Evaluation of the Pharmacological Function of Ulinastatin in Experimental Animals
Abstract
:1. Introduction
2. Results and Discussion
Group | LVDP (mm Hg) | LVEDP(mm Hg) | dp/dtmax(mm Hg/s) | dp/dtmin(mm Hg/s) |
---|---|---|---|---|
Sham | 90.6 ± 7.3 | 1792.3 ± 164.3 | 1738.4 ± 180.2 | 1315.8 ± 155.2 |
IR | 48.7 ± 3.5 ** | 992.1 ± 80.7 ** | 1203.7 ± 153.9 ** | 868.2 ± 74.2 ** |
IR + ulinastatin | 87.2 ± 5.9 ## | 1593.7 ± 138.1 ## | 1682.8±174.2 ## | 1301.4 ± 149.1 ## |
3. Experimental
3.1. Animals
3.2. The IR Model and Heart Tissue Collection
3.3. Hemodynamic Measurements
3.4. Biochemical Parameters
3.5. Histological Studies
3.6. Statistical Analysis
4. Conclusion
Acknowledgements
References
- Ferdinandy, P.; Schulz, R.; Baxter, G.F. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol. Rev. 2007, 59, 418–458. [Google Scholar] [CrossRef]
- Garcia-Dorado, D.; Agullo, L.; Sartorio, C.L.; Ruiz-Meana, M. Myocardial protection against reperfusion injury: the cGMP pathway. Thromb. Haemost. 2009, 101, 635–642. [Google Scholar]
- Madamanchi, N.R.; Patterson, C. Principles of Molecular Cardiology; Humana Press: New York, NY, USA, 2005; pp. 549–561. [Google Scholar]
- Nakamura, K.; Fushimi, K.; Kouchi, H.; Mihara, K.; Miyazaki, M.; Ohe, T.; Namba, M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998, 98, 794–799. [Google Scholar] [CrossRef]
- Ferrari, R.; Alfieri, O.; Curello, S.; Ceconi, C.; Cargnoni, A.; Marzollo, P.; Pardini, A.; Caradonna, E.; Visioli, O. Occurrence of oxidative stress during reperfusion of the human heart. Circulation 1990, 81, 201–211. [Google Scholar] [CrossRef]
- Li, X.Y.; McCay, P.B.; Zughaib, M.; Jeroudi, M.O.; Triana, J.F.; Bolli, R. Demonstration of free radical generation in the “stunned” myocardium in the conscious dog and identification of major differences between conscious and open-chest dogs. J. Clin. Invest. 1993, 92, 1025–1041. [Google Scholar] [CrossRef]
- Sato, Y.; Ishikawa, S.; Otaki, A.; Takahashi, T.; Hasegawa, Y.; Suzuki, M.; Yamagishi, T.; Morishita, Y. Induction of acute-phase reactive substances during open-heart surgery and efficacy of ulinastatin, inhibiting cytokines and postoperative organ injury. Jpn. J. Thorac. Cardiovasc. Surg. 2000, 48, 428–434. [Google Scholar] [CrossRef]
- Inoue, K.; Takano, H.; Shimada, A.; Yanagisawa, R.; Sakurai, M.; Yoshino, S.; Sato, H.; Yoshikawa, T. Urinary trypsin inhibitor protects against systemic inflammation induced by lip polysaccharide. Mol. Pharmacol. 2005, 67, 673–680. [Google Scholar]
- Xiao, C.W.; Liu, M.L.; Peng, J.T.; Yang, Z.D.; Jiang, F.Z. The affect of ulinastain on NO, TNF-α and cardiac troponin I (cTnI) after myocardial ischemia reperfusion injury (in Chinese). Jiangxi Med. J. 2011, 46, 802–804. [Google Scholar]
- Wang, D.-Z.; Zhang, L.-P. Protective effect of ulinastatin on ischemia and reperfusion of heart in rats. Chin. Hosp. Pharm. J. 2010, 30, 1581–1583. [Google Scholar]
- Liu, L.-L.; Fu, C.-Z.; Zhou, Q.-H.; Xie, C.-L.; Zhu, W.; Liu, C.-M. Effects of ulinastatin on plasma inflammatory cytokines, MDA and SOD during piggyback orthotopic liver transplantation operation. Acta Univ. Med. NanJing 2005, 25, 350–352. [Google Scholar]
- Messarah, M.; Saoudi, M.; Boumendjel, A.; Boulakoud, M.S.; Feki, A.E. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environ. Toxicol. Pharmacol. 2011, 31, 33–41. [Google Scholar] [CrossRef]
- Motawi, T.M.K.; Sadik, N.A.H.; Refaat, A. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide-induced oxidative injury: An experimental study on rat myocardium, testicles and urinary bladder. Food Chem. Toxicol. 2010, 48, 2326–2336. [Google Scholar] [CrossRef]
- Hofmann, U.; Heuer, S.; Meder, K.; Boehler, J.; Lange, V.; Quaschning, T.; Ertl, G.; Bonz, A. The proinflammatory cytokines TNF-α and IL-1β impair economy of contraction in human myocardium. Cytokine 2007, 39, 157–162. [Google Scholar] [CrossRef]
- Al Johani, S.M.; Akhter, J. Comparison of the Cepheid Xpert FluA/H1N1 screening test with real time polymerase chain reaction (PCR) in detection of 2009 H1N1 Influenza A Pandemic. Afr. J. Microbiol. Res. 2012, 6, 5138–5141. [Google Scholar]
- Banani, A.; Maleki-Dizaji, N.; Niknahad, H.; Garjani, A.; Ziaee, M.; Ghavimi, H.; Hamedeyazdan, S.; Garjani, A. N-acetylaspartylglutamate (NAAG) exhibits anti-inflammatory effects on carrageenan-induced paw edema model of inflammation in rats. Afr. J. Pharm. Pharmacol. 2012, 6, 1702–1709. [Google Scholar]
- Kaur, K.; Sharma, A.K.; Dhingra, S.; Singal, P.K. Interplay of TNF-α and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes. J. Mol. Cell. Cardiol. 2006, 41, 1023–1030. [Google Scholar] [CrossRef]
- González, A.; Ravassa, S.; Beaumont, J.; López, B.; Díez, J. New Targets to Treat the Structural Remodeling of the Myocardium. J. Am. Coll. Cardiol. 2011, 58, 1833–1843. [Google Scholar] [CrossRef]
- Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Kadowitz, P.J. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: Stimulation by acetylcholine, bradykinin and arachidonic acid. Proc. Natl. Acad. Sci. USA 1986, 237, 893–900. [Google Scholar]
- Ignarro, L.J.; Napoli, C.; Loscalzo, J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: An overview. Circulation 2002, 90, 21–28. [Google Scholar] [CrossRef]
- Kaya, Z.; Katus, H.A.; Rose, N.R. Cardiac troponins and autoimmunity: Their role in the pathogenesis of myocarditis and of heart failure. Clin. Immunol. 2010, 134, 80–88. [Google Scholar] [CrossRef]
- Berk, S.; Tepe, B.; Arslan, S. Screening of the antioxidant, antimicrobial and DNA damage protection potentials of the aqueous extract of Inula oculus-christi. Afr. J. Pharm. Pharmacol. 2011, 5, 1695–1702. [Google Scholar]
- Ley, J.J.; Prado, R.; Wei, J.Q.; Bishopric, N.H.; Becker, D.A.; Ginsberg, M.D. Neuroprotective antioxidant STAZN protects against myocardial ischemia/reperfusion injury. Biochem. Pharmacol. 2008, 75, 448–456. [Google Scholar] [CrossRef]
- White, M.Y.; Hambly, B.D.; Jeremy, R.W.; Cordwell, S.J. Ischemia-specific phosphorylation and myofilament translocation of heat shock protein 27 precedes alpha B-crystallin and occurs independently of reactive oxygen species in rabbit myocardium. J. Mol. Cell. Cardiol. 2006, 40, 761–774. [Google Scholar] [CrossRef]
- Seshadri, G.; Sy, J.C.; Brown, M.; Dikalov, S.; Yang, S.C.; Murthy, N.; Davis, M.E. The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials 2010, 31, 1372–1379. [Google Scholar] [CrossRef]
- Jethwani, U.N.; Mulla, S.A.; Shah, L.N. Detection of inducible clindamycin resistance by an automated system in a tertiary care hospital. Afr. J. Microbiol. Res. 2011, 5, 2870–2872. [Google Scholar]
- Du, Y.; Ko, K.M. Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia-reperfusion injury in rat hearts: Single versus multiple doses and gender difference. Life Sci. 2005, 77, 2770–2782. [Google Scholar] [CrossRef]
- Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Meth. Enzymol. 1990, 86, 421–431. [Google Scholar] [CrossRef]
- Winterbourn, C.; Hawkins, R.; Brian, M.; Carrell, R. The estimation of red cell superoxide dismutase activity. J. Lab. Clin. Med. 1975, 85, 337–341. [Google Scholar]
- Sample Availability: Not available.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xu, C.-E.; Zhang, M.-Y.; Zou, C.-W.; Guo, L. Evaluation of the Pharmacological Function of Ulinastatin in Experimental Animals. Molecules 2012, 17, 9070-9080. https://doi.org/10.3390/molecules17089070
Xu C-E, Zhang M-Y, Zou C-W, Guo L. Evaluation of the Pharmacological Function of Ulinastatin in Experimental Animals. Molecules. 2012; 17(8):9070-9080. https://doi.org/10.3390/molecules17089070
Chicago/Turabian StyleXu, Chong-En, Meng-Yuan Zhang, Cheng-Wei Zou, and Ling Guo. 2012. "Evaluation of the Pharmacological Function of Ulinastatin in Experimental Animals" Molecules 17, no. 8: 9070-9080. https://doi.org/10.3390/molecules17089070
APA StyleXu, C. -E., Zhang, M. -Y., Zou, C. -W., & Guo, L. (2012). Evaluation of the Pharmacological Function of Ulinastatin in Experimental Animals. Molecules, 17(8), 9070-9080. https://doi.org/10.3390/molecules17089070