Syntheses of Enantiopure Aliphatic Secondary Alcohols and Acetates by Bioresolution with Lipase B from Candida antarctica
Abstract
:1. Introduction
2. Results and Discussion
alcohols | alcohols 1–6 | acetates 7–12 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
t (min) | c (%) b* | ee (%) b | ac b | yield (%) b,d | c (%) c | ee (%) c | ac c | yield (%) c,d | E | |
1 | 60 | 50 | >99 | S | 40 | 50 | >99 | R | 45 | >200 |
2 | 60 | 100 e | - | - | - | - | - | - | - | - |
3 | 20 | 60 | - | - | - | 40 | >99 | - | - | - |
4 | 40 | 50 | >99 f | S | 32 | 50 | >99 | R | 31 | >200 |
20 | 70 | - | - | - | 30 | >99 | - | - | - | |
40 | 60 | - | - | - | 40 | >99 | - | - | - | |
5 | 60 | 50 | >99 f | S | 40 | 50 | >99 | R | 35 | >200 |
240 | 70 | - | - | - | 30 | - | - | - | - | |
420 | 50 | >99 | S | 35 | 50 | >99 | R | 32 | >200 | |
6 | 20 | 80 | - | - | - | 20 | - | - | - | - |
40 | 55 | - | - | - | 45 | - | - | - | - | |
60 | 50 | >99 f | R | 41 | 50 | >99 | S | 50 | >200 |
3. Experimental
3.1. General
3.1.1. Preparation of (±) Aliphatic Secondary Alcohols
3.1.2. Preparation of (±) Aliphatic Secondary Acetates
3.2. Biocatalyzed Enzymatic Reactions
3.3. GC-FID Analyses
3.4. Assignment of the Absolute Configuration
Compounds | Ti (°C) | Tf (°C) | ti (min) | tf (min) | r (°C /min) | tr (min) |
---|---|---|---|---|---|---|
1 | 45 | 60 | 2 | 1 | 0.2 | (R)-20.0; (S)-21.5 |
2 | 50 | 100 | 2 | 1 | 1 | (R)-9.0; (S)-9.0 |
3 | 65 | 85 | 2 | 1 | 1 | (R)-9.0; (S)-9.0 |
4 | 95 | 110 | 2 | 1 | 1 | (R)-6.6; (S)-6.6 |
5 | 65 | 85 | 2 | 1 | 1 | (R)-10.4; (S)-10.4 |
6 | 85 | 100 | 2 | 1 | 1 | (R)-9.3; (S)-9.3 |
7 | 60 | 100 | 2 | 5 | 5 | (R)-14.5; (S)-22.0 |
8 | 50 | 100 | 2 | 1 | 1 | (R)-12.2; (S)-12.5 |
9 | 65 | 85 | 2 | 1 | 1 | (R)-12.2; (S)-12.5 |
10 | 95 | 100 | 2 | 1 | 1 | (R)-8.9; (S)-9.1 |
11 | 65 | 85 | 2 | 1 | 1 | (R)-13.8; (S)-14.1 |
12 | 85 | 100 | 2 | 1 | 1 | (R)-11.6; (S)-11.8 |
Compounds | experimental | literature |
---|---|---|
(S)-4-methylpentan-2-ol (1) | +4.40 (c 0.4; CHCl3) | R-enantiomer: −3.97 (neat) [29] |
R-enantiomer: −18.4 (c 1.2; EtOH)[27] | ||
(S)-5-methylhexan-2-ol (3) | +8.68 (c 0.5; CHCl3) | |
(S)-octan-2-ol (4) | +7.90 (c 0.6; CHCl3) | S-enantiomer: +10.3 (c 2.0; EtOH) [25] |
S-enantiomer: +8.7 (c 1.0; CHCl3) [26] | ||
(S)-heptan-3-ol (5) | +8.24 (c 0.2; CHCl3) | R-enantiomer: −9.2 (c 7–8 g/100mL; CHCl3) [30] |
S-enantiomer: +9.2 (c 7–8 g/100mL; CHCl3) [30] | ||
(R)-oct-1-en-3-ol (6) | −8.06 (c 0.8; CHCl3) | S-enantiomer: +7.0 (c 1.0; pentane) [22] |
S-enantiomer: +7.16 (c 1.38; pentane) [14] | ||
(R)-4-methylpentan-2-yl acetate (7) | −7.10 (c 0.8; CHCl3) | R-enantiomer: −21.8 (c 2.0; CHCl3) [27] |
(R)-octan-2-yl acetate (10) | −2.96 (c 0.5; CHCl3) | |
(R)-heptan-3-yl acetate (11) | +1.79 (c 0.7; CHCl3) | |
(S)-oct-1-en-3-yl acetate (12) | −12.07 (c 0.9; CHCl3) | S-enantiomer: −11.5 (c 2.8; CHCl3) [22] |
3.5. Enantiomeric Ratio (E)
4. Conclusions
Acknowledgments
References
- Gotor-Fernandez, V.; Vicente, G. Use of Lipases in Organic Synthesis. In Industrial Enzymes—Structure, Function and Applications; Polaina, J., MacCabe, A.P., Eds.; Springer: Weinheim, Germany, 2007; Volume Chapter 18, p. 642. [Google Scholar]
- Liu, H.-L.; Anthonsen, T. Enantiopure building blocks for chiral drugs from racemic mixtures of secondary alcohols by combination of lipase catalysis and Mitsunobu esterification. Chirality 2002, 14, 25–27. [Google Scholar] [CrossRef]
- Larios, A.; García, H.S.; Oliart, R.M.; Valerio-Alfaro, G. Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl. Microbiol. Biotechnol. 2004, 65, 373–376. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Torres, R.; Fernandez-Lafuente, R. Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecifc production of atenolol acetate. J. Mol. Catal. B Enzym. 2011, 71, 124–132. [Google Scholar] [CrossRef]
- Bornscheuer, U.T.; Kazlauskas, R.J. Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations, 2nd ed; Wiley: Weinheim, Germany, 2006. [Google Scholar]
- Jaeger, K.E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 2002, 13, 390–397. [Google Scholar] [CrossRef]
- Ghanem, A. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron 2007, 63, 1721–1754. [Google Scholar] [CrossRef]
- Krishna, S.H.; Karanth, N.G. Lipase and lipase-catalyzed esterification reactions in non-aqueous media. Catal. Rev. Sci. Eng. 2002, 44, 499–591. [Google Scholar] [CrossRef]
- Monteiro, C.M.; Lourenço, N.M.T.; Afonso, C.A. Separation of secondary alcohols via enzymatic kinetic resolution using fatty esters as reusable acylating agents. Tetrahedron Asymmetry 2010, 21, 952–956. [Google Scholar] [CrossRef]
- Kim, M.-J.; Choi, Y.K.; Choi, M.Y.; Kim, M.J.; Park, J. Lipase/ruthenium-catalyzed dynamic kinetic resolution of hydroxy acids, diols, and hydroxy aldehydes protected with a bulky group. J. Org. Chem. 2001, 66, 4736–4338. [Google Scholar] [CrossRef]
- Koh, J.H.; Jung, M.J.; Kim, M.-J.; Park, J. Enzymatic resolution of secondary alcohols coupled with ruthenium-catalyzed racemization without hydrogen mediator. Tetrahedron Lett. 1999, 40, 6281–6284. [Google Scholar]
- Ghanem, A.; Aboul-Enein, H.Y. Application of Lipases in Kinetic Resolution of Racemates. Chirality 2005, 17, 1–15. [Google Scholar] [CrossRef]
- Muralidhar, R.V.; Marchant, R.; Nigam, P. Lipases in racemic resolutions. J. Chem. Technol. Biotechnol. 2001, 76, 3–8. [Google Scholar] [CrossRef]
- Ohtani, T.; Nakatsukasa, H.; Kamezaw, M.; Tachibana, H.; Naoshima, Y. Enantioselectivity of Candida antarctica lipase for some synthetic substrates including aliphatic secondary alcohols. J. Mol. Catal. B Enzym. 1998, 4, 53–60. [Google Scholar] [CrossRef]
- Zarcula, C.; Corîci, L.; Croitoru, R.; Péter, F. Kinetic Resolution of Secondary Alcohols in Lipase-Catalyzed Transesterification Reactions. In Annals of West University of Timisoara Series of Chemistry IX. Proceedings of ISYPMR 2007-ACM-V–The IX International Symposium “Young People and Multidisciplinary Research”, Timisoara, Romanian, 2007; 16, pp. 107–112.
- Chojnacka, A.; Obara, R.; Wawrzenczyk, C. Kinetic resolution of racemic secondary aliphatic allylic alcohols in lipase-catalyzed transesterification. Tetrahedron Asymmetry 2007, 18, 101–107. [Google Scholar] [CrossRef]
- Rocha, L.C.; Rosset, I.G.; Luiz, R.F.; Raminelli, C.; Porto, A.L.M. Kinetic resolution of iodophenylethanols by Candida antarctica lipase and their application for the synthesis of chiral biphenyl compounds. Tetrahedron Asymmetry 2010, 18, 926–929. [Google Scholar]
- Ferraz, H.M.C.; Bianco, G.G.; Teixeira, C.C.; Andrade, L.H.; Porto, A.L.M. Enzymatic resolution of α-tetralols by CALB-catalyzed acetylation. Tetrahedron Asymmetry 2007, 18, 1070–1076. [Google Scholar] [CrossRef]
- Raminelli, C.; Comasseto, J.V.; Andrade, L.H.; Porto, A.L.M. Kinetic resolution of propargylic and allylic alcohols by Candida antarctica lipase (Novozyme 435). Tetrahedron Asymmetry 2004, 15, 3117–3122. [Google Scholar] [CrossRef]
- Ferreira, H.V.; Rocha, L.C.; Severino, R.P.; Viana, R.B.; Da Silva, A.B.F.; Porto, A.L.M. Enzymatic Resolution of Racemic Sulcatol by Lipase from Candida antarctica in a Large Scale. J. Iran. Chem. Soc. 2010, 7, 883–889. [Google Scholar] [CrossRef]
- Komisarski, M.; Kaczmarska, Z.; Kusmierek, J.T. Practical highly enantioselective synthesis of (R)- and (S)-(E)-4-hydroxynon-2-enal. Acta Biochem. Polonica 2009, 56, 189–193. [Google Scholar]
- Felluga, F.; Forzato, C.; Ghelfi, F.; Nitti, P.; Pitacco, G.; Pagnoni, U.G.; Roncaglia, F. Atom transfer radical cyclization (ATRC) applied to a chemoenzymatic synthesis of Quercus lactone. Tetrahedron: Asymmetry 2007, 18, 527–536. [Google Scholar] [CrossRef]
- Bornscheuer, U.; Schapohler, S.; Scheper, T.; Schiigerl, K. Influences of reaction conditions on the enantioselective transesterification using Pseudomonas cepacia lipase. Tetrahedron: Asymmetry 1991, 2, 1011–1014. [Google Scholar] [CrossRef]
- Jing, Q.; Kazlauskas, R.J. Determination of absolute configuration of secondary alcohols using lipase-catalysed kinetic resolutions. Chirality 2008, 15, 724–735. [Google Scholar]
- Maywald, M.; Pflatz, A. Chromatography-free enzymatic kinetic resolution of secondary alcohols. Synthesis 2009, 21, 3654–3660. [Google Scholar]
- Wang, Y.-F.; Lalonde, J.J.; Momongan, M.; Bergbreiter, D.E.; Wong, C-H. Lipase-catalysed irreversible transesterifications using enol esters as acylating reagents: Preparative enantio- and regioselective syntheses of alcohols, glycerol derivatives, sugars and organometallics. J. Am. Chem. Soc. 1988, 110, 7200–7205. [Google Scholar]
- Graylin, P.M.; Knox, J.R. (R)-4-Methyl-2-pentyl acetate from Eucalyptus loxophleba. J. Nat. Prod. 1991, 54, 295–297. [Google Scholar] [CrossRef]
- Dhokte, U.P.; Pathare, P.M.; Mahindroo, V.K.; Brown, H.C. Chiral synthesis via organoboranes. 48. Efficient synthesis of trans-fused bicyclic and cyclic ketones and secondary alcohols in high optical purities via asymmetric cyclic hydroboration with isopinocampheylchloroborane etherate. J. Org. Chem. 1998, 63, 8276–8283. [Google Scholar] [CrossRef]
- Yaozhong, J.; Yong, Q.; Aiqiao, M.; Zhitang, H. Asymmetric synthesis XXI. Enantioselective reduction of ketones catalysed by new (4S,5R)-4,5-diphenyl-1,3,2-oxazaborolidine. Tetrahedron: Asymmetry 1994, 5, 1211–1214. [Google Scholar] [CrossRef]
- Hirata, H.; Ikushima, M.; Watanabe, M.; Kawauchi, K.; Miyagishi, M.; Chen, Y-G.; Yanagishita, H. Kinetic resolution of optically pure 3-alkanol by Pseudomonas cepacia lipase-catalyzed transesterification with vinyl acetate in organic solvent. J. Oleo. Sci. 2003, 52, 375–386. [Google Scholar] [CrossRef]
- Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299. [Google Scholar] [CrossRef]
- Faber, K.; Kroutil, W. Bioorganic Chemistry. Available online: http://borgc185.kfunigraz.ac.at/index.htm (accessed on 18 April 2012).
- Sample Availability: Samples of the compounds are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ferreira, H.V.; Rocha, L.C.; Severino, R.P.; Porto, A.L.M. Syntheses of Enantiopure Aliphatic Secondary Alcohols and Acetates by Bioresolution with Lipase B from Candida antarctica. Molecules 2012, 17, 8955-8967. https://doi.org/10.3390/molecules17088955
Ferreira HV, Rocha LC, Severino RP, Porto ALM. Syntheses of Enantiopure Aliphatic Secondary Alcohols and Acetates by Bioresolution with Lipase B from Candida antarctica. Molecules. 2012; 17(8):8955-8967. https://doi.org/10.3390/molecules17088955
Chicago/Turabian StyleFerreira, Hercules V., Lenilson C. Rocha, Richele P. Severino, and André L. M. Porto. 2012. "Syntheses of Enantiopure Aliphatic Secondary Alcohols and Acetates by Bioresolution with Lipase B from Candida antarctica" Molecules 17, no. 8: 8955-8967. https://doi.org/10.3390/molecules17088955
APA StyleFerreira, H. V., Rocha, L. C., Severino, R. P., & Porto, A. L. M. (2012). Syntheses of Enantiopure Aliphatic Secondary Alcohols and Acetates by Bioresolution with Lipase B from Candida antarctica. Molecules, 17(8), 8955-8967. https://doi.org/10.3390/molecules17088955