Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields
Extracts | Yield (%) | Phenolics (GAE) a | Flavonoids (QE) a |
---|---|---|---|
Ethyl acetate | 0.96 | 40.7 ± 0.2 | 12.4 ± 0.1 |
n-Butanol | 3.79 | 52.3 ± 0.4 | 14.7 ± 0.1 |
2.2. Isolation and Structure Elucidation of Compounds 1a + 1b
Position | 1a | 1b | ||||
---|---|---|---|---|---|---|
δH | Multiplicity J (Hz) | δC | δH | Multiplicity J (Hz) | δC | |
2 | - | - | 160.99 | - | - | 161.51 |
3 | 6.17 | d (9.6) | 111.64 | 6.20 | d (9.6) | 112.26 |
4 | 7.57 | d (9.6) | 143.28 | 7.56 | d (9.6) | 143.78 |
5 | 7.19 | s | 122.76 | 7.14 | s | 123.20 |
6 | - | - | 124.04 | - | - | 124.50 |
7 | - | - | 162,89 | - | - | 163.44 |
8 | 6.69 | s | 97.26 | 6.76 | s | 97.84 |
4-a | - | - | 112.11 | - | - | 112.21 |
8-a | - | - | 155.18 | - | - | 155.75 |
2' | 5.02 | t (9) | 88.67 | 5.12 | m | 88.91 |
3'-a | 3.10–3.30 | m | 3.10–3.30 | m | ||
3'-b | 3.10–3.30 | m | 29.06 | 3.10–3.30 | m | 29.61 |
4' | - | - | 81.49 | - | - | 82.04 |
5' | 1.58 | s | 20.94 | 1.37 | s | 20.58 |
1.59 | s | 21.73 | 1.39 | s | 21.47 | |
1'' | - | - | 166.57 | - | - | 168.67 |
2'' | - | - | 128.11 | - | - | 127.33 |
3'' | 5.95 | qq (7.2; 1.5) | 137.28 | 6.09 | qq (7.2; 1.2) | 137.74 |
4'' | 1.63 | m | 19.56 | 1.63 | m | 20.09 |
5'' | 1.87 | m | 15.13 | 1.85 | m | 15.64 |
2.3. Phenolics and Flavonoids Content
2.4. Antioxidant Activity
Samples | DPPH Assay a | ABTS+ Assay a | Antiacetylcholinesterase Activity a | Antidiabetic Activity b | Cytotoxic Activity a |
---|---|---|---|---|---|
Ethyl acetate extract | 12.8 ± 1.3 | 184.0 ± 7.0 | 641.0 | 54.1 | >100 |
n-Butanol extract | 26.0 ± 1.8 | 300.0 ± 5.0 | 639.5 | 52.1 | 40 |
Mixture ( 1a + 1b) | nd c | nd c | na d | na d | >100 |
Vitamin C | 4.4 ± 0.1 | 4.1 ± 0.1 | |||
Eserine | 0.018 | ||||
Acarbose | 30 | ||||
Doxorubicin | 0.1 |
2.5. Antiacetylcholinesterase Activity
2.6. Antimicrobial Activity
Microorganisms | Ethyl Acetate | n-Butanol | Thymol | Gentamecin | ||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
Staphylococcus aureus ATCC 25923 | 10.00 | 10.00 | 1.25 | 0.02 | 0.20 | 0.15 |
Enterococcus faecalis ATCC 29212 | 10.00 | >10.00 | 1.25 | 0.01 | 0.60 | 0.01 |
Pseudomonas aeruginosa ATCC 27853 | 10.00 | 10.00 | 1.25 | 0.50 | 1.00 | 0.50 |
Escherichia coli ATCC 25922 | 10.00 | >10.00 | 2.50 | 0.01 | 0.25 | 0.01 |
Microorganisms | Ethyl acetate | n-Butanol | Thymol | Amphotericin B | ||
---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | |
Candida glabrata ATCC 90030 | 0.63 | 1.25 | 10.00 | 10.00 | 0.16 | 0.50 |
Candida parapsilosis ATCC 22019 | 0.30 | 0.63 | 10.00 | 10.00 | 0.32 | 0.50 |
Candida albicans ATCC 90028 | 0.30 | 0.63 | 10.00 | 10.00 | 0.13 | 0.50 |
Candida kreseui ATCC 6258 | 0.30 | 0.63 | 10.00 | 10.00 | 0.32 | 0.50 |
2.7. Antidiabetic Activity
2.8. Allelopathic Potential
2.9. Cytotoxicity Evaluation
3. Experimental
3.1. General Experimental Procedures
3.2. Collection of Plant Material
3.3. Extraction and Isolation
3.4. Determination of Total Polyphenol Contents
3.5. Estimation of Total Flavonoid Contents
3.6. Antioxidant Activity by DPPH Assay
3.7. Antioxidant Activity by ABTS Assay
3.8. Antiacetylcholinesterase Activity
3.9. Cytotoxic Activity
3.10. GC-MS Analysis
3.11. Antidiabetic Activity
3.12. Antimicrobial Activity: Determination of Minimum Inhibitory (MIC), Minimum Bactericidal (MBC), and Minimum Fungicidal Concentrations (MFC)
3.13. Allelopathic Potential
4. Conclusions
Conflictts of Interest
References
- Downie, S.R.; Watson, M.F.; Spalik, K.; Katz-Downie, D.S. Molecular systematics of old world 2. Apioideae (Apiaceae): Relationships among some members of tribe Peucedaneaesensulato, the placement of several islandendemic species, and resolution within the apioidsuperclade. Can. J. Bot. 2000, 78, 506–528. [Google Scholar]
- Drude, O. Die Natürlichen Pflanzenfamilien; (In German). Engler, A., Ed.; Wilhelm Engelmann: Leipzig, Germany, 1898; Volume 3, pp. 228–232. [Google Scholar]
- Pottier-Alapetite, G. Flore de la Tunisie: Angiospermes-Dicotyledones, Apétales-Dialypétales; (In Spanish). Official printing: Tunis, Tunisia, 1979; pp. 607–609. [Google Scholar]
- Tamemoto, K.Y.; Takaishi, B.; Chen, K.; Kawazoe, H.; Shibata, T.; Higuti, G.; Honda, M.; Ito, Y.; Takeda, O.K.; Kodzhimatov, O. Ashurmetov sesquiterpenoids from the fruits of Ferula kuhistanica and antibacterial activity of the constituents of F. kuhistanica. Phytochemistry 2001, 58, 763–767. [Google Scholar] [CrossRef]
- Gonzalez, A.G.; Barrera, J.B. Chemistry and sources of mono- and bicyclic sesquiterpenes from Ferula species. Prog. Chem. Org. Nat. Prod. 1995, 64, 1–92. [Google Scholar]
- Appendino, G.; Spagliardi, P.; Cravotto, G.; Pocock, V.; Milligan, S. Daucane phytoestrogens: A structure—activity study. J. Nat. Prod. 2002, 65, 1612–1615. [Google Scholar] [CrossRef]
- Boulos, L. Algonac, Medicinal Plants of North Africa; ML. Reference Publications Inc.: Alyonae, MI, USA, 1983. [Google Scholar]
- El-Razek, A.M.H.; Ohta, S.; Hirata, T. Terpenoid coumarins from the genus Ferula. Heterocycles 2003, 60, 689–716. [Google Scholar] [CrossRef]
- Suzuki, K.; Okasaka, M.; Kashiwada, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O.; Sekiya, M.; et al. Sesquiterpene lactones from the roots of Ferula varia and their cytotoxic activity. J. Nat. Prod. 2007, 70, 1915–1918. [Google Scholar] [CrossRef]
- Lamnaouer, D. Anticoagulant activity of coumarins from Ferula communis L. Therapie 1999, 54, 747–751. [Google Scholar]
- Valle, M.G.; Appending, G.; Nano, G.M.; Picci, V. Prenylatedcoumarins and sesquiterpenoids from Ferula communis. Phytochemistry 1986, 23, 253–256. [Google Scholar]
- Kartal, N.; Sokmen, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sokmen, A. Investigation of the antioxidant properties of Ferula orientalis L. using a suitable extraction procedure. Food Chem. 2006, 100, 584–589. [Google Scholar]
- Alkhatib, R.; Hennebelle, T.; Joha, S.; Idziorek, T.; Preudhomme, C.; Quesnel, B.; Sahpaz, S.; Bailleul, F. Activity of elaeochytrin A from Ferula elaeochytris on leukemia cell lines. Phytochemistry 2008, 69, 2979–2983. [Google Scholar] [CrossRef]
- Abedi, D.; Jalali, M.; Asghari, G.; Sadeghi, N. Composition and antimicrobial activity of oleogumresin of Ferula gumosa Bioss. essential oil using Alamar Blue. Res. Pharm. Sci. 2008, 3, 41–45. [Google Scholar]
- Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des. 2004, 10, 3813–3833. [Google Scholar] [CrossRef]
- Özlem, B.; Gülçin, S.Ç.; Hanefi, Ö.; Stefano, D.; Karel, Š.J.H. Hepatoprotective and TNF-α inhibitory activity of Zosima absinthifolia extracts and coumarins. Fitoterapia 2011, 82, 454–459. [Google Scholar] [CrossRef]
- Salem, B.S.; Jabrane, A.; Harzallah-Skhiri, F.; Jannet, B.H. New bioactive dihydrofuranocoumarins from the roots of the Tunisian Ferula lutea (Poir.) Maire. Bioorg. Med. Chem. Lett. 2013, 23, 4248–4252. [Google Scholar] [CrossRef]
- Znati, M.; Jabrane, A.; Hajlaoui, H.; Bouajila, J.; Casanova, J.; Jannet, B.H. Chemical composition and in vitro evaluation of antimicrobial and anti-acetylcholinesterase of the flower oil of Ferula lutea L. Nat. Prod. Commun. 2012, 7, 947–950. [Google Scholar]
- Razavi, S.M.; Nazemiyeh, H.; Hajiboland, R.; Kumarasamy, Y.; Delazar, A.; Nahar, L.; Sarker, S.D. Coumarins from the aerial parts of Prangos uloptera (Apiaceae). Rev. Bras. Farmacogn. 2008, 18, 1–5. [Google Scholar]
- Baba, K.; Yoneda, Y.; Kozawa, M.; Fujita, E.; Wang, N.H.; Yuan, C.Q. Studies on Chinese traditional l medicine ‘Fang-Feng’ (II). Comparison of several Fang-Feng by coumarins, chromones and polyacetylenes. Jpn. J. Pharmacogn. 1989, 43, 216–221. [Google Scholar]
- Abyshev, A.Z.; Abyshev, A.D. Coumarins of Seseli peucedanoides. Chem. Nat. Compd. 1984, 20, 230–231. [Google Scholar] [CrossRef]
- Chacko, S.; Singh, O.V.; Sethuraman, M.G.; George, V. Coumarins from Heracleum. candolleanum. Indian Drugs. 2001, 38, 594–596. [Google Scholar]
- Chen, I.S.; Chang, C.T.; Sheen, W.S.; Teng, C.M.; Tsai, I.L.; Duh, C.Y.; Ko, F.N. Coumarins and antiplatelet aggregation constituents from Formosan Peucedanum. japonicum. Phytochemistry 1996, 41, 525–530. [Google Scholar] [CrossRef]
- Tosun, A.; Baba, M.; Bahadir, O.; Okuyama, T. Coumarins isolated from the roots of Seseli resinosum in Turkey. Pharma. Biol. 2006, 44, 528–533. [Google Scholar] [CrossRef]
- Dehpour, A.A.; Ebrahimzadeh, M.A.; Nabavi, S.F.; Mohammad, N.S. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Aceites 2009, 60, 405–412. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.F.; Dehpour, A.A. Antioxidant activity of hydroalcholic extract of Ferula gummosa Boiss roots. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 658–664. [Google Scholar]
- Chon, S.S.; Jang, H.G.; Kim, D.K.; Kim, Y.M.; Boo, H.O.; Kim, Y.J. Allelopathic potential in lettuce (Lactuca. sativa L.). Plants. Sci. Hortic. 2005, 106, 309–317. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Lamaison, J.L.C.; Carnet, A. Teneurs en principaux flavonoids des fleurs de Crataegeus. monogyna Jacq et de Crataegeus. laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta. Helv. 1990, 65, 315–320. (In French) [Google Scholar]
- Ebrahimabadi, A.H.; Ebrahimabadi, E.H.; Djafari-Bidgoli, Z.; Kashi, F.J.; Mazoochi, A.; Batooli, H.J. Composition and antioxidant and antimicrobial activity of the essential oil and extracts of Stachys. inflate Benth from Iran. Food Chem. 2010, 119, 452–458. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.J. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Falé, P.L.; Borges, C.; Madeira, P.J.A.; Ascensão, L.; Araujo, M.E.M.; Florêncio, M.H.J. Rosmarinic acid, scutellarein 4'-methyl ether 7-O-glucuronide and (16S)-coleon E are the main compounds responsible for the antiacetylcholinesterase and antioxidant activity in herbal tea of Plectranthus. barbatus (“Falso Boldo”). Food Chem. 2009, 114, 798–805. [Google Scholar] [CrossRef]
- Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta. chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013, 55, 202–208. [Google Scholar] [CrossRef]
- Hansawasdi, C.; Kawabata, J.; Kasai, T. Amylase inhibitors from Roselle (Hibiscus sabdariffia Linn) Tea. Biosci. Biotechnol. Biochem. 2000, 64, 1041–1043. [Google Scholar] [CrossRef]
- Cintia, S.G.K.; Smania, A., Jr.; Pedrosa, R.C.; Ferreira, S.R.S.J. Antioxidant and antimicrobial activities of shiitake (Lentinulaedodes) extracts obtained by organic solvents and supercritical fluids. Food Eng. 2007, 80, 631–638. [Google Scholar] [CrossRef]
- Olofsdotter, M. Rice-astep toward use of allelopathy. Agron. J. 2001, 93, 3–8. [Google Scholar] [CrossRef]
- Hou, J.Q.; Romo, J.T. Effects of chemicals stimulators on germination of Ceratoids lanata. Seed Sci. Technol. 1998, 26, 9–163. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Znati, M.; Jannet, H.B.; Cazaux, S.; Bouajila, J. Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea. Molecules 2014, 19, 2733-2747. https://doi.org/10.3390/molecules19032733
Znati M, Jannet HB, Cazaux S, Bouajila J. Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea. Molecules. 2014; 19(3):2733-2747. https://doi.org/10.3390/molecules19032733
Chicago/Turabian StyleZnati, Mansour, Hichem Ben Jannet, Sylvie Cazaux, and Jalloul Bouajila. 2014. "Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea" Molecules 19, no. 3: 2733-2747. https://doi.org/10.3390/molecules19032733
APA StyleZnati, M., Jannet, H. B., Cazaux, S., & Bouajila, J. (2014). Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea. Molecules, 19(3), 2733-2747. https://doi.org/10.3390/molecules19032733