Free Radical Scavenging Activity of Kielmeyera variabilis (Clusiaceae)
Abstract
:1. Introduction
2. Results and Discussion
Plant parts or | Extracts or | DPPH• | ABTS•+ |
---|---|---|---|
compounds | fractions | ||
Leaves | ethanol | 7.50 ± 0.7 | 7.00 ± 1.0 |
hexane | >66.7 | >66.7 | |
ethyl acetate | 3.50 ± 0.3 | 6.60 ± 0.4 | |
n-butanol | 4.40 ± 0.2 | 3.10 ± 0.1 | |
aqueous methanol | 27.4 ± 2.0 | 27.5 ± 0.3 | |
Branches | ethanol | 13.9 ± 1.0 | 2.80 ± 0.2 |
hexane | 65.9 ± 2.5 | 47.2 ± 0.5 | |
ethyl acetate | 13.4 ± 0.6 | 13.5 ± 1.2 | |
n-butanol | 4.90 ± 0.2 | 3.20 ± 0.3 | |
aqueous methanol | 46.6 ± 0.4 | 47.8 ± 2.0 | |
quercitrin (1) | 9.10 ± 0.5 | 12.2 ± 0.7 | |
podocarpusflavone A (2) | >33.3 | >33.3 | |
quercetin-3-O-β-glucoside (3) + | 4.10 ± 0.2 | 5.00 ± 0.4 | |
quercetin-3-O-β-galactoside (4) | |||
Rutin a | 6.20 ± 0.3 | 7.40 ± 0.6 |
3. Experimental
3.1. General
3.2. Plant Material
3.3. Extraction
3.4. Isolation and Identification of Flavonoids 1–4
3.5. Spectroscopic Data
3.6. Free Radical Scavenging Activity (FRSA)
4. Conclusions
Acknowledgments
References
- Di Stasi, L.C.; Hiruma-Lima, C.A. Plantas Medicinais na Amazônia e na Mata Atlântica, 2nd ed.; Editora UNESP: São Paulo, Brasil, 2002; Chapter 14; pp. 259–261. [Google Scholar]
- Saddi, N. A new combination in Kielmeyera (Guttiferae). Kew. Bull. 1984, 39, 140. [Google Scholar] [CrossRef]
- Alves, T.M.A.; Silva, A.F.; Brandão, M.; Grandi, T.S.M.; Smânia, E.F.; Smânia, A., Jr.; Zani, C.L. Biological screening of Brazilian medicinal plants. Mem. Inst. Oswaldo Cruz 2000, 95, 367–373. [Google Scholar] [CrossRef]
- Correa, M.P. Dicionário das Plantas úteis do Brasil e das Exóticas Cultivadas; Imprensa Nacional: Rio de Janeiro, Brasil, 1984; Volume 5, p. 50. [Google Scholar]
- Pinheiro, L.; Cortez, D.A.G. Phytochemical study and evaluation of the molluscicidal activity of Kielmeyera variabilis Mart. (Clusiaceae). Quim. Nova 2003, 26, 157–160. [Google Scholar]
- Regasini, L.O.; Fernandes, D.C.; Castro-Gamboa, I.; Silva, D.H.S.; Furlan, V.S.; Bolzani, V.S.; Barreiro, E.J.; Cardoso-Lopes, E.M.; Young, M.C.M.; Torres, L.B.; et al. Constituintes químicos das flores de Pterogyne nitens. Quim. Nova 2008, 31, 802–806. [Google Scholar]
- Fernandes, D.C.; Regasini, L.O.; Vellosa, J.C.R.; Pauletti, P.M.; Castro-Gamboa, I.; Bolzani, V.S.; Oliveira, O.M.M; Silva, D.H.S. Myeloperoxidase Inhibitory and Radical Scavenging Activities of Flavones from Pterogyne nitens. Chem. Pharm. Bull. 2008, 56, 723–726. [Google Scholar] [CrossRef]
- Regasini, L.O.; Vellosa, J.C.R.; Silva, D.H.S.; Furlan, M.; Oliveira, O.M.M.; Khalil, N.M.; Brunetti, I.L.; Young, M.C.M.; Barreiro, E.J.; Bolzani, V.S. Flavonols from Pterogyne nitens and evaluation as myeloperoxidase inhibitors. Phytochemistry 2008, 69, 1739–1744. [Google Scholar] [CrossRef]
- Aruoma, O.I. Free radicals, oxidative stress and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef]
- Manian, R.; Anusuya, N.; Siddhuraju, P.; Manian, S. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chem. 2008, 107, 1000–1007. [Google Scholar]
- Hosseinimehr, S.J.; Pourmorad, F.; Shahabimajd, N.; Shahrbandy, K.; Hosseinzadih, R. In vitro antioxidant activity of Polygonium lyrcanicum, Centaureae depressa, Sambus ebulus, Menthe spicata and Phytolaceae americana. Pak. J. Biol. Sci. 2007, 10, 637–640. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Banerjee, D.; Chakrabarti, S.; Hazra, A.K.; Banerjee, S.; Ray, J.; Mukherjee, B. Antioxidant activity and total phenolics of some mangroves in Sundarbans. Afr. J. Biotechnol. 2008, 7, 805–810. [Google Scholar]
- Kumar, P.S.; Sucheta, S.; Deepa, V.S.; Selvamani, P.; Latha, S. Antioxidant activity in some selected Indian medicinal plants. Afr. J. Biotechnol. 2008, 7, 1826–1828. [Google Scholar]
- Ruiz-Téran, F.; Medrano-Martínez, A.; Navarro-Ocaña, A. Antioxidant and free radical scavenging activities of plant extracts used in traditional medicine in Mexico. Afr. J. Biotechnol. 2008, 7, 1886–1893. [Google Scholar]
- Zheng, L.P.; Gao, L.W.; Zhou, J.Q.; Sima, Y.H.; Wang, J.W. Antioxidant activity of aqueous extract of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Afr. J. Biotechnol. 2008, 7, 3004–3010. [Google Scholar]
- Awika, J.M.; Rooney, L.W.; Wu, X.; Prior, R.L.; Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of Sorghum (Sorghum bicolor) and Sorghum products. J. Agric. Food Chem. 2003, 51, 6657–6662. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids—A review. J. Food Compost. Anal. 2010, 23, 726–740. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidante capacity of plant foods, beverages and oils consumed in Italy assessed by three diferente in vitro assays. J. Food Nutr. 2003, 133, 2812–2819. [Google Scholar]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compost. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Hollman, P.C.H.; Katan, M.B. Absorpition, metabolism and health effects of dietary flavonoids in man. Biomed. Pharmacother. 1997, 51, 305–310. [Google Scholar] [CrossRef]
- Harvsteen, B.M. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Hollman, P.C.H.; Arts, I.C.W. Flavonols, flavones and flavanols—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1081–1093. [Google Scholar] [CrossRef]
- Murota, K.; Terao, J. Antioxidant flavonoid quercetin: Implications of its intestinal absorpition and metabolism. Arch. Biochem. Biophys. 2003, 417, 12–17. [Google Scholar] [CrossRef]
- Mariani, C.; Braca, A.; Vitalini, S.; Tommasi, N.D.; Visioli, F.; Fico, G. Flavonoid characterization and in vitro antioxidante activity of Acontium anthora L. (Ranunculaceae). Phytochemistry 2008, 69, 1220–1226. [Google Scholar]
- Bentz, A.B. A Review of quercetin: Chemistry, antioxidant properties, and bioavailability. Available online: http://www.jyi.org/research/re.php?id=3416 (accessed on 1 February 2013).
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants:Determination or radical-scavenging efficiencies. Methods Enzymol. 1990, 186, 343–355. [Google Scholar] [CrossRef]
- Ceruks, M.; Romoff, P.; Favero, O.A.; Lago, J.H.G. Polar phenolics constituents from Schinus terebinthifolius Raddi (Anacardiaceae). Quim. Nova 2007, 30, 597–599. [Google Scholar] [CrossRef]
- Carbonezi, C.A.; Hamerski, L.; Gunatilaka, A.A.L.; Cavalheiro, A.; Castro-Gamboa, I.; Silva, D.H.S.; Furlan, M.; Young, M.C.M.; Lopes, M.N.; Bolzani, V.S. Bioactive flavone dimmers from Ouratea multiflora (Ochnaceae). Rev. Bras. Farmacogn. 2007, 17, 319–324. [Google Scholar] [CrossRef]
- Agrawal, P.K. Carbon-13C-NMR of Flavonoids; Elsevier: New York, NY, USA, 1989; pp. 304–337. [Google Scholar]
- Son, S.; Lewis, B.A. Free radical scavenging and antioxidant activity of caffeic acid amide and ester analogues: Structure-activity relationship. J. Agric. Food Chem. 2002, 50, 468–472. [Google Scholar] [CrossRef]
- Pauletti, P.M.; Castro-Gamboa, I.; Siqueira, D.H.S.; Young, M.C.; Tomazela, D.M.; Eberlin, M.N.; Bolzani, V.S. New antioxidant C-glucosylxanthones from the stems of Arrabidaea samydoides. J. Nat. Prod. 2003, 66, 1384–1387. [Google Scholar] [CrossRef]
- Pellegrini, N.; Re, R.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoids and carotenoid-richfruit extracts for antioxidant activities applying 2,2'-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymol. 1999, 299, 379–389. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Coqueiro, A.; Regasini, L.O.; Skrzek, S.C.G.; Queiroz, M.M.F.; Silva, D.H.S.; Da Silva Bolzani, V. Free Radical Scavenging Activity of Kielmeyera variabilis (Clusiaceae). Molecules 2013, 18, 2376-2385. https://doi.org/10.3390/molecules18022376
Coqueiro A, Regasini LO, Skrzek SCG, Queiroz MMF, Silva DHS, Da Silva Bolzani V. Free Radical Scavenging Activity of Kielmeyera variabilis (Clusiaceae). Molecules. 2013; 18(2):2376-2385. https://doi.org/10.3390/molecules18022376
Chicago/Turabian StyleCoqueiro, Aline, Luis Octávio Regasini, Scheila Cristina Gutkoski Skrzek, Marcos Marçal Ferreira Queiroz, Dulce Helena Siqueira Silva, and Vanderlan Da Silva Bolzani. 2013. "Free Radical Scavenging Activity of Kielmeyera variabilis (Clusiaceae)" Molecules 18, no. 2: 2376-2385. https://doi.org/10.3390/molecules18022376
APA StyleCoqueiro, A., Regasini, L. O., Skrzek, S. C. G., Queiroz, M. M. F., Silva, D. H. S., & Da Silva Bolzani, V. (2013). Free Radical Scavenging Activity of Kielmeyera variabilis (Clusiaceae). Molecules, 18(2), 2376-2385. https://doi.org/10.3390/molecules18022376