Preparation of an Immunoaffinity Column with Amino-Silica Gel Microparticles and Its Application in Sample Cleanup for Aflatoxin Detection in Agri-Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Antibody-Amino Silica Gel Microparticles
2.2. Loading Conditions
2.3. Washing Condition
2.4. Elution Conditions
Solvent a | Solvent polarity scale | Recovery b (%) | |||
---|---|---|---|---|---|
AFB1 | AFB2 | AFG1 | AFG2 | ||
Acetonitrile | 0.895 | 76.5 ± 1.6 | 70.4 ± 3.7 | 69.1 ± 4.5 | 70.5 ± 2.7 |
Methanol | 0.857 | 99.1 ± 1.3 | 96.2 ± 1.3 | 94.7 ± 2.0 | 96.7 ± 1.7 |
Ethanol | 0.853 | 89.0 ± 6.8 | 83.5 ± 5.2 | 81.5 ± 7.6 | 82.3 ± 7.5 |
2.5. Binding Capacity
2.6. Linearity, Detection and Quantification Limits
Spiked | Intra-day repeatability | Inter-laboratory reproducibility a | Mean recovery (%) ± RSD (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
amount | (RSD%, n = 6) | (RSD%, n = 6) | (n = 12) | |||||||||
(μg·kg−1) | AFB1 | AFG1 | AFB2 | AFG2 | AFB1 | AFG1 | AFB2 | AFG2 | AFB1 | AFG1 | AFB2 | AFG2 |
0.30 | - | - | 2.9 | 3.1 | - | - | 3.2 | 3.5 | - | - | 98.3 ± 2.7 | 95.6 ± 3.2 |
0.50 | 3.2 | 2.7 | 2.4 | 1.9 | 2.5 | 3.1 | 1.8 | 1.9 | 96.1 ± 4.2 | 90.1 ± 2.7 | 94.2 ± 3.1 | 93.3 ± 2.1 |
1.00 | 2.6 | 1.8 | 1.8 | 2.2 | 2.4 | 2.3 | 1.5 | 2.1 | 104.4 ± 2.7 | 93.1 ± 1.9 | 98.2 ± 1.9 | 97.5 ± 2.5 |
2.00 | 2.1 | 1.7 | - | - | 1.9 | 2.0 | - | - | 101.6 ± 2.5 | 98.1 ± 2.2 | - | - |
4.00 | 2.7 | 2.1 | 1.8 | 2.4 | 2.6 | 2.9 | 2.3 | 2.8 | 99.9 ± 2.2 | 98.0 ± 2.1 | 98.0 ± 1.6 | 96.7 ± 2.1 |
10.00 | 2.5 | 2.2 | 2.0 | 2.1 | 2.5 | 2.2 | 2.0 | 2.1 | 98.2 ± 2.0 | 98.2 ± 1.9 | 98.7 ± 1.6 | 97.1 ± 1.6 |
25.00 | 2.0 | 2.3 | 2.4 | 2.5 | 2.8 | 2.6 | 2.5 | 2.7 | 98.9 ± 1.8 | 98.5 ± 1.9 | 97.8 ± 2.0 | 97.0 ± 2.0 |
Sample | Spiked | Intra-day repeatability | Inter-day reproducibility | Mean recovery (%) ± RSD (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
amount | (RSD%, n = 6) | (RSD%, n = 6) | (n = 12) | ||||||||||
(μg·kg−1) | AFB1 | AFG1 | AFB2 | AFG2 | AFB1 | AFG1 | AFB2 | AFG2 | AFB1 | AFG1 | AFB2 | AFG2 | |
Oil | 0.30 | - | - | 4.4 | 4.2 | - | - | 3.3 | 4.0 | - | - | 95.0 ± 2.8 | 94.1 ± 3.1 |
0.50 | 2.9 | 3.2 | 3.2 | 3.0 | 2.5 | 2.5 | 2.6 | 1.4 | 98.7 ± 2.0 | 99.5 ± 2.3 | 96.8 ± 2.2 | 97.0 ± 1.6 | |
1.00 | 3.7 | 3.2 | 3.1 | 4.1 | 3.0 | 2.4 | 2.5 | 2.5 | 98.8 ± 2.3 | 99.2 ± 2.3 | 97.0 ± 2.2 | 98.3 ± 2.6 | |
2.00 | 2.6 | 2.7 | - | - | 2.0 | 2.8 | - | - | 99.0 ± 1.7 | 98.8 ± 2.1 | - | - | |
4.00 | 2.9 | 3.5 | 3.1 | 2.2 | 2.4 | 2.5 | 2.6 | 2.6 | 95.4 ± 2.5 | 98.0 ± 2.2 | 98.4 ± 2.0 | 97.9 ± 1.7 | |
10.00 | 3.0 | 3.4 | 3.3 | 3.5 | 2.6 | 2.3 | 2.4 | 3.0 | 95.2 ± 2.8 | 97.3 ± 1.9 | 99.3 ± 2.2 | 98.0 ± 2.6 | |
25.00 | 2.3 | 2.7 | 3.4 | 2.2 | 3.4 | 3.5 | 2.7 | 2.6 | 98.3 ± 2.2 | 96.4 ± 1.7 | 97.5 ± 2.2 | 96.1 ± 2.3 | |
Tea | 0.30 | - | - | 2.8 | 3.6 | - | - | 2.2 | 2.7 | - | - | 97.6 ± 1.8 | 98.4 ± 2.3 |
0.50 | 3.3 | 3.2 | 3.3 | 3.4 | 2.5 | 3.7 | 2.3 | 3.0 | 98.6 ± 2.2 | 99.0 ± 2.6 | 98.3 ± 2.0 | 97.4 ± 2.6 | |
1.00 | 2.3 | 2.5 | 3.8 | 3.7 | 3.1 | 3.1 | 3.1 | 2.8 | 98.0 ± 2.0 | 99.4 ± 2.0 | 98.2 ± 2.6 | 98.9 ± 2.6 | |
2.00 | 2.8 | 2.6 | - | - | 2.4 | 2.2 | - | - | 98.9 ± 2.0 | 97.6 ± 1.9 | - | - | |
4.00 | 2.8 | 2.6 | 2.8 | 3.6 | 2.4 | 2.2 | 2.2 | 2.7 | 98.9 ± 2.0 | 97.6 ± 1.9 | 97.6 ± 1.8 | 98.4 ± 2.3 | |
10.00 | 3.3 | 2.9 | 3.0 | 2.8 | 3.2 | 2.6 | 2.7 | 2.0 | 98.2 ± 2.3 | 98.4 ± 2.1 | 98.4 ± 2.3 | 97.8 ± 2.2 | |
25.00 | 2.5 | 2.9 | 2.7 | 2.8 | 2.5 | 2.9 | 2.7 | 2.8 | 99.0 ± 1.8 | 98.8 ± 1.8 | 98.2 ± 1.8 | 98.5 ± 2.1 |
2.7. Analysis of Real Agri-Product Samples
Sample | No. of | No. positive | Mean a | Range | Incidence | Average aflatoxin (μg·kg−1) | |||
---|---|---|---|---|---|---|---|---|---|
Analysed samples | analysed samples | (μg·kg−1) | (μg·kg−1) | (%) | AFB1 | AFB2 | AFG1 | AFG2 | |
Peanut | 52 | 14 | 5.20 ± 0.05 | 0.49–20.79 | 26.9 | 4.15 | 1.01 | ND b | ND |
Vegetable oil | 25 | 7 | 0.52 ±0.01 | 0.27–0.89 | 28.0 | 0.46 | 0.06 | ND | ND |
Tea | 19 | 1 | 7.80 ± 0.03 | - | 5.3 | 7.80 | ND | ND | ND |
3. Experimental
3.1. Chemicals and Materials
3.2. Instrumentation
3.3. Preparation of IAC Columns
3.4. Sample Extraction
3.4.1. Extraction of Aflatoxins from Peanut
3.4.2. Extraction of Aflatoxins from Vegetable Oil
3.4.3. Extraction of Aflatoxins from Tea
3.5. IAC Purification of Sample Extract
3.6. HPLC-FLD Analysis
4. Conclusions
Acknowledgments
- Sample Availability: Samples of the immunoaffinity column for aflatoxins analysis are available from the authors.
References
- Fu, A.B.; Huang, X.X.; Min, S.G. Rapid determination of aflatoxins in corn and peanuts. J. Chromatogr. A 2008, 1209, 271–274. [Google Scholar] [CrossRef]
- Cervino, C.; Knopp, D.; Weller, M.G.; Niessner, R. Novel aflatoxin derivatives and protein conjugates. Molecules 2007, 12, 641–653. [Google Scholar] [CrossRef]
- Armstrong, B. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. In IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans; Miller, A.B., Ed.; International Agency for Research on Cancer Press: Lyon, France, 1993; Volume 56, pp. 245–246. [Google Scholar]
- Barroso, J.M. Commission Regulation (EU) No 165/2010 Amending Regulation (EC) No 1881/2006Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Aflatoxins Text with EEA Relevance; Official Journal of the European Communities: Brussels, Belgium, 2010; pp. 8–12. [Google Scholar]
- Beaver, R.W.; Wilson, D.M.; Trucksess, M.W. Comparison of postcolumn derivatization-liquid chromatography with thin-layer chromatography for determination of aflatoxins in naturally contaminated corn. J. AOAC Int. 1990, 73, 579–581. [Google Scholar]
- Gomez-Catalan, J.; Pique, E.; Falco, G.; Borrego, N.; Rodamilans, M.; Llobet, J.M. Determination of aflatoxins in medicinal herbs by HPLC. An efficient method for routine analysis. Phytochem. Anal. 2005, 16, 196–204. [Google Scholar] [CrossRef]
- Edinboro, L.E.; Karnes, H.T. Determination of aflatoxin B1 in sidestream cigarette smoke by immunoaffinity column extraction coupled with liquid chromatography/mass spectrometry. J. Chromatogr. A 2005, 1083, 127–132. [Google Scholar] [CrossRef]
- Cervino, C.; Asam, S.; Knopp, D.; Rychlik, M.; Niessner, R. Use of isotope-labeled aflatoxins for LC-MS/MS stable isotope dilution analysis of foods. J. Agric. Food Chem. 2008, 56, 1873–1879. [Google Scholar] [CrossRef]
- Lee, N.A.; Wang, S.; Allan, R.D.; Kennedy, I.R. A rapid aflatoxin B1 ELISA: development and validation with reduced matrix effects for peanuts, corn, pistachio, and Soybeans. J. Agric. Food Chem. 2004, 52, 2746–2755. [Google Scholar] [CrossRef]
- Sheibani, A.; Tabrizchi, M.; Ghaziaskar, H.S. Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta 2008, 75, 233–238. [Google Scholar]
- Shelver, W.L.; Larsen, G.L.; Huwe, J.K. Use of an immunoaffinity column for tetrachlorodibenzo-p-dioxin serum sample cleanup. J. Chromatogr. B 1998, 705, 261–268. [Google Scholar] [CrossRef]
- Kussak, A.; Andersson, B.; Andersson, K. Immunoaffinity column clean-up for the high-performance liquid chromatographic determination of aflatoxins B1, B2, G1, G2, M1 and Q1 in urine. J. Chromatogr. B 1995, 672, 253–259. [Google Scholar] [CrossRef]
- Senyuva, H.Z.; Gilbert, J. Immunoaffinity column clean-up techniques in food analysis: A review. J. Chromatogr. A 2010, 878, 115–132. [Google Scholar]
- Khayoon, W.S.; Saad, B.; Yan, C.B.; Hashim, N.H.; Ali, A.S.M.; Salleh, M.I.; Salleh, B. Determination of aflatoxins in animal feeds by HPLC with multifunctional column clean-up. Food Chem. 2010, 118, 882–886. [Google Scholar] [CrossRef]
- Li, X.; Li, P.W.; Zhang, Q.; Li, Y.Y.; Zhang, W.; Ding, X.X. Molecular characterization of monoclonal antibodies against aflatoxins: A possible explanation for the highest sensitivity. Anal. Chem. 2012, 84, 5229–5235. [Google Scholar]
- Lee, J.K.; Ahn, K.C.; Park, O.S.; Kang, S.Y.; Hammock, B.D. Development of an ELISA for the detection of the residues of the insecticide imidacloprid in agricultural and environmental samples. J. Agric. Food. Chem. 2001, 49, 2159–2167. [Google Scholar] [CrossRef]
- Sanvicens, N.; Moore, E.J.; Guilbault, G.G.; Marco, M.P. Determination of haloanisols in white wine by immunosorbent solid-phase extraction followed by enzyme-linked immunosorbent assay. J. Agric. Food Chem. 2006, 54, 9176–9183. [Google Scholar]
- Rejeb, S.B.; Cléroux, C.; Lawrence, J.F.; Geay, P.Y.; Wu, S.G.; Stavinski, S. Development and characterization of immunoaffinity columns for the selective extraction of a new developmental pesticide: Thifluzamide, from peanuts. Anal. Chim. Acta 2001, 432, 193–200. [Google Scholar] [CrossRef]
- Catalán, J.; López, V.; Pérez, P.; Martín-Villamil, R.; Rodríguez, J.G. Progress towards a generalized solvent polarity scale: The solvatochromism of 2-(dimethylamino)-7-nitrofluorene and its homomorph 2-fluoro-7-nitrofluorene. Liebiges Ann. 1995, 241–252. [Google Scholar]
- Liu, X.M.; Wang, J.; Li, F.Q.; Ji, R.; Chen, J.D.; Yao, X.P; Luo, H.D; Zhang, H.Y. Determination of Aflatoxins B1, B2, G1, G2 in Foods; People Republic of China General Administration of Quality Supervision: Beijing, China, 2006; pp. 1–8. [Google Scholar]
- Zhang, D.H.; Li, P.W.; Zhang, Q.; Zhang, W.; Huang, Y.L.; Ding, X.X.; Jiang, J. Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Anal. Chim. Acta 2009, 636, 63–69. [Google Scholar] [CrossRef]
- Russo, C.; Callegaro, L.; Lanza, E.; Ferrone, S. Purification of IgG monoclonal antibody by caprylic acid precipitation. J. Immunol. Methods 1983, 65, 269–271. [Google Scholar] [CrossRef]
- Ke, Y.J.; Li, P.W.; Zhang, W.; Liu, H.H.; Li, S.Y. The conjunction of several macromolecule microsphere with rabbit immune globin and the optimization of the conjunction conditions. J. Hubei Univ. 2007, 29, 273–278. [Google Scholar]
- Zhao, M.P.; Liu, Y.; Li, Y.Z.; Zhang, X.X.; Chang, W.B. Development and characterization of an immunoaffinity column for the selective extraction of bisphenol A from serum samples. J. Chromatogr. B 2003, 783, 401–410. [Google Scholar] [CrossRef]
- Stroka, J.; Anklam, E.; Jörissen, U.; Gilbert, J. Immunoaffinity column cleanup with liquid chromatography using post-column bromination for determination of aflatoxins in peanut butter, pistachio paste, fig paste, and paprika powder: collaborative study. J. AOAC Int. 2000, 83, 320–340. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ma, F.; Chen, R.; Li, P.; Zhang, Q.; Zhang, W.; Hu, X. Preparation of an Immunoaffinity Column with Amino-Silica Gel Microparticles and Its Application in Sample Cleanup for Aflatoxin Detection in Agri-Products. Molecules 2013, 18, 2222-2235. https://doi.org/10.3390/molecules18022222
Ma F, Chen R, Li P, Zhang Q, Zhang W, Hu X. Preparation of an Immunoaffinity Column with Amino-Silica Gel Microparticles and Its Application in Sample Cleanup for Aflatoxin Detection in Agri-Products. Molecules. 2013; 18(2):2222-2235. https://doi.org/10.3390/molecules18022222
Chicago/Turabian StyleMa, Fei, Ran Chen, Peiwu Li, Qi Zhang, Wen Zhang, and Xiaofeng Hu. 2013. "Preparation of an Immunoaffinity Column with Amino-Silica Gel Microparticles and Its Application in Sample Cleanup for Aflatoxin Detection in Agri-Products" Molecules 18, no. 2: 2222-2235. https://doi.org/10.3390/molecules18022222
APA StyleMa, F., Chen, R., Li, P., Zhang, Q., Zhang, W., & Hu, X. (2013). Preparation of an Immunoaffinity Column with Amino-Silica Gel Microparticles and Its Application in Sample Cleanup for Aflatoxin Detection in Agri-Products. Molecules, 18(2), 2222-2235. https://doi.org/10.3390/molecules18022222