar] [CrossRef]
- Lee, L.; Robb, L.M.; Lee, M.; Davis, R.; Mackay, H.; Chavda, S.; Babu, B.; O’Brien, E.L.; Risinger, A.L.; Mooberry, S.L.; et al. Design, synthesis, and biological evaluations of 2,5-diaryl-2,3-dihydro-1,3,4-oxadiazoline analogs of combretastatin-A4. J. Med. Chem. 2010, 53, 325–334. [Google Scholar] [CrossRef]
- Bankar, G.R.; Nandakumar, K.; Nayak, P.G.; Thakur, A.; Chamallamudi, M.R.; Nampurath, G.K. Vasorelaxant effect in rat aortic rings through calcium channel blockage: A preliminary in vitro assessment of a 1,3,4-oxadiazole derivative. Chem. Biol. Interact. 2009, 181, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, Y.; Blouin, M.; Brideau, C.; Châteauneuf, A.; Gareau, Y.; Grimm, E.L.; Juteau, H.; Laliberte, S.; MacKay, B.; Masse, F.; et al. The discovery of setileuton, a potent and selective 5-lipoxygenase inhibitor. Med. Chem. Lett. 2010, 1, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, F.; Britton, R.A.; Davies, I.W.; Dolman, S.J.; Gauvreau, D.; Hoerrner, R.S.; Hughes, G.; Janey, J.; Lau, S.; Molinaro, C.; et al. A practical synthesis of 5-lipoxygenase inhibitor MK-0633. J. Org. Chem. 2010, 75, 4154–4160. [Google Scholar] [CrossRef] [PubMed]
- Zarghi, A.; Tabatabai, S.A.; Faizi, M.; Ahadian, A.; Navabi, P.; Zanganeh, V.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles. Bioorg. Chem. Lett. 2005, 15, 1863–1865. [Google Scholar] [CrossRef] [PubMed]
- Rajak, H.; Deshmukh, R.; Veerasamy, R.; Sharma, A.K.; Mishra, P.; Kharya, M.D. Novel semicarbazones based 2,5-disubstituted-1,3,4-oxadiazoles: One more step towards establishing four binding site pharmacophoric model hypothesis for anticonvulsant activity. Bioorg. Med. Chem. Lett. 2010, 20, 4168–4172. [Google Scholar] [CrossRef] [PubMed]
- Savarino, A. A historical sketch of the discovery and development of HIV-1 integrase inhibitors. Expert Opin. Inv. Drug. 2006, 15, 1507–1522. [Google Scholar] [CrossRef] [PubMed]
- Schlecker, R.; Thieme, P.C. The synthesis of antihypertensive 3-(1,3,4-oxadiazol-2-yl)phenoxypropanolahines. Tetrahedron 1988, 44, 3289–3294. [Google Scholar] [CrossRef]
- Ogata, M.; Atobe, H.; Kushi-Da, H.; Yamamoto, K. In vitro sensitivity of mycoplasmas isolated from various animals and sewage of antibiotics and nitrofurans. J. Antibiot. 1971, 24, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Vardan, S.; Mookherjee, S.; Eich, R. Effects of tiodazosin, a new antihypertensive, hemodynamics and clinical variables. Clin. Pharm. Ther. 1983, 34, 290–296. [Google Scholar] [CrossRef]
- Rando, D.G.; Avery, M.A.; Tekwani, B.L.; Khan, S.I.; Ferreira, E.I. Antileishmanial activity screening of 5-nitro-2-hetetocyclic benzylidene hydrazides. Bioorg. Med. Chem. 2008, 16, 6724–6731. [Google Scholar] [CrossRef] [PubMed]
- Cerioni, G.; Maccioni, E.; Cardia, M.C.; Vigo, S.; Mocci, F. Characterization of 2,5-diaryl-1,3,4-oxadiazolines by multinuclear magnetic resonance and density functional theory calculations. investigation on a case of very remote hammett correlation. Magn. Reson. Chem. 2009, 47, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, N.K.; Singh, V.; Shaharyar, M.; Ali, M. Synthesis and antimicrobial evaluation of some new oxadiazoles derived from phenylpropionohydrazides. Molecules 2009, 14, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Cheminformatics on the web. Available online: http://www.molinspiration.com/ (accessed on 10 February 2012).
- Organic Chemistry Portal. Available online: http://www.organic-chemistry.org/prog/peo/ (accessed on 10 February 2012).
- Zhao, M.Y.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res. 2002, 19, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, S. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 2004, 21, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Hafidh, R.R.; Abdulamir, A.S.; Vern, L.S.; Bakar, F.A.; Abas, F.; Jahanshiri, F.; Sekawi, Z. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol. J. 2011, 5, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Kaatz, G.W.; Seo, S.M. Inducible NorA-mediated multidrug resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1995, 39, 2650–2655. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.I.; Farrell, A.M.; Eady, E.A.; Cove, J.H.; Cunliffe, W.J. Characterisation and molecular cloning of the novel macrolide streptogramin B resistance determinant from Staphylococcus epidermidis. J. Antimicrob. Chemother. 1989, 24, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, S.; Udo, E.E. The effect of reserpine, a modulator of multidrug efflux, on the in vitro activity of tetracycline against clinical isolates of methicillin resistance Staphylococcus aureus (MRSA) possessing the tet (K) determinant. Phytother. Res. 2000, 14, 139–140. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Comp. | Lipinski’s Parameters | TPSA (Ų) | % ABS | Log S | Drug-likeness | Drug score | ||||
---|---|---|---|---|---|---|---|---|---|---|
HBA | HBD | MW | miLogP | Violations | ||||||
4a | 7 | 1 | 259.22 | 2.44 | 0 | 100.43 | 74.35 | −4.39 | 3.21 | 0.75 |
4b | 7 | 1 | 273.27 | 2.89 | 0 | 100.43 | 74.35 | −4.73 | 1.76 | 0.66 |
4c | 10 | 1 | 304.24 | 2.40 | 0 | 146.25 | 50.46 | −4.85 | −4.04 | 0.21 |
4d | 7 | 1 | 293.68 | 3.12 | 0 | 100.43 | 74.35 | −5.12 | 4.28 | 0.64 |
4e | 8 | 1 | 289.27 | 2.50 | 0 | 109.66 | 71.17 | −4.41 | 2.96 | 0.74 |
5a | 8 | 0 | 301.25 | 1.95 | 0 | 100.87 | 74.20 | −3.89 | 0.02 | 0.50 |
5b | 8 | 0 | 315.28 | 2.40 | 0 | 100.87 | 74.20 | −4.23 | −1.56 | 0.37 |
5c | 11 | 0 | 346.25 | 1.91 | 1 | 146.70 | 50.61 | −4.35 | −5.36 | 0.30 |
5d | 8 | 0 | 335.68 | 2.30 | 0 | 100.87 | 74.20 | −4.62 | 1.45 | 0.52 |
5e | 9 | 0 | 331.28 | 2.01 | 0 | 110.11 | 71.01 | −3.90 | −2.77 | 0.34 |
Compound | Strains | ||||
---|---|---|---|---|---|
SA-1199B | RN-4220 | IS-58 | 007 | 05H | |
4a | 16-16 * | 8-8 | 8-8 | 8-8 | 8-8 |
4b | 16-32 | 8-8 | 8-8 | 8-8 | 4-4 |
4c | 32-32 | 16-32 | 16-16 | 8-16 | 8-8 |
4d | 16-16 | 8-8 | 8-16 | 8-8 | 4-4 |
4e | 16-16 | 16-16 | 8-8 | 8-8 | 4-4 |
5a | 32-32 | 16-32 | 16-16 | 32-32 | 16-16 |
5b | 16-32 | 16-32 | 16-16 | 8-8 | 8-8 |
5c | 32-32 | 16-32 | 16-16 | 16-16 | 8-8 |
5d | 16-32 | 16-32 | 16-16 | 16-16 | 8-8 |
5e | 32-32 | 32-32 | 32-32 | 16-16 | 8-8 |
Chloramphenicol | 64-64 | 64-128 | 64-128 | 64-128 | 64-128 |
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Oliveira, C.S.; Lira, B.F.; Dos Santos Falcão-Silva, V.; Siqueira-Junior, J.P.; Barbosa-Filho, J.M.; De Athayde-Filho, P.F. Synthesis, Molecular Properties Prediction, and Anti-staphylococcal Activity of N-Acylhydrazones and New 1,3,4-Oxadiazole Derivatives. Molecules 2012, 17, 5095-5107. https://doi.org/10.3390/molecules17055095
De Oliveira CS, Lira BF, Dos Santos Falcão-Silva V, Siqueira-Junior JP, Barbosa-Filho JM, De Athayde-Filho PF. Synthesis, Molecular Properties Prediction, and Anti-staphylococcal Activity of N-Acylhydrazones and New 1,3,4-Oxadiazole Derivatives. Molecules. 2012; 17(5):5095-5107. https://doi.org/10.3390/molecules17055095
Chicago/Turabian StyleDe Oliveira, Cledualdo Soares, Bruno Freitas Lira, Vivyanne Dos Santos Falcão-Silva, Jose Pinto Siqueira-Junior, Jose Maria Barbosa-Filho, and Petronio Filgueiras De Athayde-Filho. 2012. "Synthesis, Molecular Properties Prediction, and Anti-staphylococcal Activity of N-Acylhydrazones and New 1,3,4-Oxadiazole Derivatives" Molecules 17, no. 5: 5095-5107. https://doi.org/10.3390/molecules17055095
APA StyleDe Oliveira, C. S., Lira, B. F., Dos Santos Falcão-Silva, V., Siqueira-Junior, J. P., Barbosa-Filho, J. M., & De Athayde-Filho, P. F. (2012). Synthesis, Molecular Properties Prediction, and Anti-staphylococcal Activity of N-Acylhydrazones and New 1,3,4-Oxadiazole Derivatives. Molecules, 17(5), 5095-5107. https://doi.org/10.3390/molecules17055095