Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment
Abstract
:1. Introduction
2. Hyaluronic Acid
3. HA Drug-Conjugates
3.1. HA-Paclitaxel
3.2. HA Oncofid-S
3.3. HA Bisphosphonates
3.4. HA-Doxorubicin
3.5. Boron Neutron Capture Therapy
HA Mw (kDa) | Drug | Conjugation chemistry | Name (or components) | DL | Particle size (nm) | In vivo admin. | Tumor model/clinics | Effects | Reference |
---|---|---|---|---|---|---|---|---|---|
200 | Paclitaxel | Ester linkage | ONCOFID-P | 20 | -- | IP, intravesical | Phase II bladder cancer | Prolonged survival (preclinical) | [24,25,26] |
40 | Paclitaxel | Ester linkage | HA-ADH+PTX-succ | 15–20 | -- | IP, IV MTN | Ovarian cancer | Antiangiogenic | [31,32,33,34] |
5 | Paclitaxel | Ester linkage | + dmPEG | 8 | -- | IV | Brain metastasis. breast cancer | Inhibit tumor growth | [36] |
200 | SN-38 | Ester linkage | ONCOFID-S | 9.5 | -- | IP | Peritoneal carcinomatosis | Increase survival | [39,40,41] |
13000 | Aminomethylenediphosphonate | Hydrazone linkage | HA-hydrazone +HA-ox | 5 | -- | CD44+ cells | Inhibition after Hyaluronidase | [43] | |
150 | Doxorubicin | Acid-sensitive hydrazone or non-releasable amide linkage | HA-ADH or amide | 0.2–0.3 | 581–1600 | Different cell lines | Similar to DOX | [44] | |
35 | Doxorubicin | Acid-sensitive hydrazone linkage | HA-ADH | 5–15 | -- | SC | Xenografted human breast cancer | Better than IV DOX | [47] |
35 | Cisplatin | Cisplatin linked to the carboxyl groups of HA | HA-COO-Pt | 0.25 | -- | SC | Xenografted human breast cancer | Better than IV cisplatin | [45] |
200 | Propyl-carborane | Ester linkage | 30 | -- | Different cell lines | Uptake in CD44+ cells | [50,51] |
4. HA Decorated Particles
4.1. Polymeric Nanoparticles
4.2. Microcarriers
4.3. Liposomes and Lipoplexes for Delivering Antitumoral Drugs, DNA and RNA
HA Mw (kDa) | Drug | Conjugation chemistry | Name (or components) | EE (LD) | Particle size (nm) | In vivo admin. | Tumor model | Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
500–1200 | Paclitaxel | Carbodiimide conjugation | PTX-GAG | 100 | 316 ± 23 | IV | Colon adenocarcinoma-bearing mice | Antitumor potency 4-fold higher than Taxol® | [52] |
750 | Mitomycin C | Carbodiimide conjugation | MMC-GAG | 68–97 | 350 ± 35 | Head and neck cancers cells | Higher cytotoxicity compared with free MMC | [53] | |
15000 | Oxaliplatin | Carbodiimide conjugation | Oxaliplatin-HACTNP | 40 | 152 ± 5.2 | Oral | Murine model, colon tumor | Higher antitumor potency compared with free drug | [55] |
5.7 | Doxorubicin | HA linked to PLGA via a diamine PEG spacer | DOX-HA-PEG-PLGA NP | 90 | 186–107 | IV | Ehrlich ascites bearing mice | High tumor uptake, reduction of tumor size | [56] |
5.7 | 5-flurouracil | HA linked to PLGA via a diamine PEG spacer | 5FU-HA-PEG-PLGA NP | 80 | 165 | IV | Ehrlich ascites bearing mice | High tumor uptake, reduction of tumor size | [57] |
18 | Paclitaxel | Radical polymerization of HA and BCA monomers | PTX-HA-PBCA NP | 90 | 290 | IV | Sarcoma bearing mice | High tumor uptake, Reduction of tumor size | [58] |
4.7 | Docetaxel | Ester linkage | HA-CE-DOC | 72 (11) | 111 | IV | MCF-7/ADR tumor-bearing mice | Reduction of tumor size in vivo | [59] |
4.7 | Docetaxel | Ester linkage | HA-CE-PEG-DOC | 91 (12) | 160 | IV | Squamous cell carcinoma mouse model | Reduction of tumor size. | [60] |
7.5 | Doxorubicin | Amide linkage | HA-PLGA-DOX | 68 (8) | 72 ± 21 | Human colon carcinoma cells | More efficient DOX internalization in CD44+ cells | [61] | |
5.6, 7.3 or 8.9 | Docetaxel | Amide linkage | HA-PLGA-DOC | 88 (3) | 117 | IV | Human breast tumor-bearing mice | Enhanced antitumor activity compared with free drug | [62] |
234 | Camptothecin | Amide linkage | CPT-P-HA-NP | 86 (34) | 320 ± 13 | IV | Ovarian carcinoma-bearing mice | Specific tumor accumulation | [64] |
234 | Chlorin e6 | Amide linkage | Ce6-HA-NP | 62 (12) | 227 ± 12 | IV | Human colon cancer-bearing mice | Increased antitumor efficacy | [65] |
234 | NIR-fluorescence dye | Amide linkage | Cy5.5-P-HA-NP | -- | 237–424 | IV | Human colon cancer-bearing mice | Specific tumor accumulation | [66] |
234 | Irinotecan | Amide linkage | IRT-P-HA-NP | 62 (19) | 238 ± 7 | IV | Human colon cancer-bearing mice | Higher antitumor activity and reduction of systemic toxicity | [66] |
10 | Paclitaxel | Amide linkage | HA-GA-PTX | 92 (31) | 321 ± 2.5 | IV | Human breast carcinoma | Specific tumor accumulation | [68] |
10 | Paclitaxel | Amide linkage | PTX-loaded HRA | 91 (29) | 149 ± 10 | IV | Subcutaneous melanoma | Specific tumor accumulation | [69] |
600–1200 | Cisplatin | Cisplatin linked to the carboxyl groups of HA | HA-Cisplatin-Microparticles | 50 | 580 | IP | Ovarian cancer tumor-bearing mice | Slowing the growth of tumor | [70] |
700 | Doxorubicin | Interfacial acetalization reaction | HA-PVA-DOX Microparticles | -- | -- | Human colon cancer-bearing mice | The effect of DOXO within the first 3 days is cytostatic | [71] |
4.4. Polyethyleneimine
4.5. Polymersomes
4.6. Micelles
5. Theranostic Nanoparticles Conjugated with HA
HA Mw (kDa) | Drug | Conjugation chemistry | Name (or components) | EE (LD) | Particle size (nm) | In vivo admin. | Tumor model | Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
Nr | Mitomycin C | Amidation reaction | HMW-HA-lip-MMC | 53 | -- | IV | Different human models in mice | High tumor uptake, reduction of tumor size | [72] |
Nr | Doxorubicin | Amidation reaction | HMW-HA-lip-DOX | 78 | 81 ± 13 | IV | Different human models in mice | High tumor uptake, reduction of tumor size | [73] |
0.8–3 | Doxorubicin | Reductive amination | LMW-HA-lip-DOX | 90 | 110–140 | Murine melanoma cell line | Higher cytotoxicity compared with free DOX | [75,76] | |
4.8–12 | Gemcitabine prodrug | Reductive amination | LMW-HA-lip-Gem prodrug | 89 | 154–192 | SC | Pancreatic adenocarcinoma cell line | Higher cytotoxicity compared with free gemcitabine | [77,78] |
4.7 | Doxorubicin | Ester linkage | HACE-DOX-Magnevist | 59 (1.6) | 125 ± 5 | IV | Human breast tumor--bearing mice | High tumor uptake and DOX prolonged circulation | [79] |
1500 | pDNA | Amidation reaction | HMW-HA-DOPE-pDNA | 250–350 | Human breast tumor cell line | Transfection of pDNA into MDA-MB-231 cells | [80,81] | ||
1500 | siRNA | Amidation reaction | HMW-HA-DOPE-siRNA | 200 | Lung cancer | Transfection of siRNA into A549 cells | [82] | ||
130 | siRNA | Amide linkage | HA-PEI-siRNA | 21 | Murine melanoma | Transfection of siRNA into B16F1 cells | [90] | ||
60–500–1500 | DNA | Amide linkage | HA-PEI-DNA | 200 | IV | Hepatocellular carcinoma | Transfection of DNA into HepG2 cells; high tumor uptake in vivo | [91] | |
6.7 | siRNA | Reducible SS bond | HA-PEI-SS-siRNA | 110 | intratumoral | Murine colorectal tumor | Inhibited tumor growth with reduced VEGF mRNA and VEGF levels in the tumors | [92,93] | |
5.14 | Doxorubicin | Huisgen 1,3-dipolar cycloaddition (“Click” chemistry coupling) | HA-poly(g-benzyl l-glutamate)-DOX | 50 (12) | 220 | IV | Rat breast carcinoma model | Higher tumor uptake, higher tumor suppression and | [96] |
5.14 | Docetaxel | Huisgen 1,3-dipolar cycloaddition (“Click” chemistry coupling) | HA-poly(g-benzyl l-glutamate)-DOC | 49 (10) | 135 ± 10 | IV | Ehrlich Ascites Tumor | Equipotent or more potent than free DOC | [97,98] |
11 | Doxorubicin | pH responsive linkage | HA-PHis-DOX (pH responsive) | 85–91 (4–6) | 155–215 | Human breast tumor cell line | High cytotoxicity | [99] | |
11 | Paclitaxel | Reducible SS bond | HA-SS-DOCA-PTX | 93 (34) | 119 ± 5 | Human breast tumor-bearing mice | tumor accumulation in vivo | [100] | |
250 | Paclitaxel | Ester linkage | FA-HA-C18-PTX | 97 (9) | 206 ± 14 | Human breast tumor cell line | Higher cytotoxicity than Taxol | [101] | |
17 | Doxorubicin | Ester linkage | HA-PLGA-DOX | 31 (7) | 119 ± 3 | Human colorectal carcinoma | Greater cytotoxicity than free DOX | [102] | |
221 | Doxorubicin | Ester linkage | HA-PLA-DOX | 10 (5) | 41 ± 1.5 | Human colorectal carcinoma and fibroblasts | Less cytotoxic than free DOX | [103] | |
221 | Doxorubicin | Ester linkage | HA-PLA-PEG-DOX | 20 (10) | 37 ± 0.8 | Human colorectal carcinoma and fibroblasts | Less cytotoxic than free DOX | [103] | |
1000 | magnetic nanocrystals | Amide linkage | HA-MNC | 78 | 72–138 | IV | Human breast tumor-bearing mice | Specific tumor uptake (magnetic resonance imaging) | [104] |
5.1. Quantum Dots
5.2. Carbon-Based Nanostructures
5.2.1. Carbon Nanodots
5.2.2. Graphenes
5.2.3. Fullerene
5.2.4. Carbon Nanotubes
5.3. Iron Oxide Nanoparticles
5.4. Silica Nanoparticles
HA Mw (kDa) | Nanostructures | Conjugation chemistry | Name (or components) | DL | Particle size (nm) | In vivo admin. | Tumor model | Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
130 | Quantum dot (imaging) | Amide linkage | HA-ADH | 22, 35 68 ADH | 7–12 | SC, IV | Biodistribution | 22,35% liver, 68% tissues | [106,107] |
100 | Carbon nanodots (amino) | Amide linkage | Amide | 68 | IV | Low cell toxicity, solubility | Liver targeting | [116] | |
5.8 | Graphene oxide sheets, chlorin e6 | Amide linkage | HA-ADH | 115 | 78 | HeLa cells, photodynamic | Increased activity | [118] | |
230 | Graphene quantum dots, doxorubicin | Amide linkage | HA-dopamine | 75 | 35–55 | IV | CD44+ cells, biodistribution | High tumor conc, in vitro activity | [119] |
4 | Fullerene (C60) | Carbon–oxygen linkage | 0.05 to 0.6 C60/sugar | 30–60 | IV | Cell phototoxicity | High tumor conc, Inhibit tumor growth | [120] | |
234 | SWCNTs | Amide linkage | HA-cholanic + cyanine, DOTA | IV | Biodistribution | High fast tumor uptake | [124] | ||
234 | Spontaneous nanoparticle | Amide linkage | HA-cholanic, cyanine | 237–424 | IV | Biodistribution | Prolonged circulation, high tumor uptake | [125,126] | |
120 and 5 | MWCN, doxorubicin | Amide linkage | Amide + 99mTc, AlexaFluor | 33 | IV | In vitro, in vivo, biodistribution, toxicity | High liver and tumor uptake | [127] | |
14–20 | MWCN, Hemoporfin | Amide linkage | 230 | IV | Photodynamic therapy | Inhibit tumor growth | [129] | ||
31 | SPION, doxorubicin | Amide linkage | Amide/HA-ADH-DOX | 2.1 | 114 | Human monocytic cell line | NMR+delivery | [133] | |
100 | MSP DOX | Amide linkage | Amide, DOX | 3,7 | 100 | IV | Human breast cancer | High tumor uptake | [135] |
31 | Core-shell silica nanoparticles, DOX | Amide linkage | Amide/HA-ADH-DOX | 0.6 | 112 | In vitro 3D model | Increased tumor penetration | [137] |
6. Conclusions
Acknowledgments
Conflictts of Interest
References
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Siegel, R.; Desantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220–241. [Google Scholar] [CrossRef]
- Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chem. 2010, 21, 797–802. [Google Scholar] [CrossRef]
- Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Delivery Rev. 2011, 63, 131–135. [Google Scholar] [CrossRef]
- Stapleton, S.; Allen, C.; Pintilie, M.; Jaffray, D.A. Tumor perfusion imaging predicts the intra-tumoral accumulation of liposomes. J. Control. Release 2013, 172, 351–357. [Google Scholar] [CrossRef]
- Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Delivery Rev. 2012, 64, 24–36. [Google Scholar] [CrossRef]
- Kopecek, J. Polymer-drug conjugates: Origins, progress to date and future directions. Adv. Drug Delivery Rev. 2013, 65, 49–59. [Google Scholar] [CrossRef]
- Maeda, H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. J. Control. Release 2012, 164, 138–144. [Google Scholar] [CrossRef]
- Caliceti, P.; Salmaso, S.; Bersani, S. Polysaccharide-based anticancer prodrugs. In Macromolecular Anticancer Therapeutics; Reddy, L.H., Couvreur, P., Eds.; Humana Press, Springer: New York, NY, USA, 2010; Part II, Chapter 5; p. 163. [Google Scholar]
- Arpicco, S.; De Rosa, G.; Fattal, E. Lipid-based nanovectors for targeting of cd44-overexpressing tumor cells. J. Drug Delivery 2013, 2013, 860780. [Google Scholar]
- Pouyani, T.; Prestwich, G.D. Functionalized derivatives of hyaluronic acid oligosaccharides: Drug carriers and novel biomaterials. Bioconjugate Chem. 1994, 5, 339–347. [Google Scholar] [CrossRef]
- Schanté, C.E.; Zuber, G.; Herlin, C.; Vandamme, T.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- Collins, M.N.; Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering--a review. Carbohydr. Polym. 2013, 92, 1262–1279. [Google Scholar] [CrossRef]
- Ghosh, S.C.; Neslihan, A.S.; Klostergaard, J. CD44: A validated target for improved delivery of cancer therapeutics. Expert Opin. Ther. Targets 2012, 16, 635–650. [Google Scholar] [CrossRef]
- Yang, B.; Yang, B.L.; Savani, R.C.; Turley, E.A. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J. 1994, 13, 286–296. [Google Scholar]
- Solis, M.A.; Chen, Y.H.; Wong, T.Y.; Bittencourt, V.Z.; Lin, Y.C.; Huang, L.L.H. Hyaluronan regulates cell behavior: A potential niche matrix for stem cells. Biochem. Res. Int. 2012, 2012, 346972. [Google Scholar]
- Cichy, J.; Puré, E. The liberation of CD44. J. Cell Biol. 2003, 161, 839–843. [Google Scholar] [CrossRef]
- Allouche, M.; Charrad, R.S.; Bettaieb, A.; Greenland, C.; Grignon, C.; Smadja-Joffe, F. Ligation of the CD44 adhesion molecule inhibits drug-induced apoptosis in human myeloid leukemia cells. Blood 2000, 96, 1187–1190. [Google Scholar]
- Legras, S.; Lévesque, J.P.; Charrad, R.; Morimoto, K.; Le Bousse, C.; Clay, D.; Jasmin, C.; Smadja-Joffe, F. CD44-mediated adhesiveness of human hematopoietic progenitors to hyaluronan is modulated by cytokines. Blood 1997, 89, 1905–1914. [Google Scholar]
- Lesley, J.; Hascall, V.C.; Tammi, M.; Hyman, R. Hyaluronan binding by cell surface CD44. J. Biol. Chem. 2000, 275, 26967–26975. [Google Scholar]
- Akima, K.; Ito, H.; Iwata, Y.; Matsuo, K.; Watari, N.; Yanagi, M.; Hagi, H.; Oshima, K.; Yagita, A.; Atomi, Y.; et al. Evaluation of antitumor activities of hyaluronate binding antitumor drugs: Synthesis, characterization and antitumor activity. J. Drug Target. 1996, 4, 1–8. [Google Scholar] [CrossRef]
- Coradini, D.; Pellizzaro, C.; Miglierini, G.; Daidone, M.G.; Perbellini, A. Hyaluronic acid as drug delivery for sodium butyrate: Improvement of the anti-proliferative activity on a breast-cancer cell line. Int. J. Cancer 1999, 81, 411–416. [Google Scholar] [CrossRef]
- Mekhail, T.M.; Markman, M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 2002, 3, 755–766. [Google Scholar] [CrossRef]
- Rosato, A.; Banzato, A.; de Luca, G.; Renier, D.; Bettella, F.; Pagano, C.; Esposito, G.; Zanovello, P.; Bassi, P. HYTAD1-p20: A new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urol. Oncol.- Semin. O. I. 2006, 24, 207–215. [Google Scholar]
- Banzato, A.; Rondina, M.; Meléndez-Alafort, L.; Zangoni, E.; Nadali, A.; Renier, D.; Moschini, G.; Mazzi, U.; Zanovello, P.; Rosato, A. Biodistribution imaging of a paclitaxel-hyaluronan bioconjugate. Nucl. Med. Biol. 2009, 36, 525–533. [Google Scholar] [CrossRef]
- De Stefano, I.; Battaglia, A.; Zannoni, G.F.; Prisco, M.G.; Fattorossi, A.; Travaglia, D.; Baroni, S.; Renier, D.; Scambia, G.; Ferlini, C.; et al. Hyaluronic acid-paclitaxel: Effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother. Pharmacol. 2011, 68, 107–116. [Google Scholar] [CrossRef]
- Banzato, A.; Bobisse, S.; Rondina, M.; Renier, D.; Bettella, F.; Esposito, G.; Quintieri, L.; Melendez-Alafort, L.; Mazzi, U.; Zanovello, P.; et al. A paclitaxel-hyaluronan bioconjugate targeting ovarian cancer affords a potent in vivo therapeutic activity. Clin. Cancer Res. 2008, 14, 3598–3606. [Google Scholar] [CrossRef]
- Campisi, M.; Renier, D. Oncofid-p a hyaluronic acid paclitaxel conjugate for the treatment of refractory bladder cancer and peritoneal carcinosis. Curr. Bioact. Compd. 2011, 7, 27–32. [Google Scholar] [CrossRef]
- Montagner, I.M.; Banzato, A.; Zuccolotto, G.; Renier, D.; Campisi, M.; Bassi, P.; Zanovello, P.; Rosato, A. Paclitaxel-hyaluronan hydrosoluble bioconjugate: Mechanism of action in human bladder cancer cell lines. Urol. Oncol.- Semin. O. I. 2013, 31, 1261–1269. [Google Scholar]
- Bassi, P.F.; Volpe, A.; D'Agostino, D.; Palermo, G.; Renier, D.; Franchini, S.; Rosato, A.; Racioppi, M. Paclitaxel-hyaluronic acid for intravesical therapy of bacillus Calmette-Guerin refractory carcinoma in situ of the bladder: Results of a phase I study. J. Urol. 2011, 185, 445–449. [Google Scholar] [CrossRef]
- Luo, Y.; Ziebell, M.R.; Prestwich, G.D. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules 2000, 1, 208–218. [Google Scholar] [CrossRef]
- Auzenne, E.; Ghosh, S.C.; Khodadadian, M.; Rivera, B.; Farquhar, D.; Price, R.E.; Ravoori, M.; Kundra, V.; Freedman, R.S.; Klostergaard, J. Hyaluronic acid-paclitaxel: Antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia 2007, 9, 479–486. [Google Scholar] [CrossRef]
- Galer, C.E.; Sano, D.; Ghosh, S.C.; Hah, J.H.; Auzenne, E.; Hamir, A.N.; Myers, J.N.; Klostergaard, J. Hyaluronic acid-paclitaxel conjugate inhibits growth of human squamous cell carcinomas of the head and neck via a hyaluronic acid-mediated mechanism. Oral Oncol. 2011, 47, 1039–1047. [Google Scholar] [CrossRef]
- Lee, S.J.; Ghosh, S.C.; Han, H.D.; Stone, R.L.; Bottsford-Miller, J.; Shen, D.Y.; Auzenne, E.J.; Lopez-Araujo, A.; Lu, C.; Nishimura, M.; et al. Metronomic activity of CD44-targeted hyaluronic acid-paclitaxel in ovarian carcinoma. Clin. Cancer Res. 2012, 18, 4114–4121. [Google Scholar] [CrossRef]
- Xin, D.; Wang, Y.; Xiang, J. The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: Synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm. Res. 2010, 27, 380–389. [Google Scholar] [CrossRef]
- Mittapalli, R.K.; Liu, X.; Adkins, C.E.; Nounou, M.I.; Bohn, K.A.; Terrell, T.B.; Qhattal, H.S.; Geldenhuys, W.J.; Palmieri, D.; Steeg, P.S.; et al. Paclitaxel-hyaluronic nanoconjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol. Cancer Ther. 2013, 12, 2389–2399. [Google Scholar] [CrossRef]
- Lee, H.; Lee, K.; Park, T.G. Hyaluronic acid-paclitaxel conjugate micelles: Synthesis, characterization, and antitumor activity. Bioconjugate Chem. 2008, 19, 1319–1325. [Google Scholar] [CrossRef]
- Ché, C.; Yang, G.; Thiot, C.; Lacoste, M.C.; Currie, J.C.; Demeule, M.; Régina, A.; Béliveau, R.; Castaigne, J.P. New angiopep-modified doxorubicin (ANG1007) and etoposide (ANG1009) chemotherapeutics with increased brain penetration. J. Med. Chem. 2010, 53, 2814–2824. [Google Scholar] [CrossRef]
- Serafino, A.; Zonfrillo, M.; Andreola, F.; Psaila, R.; Mercuri, L.; Moroni, N.; Renier, D.; Campisi, M.; Secchieri, C.; Pierimarchi, P. Cd44-targeting for antitumor drug delivery: A new SN-38-hyaluronan bioconjugate for locoregional treatment of peritoneal carcinomatosis. Curr. Cancer Drug Targets 2011, 11, 572–585. [Google Scholar] [CrossRef]
- Tringali, G.; Bettella, F.; Greco, M.C.; Campisi, M.; Renier, D.; Navarra, P. Pharmacokinetic profile of oncofid-s after intraperitoneal and intravenous administration in the rat. J. Pharm. Pharmacol. 2012, 64, 360–365. [Google Scholar] [CrossRef]
- Brown, T.J. The development of hyaluronan as a drug transporter and excipient for chemotherapeutic drugs. Curr. Pharm. Biotechnol. 2008, 9, 253–260. [Google Scholar] [CrossRef]
- Ibrahim, A.; Scher, N.; Williams, G.; Sridhara, R.; Li, N.; Chen, G.; Leighton, J.; Booth, B.; Gobburu, J.V.S.; Rahman, A.; et al. Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clin. Cancer Res. 2003, 9, 2394–2399. [Google Scholar]
- Varghese, O.P.; Sun, W.; Hilborn, J.; Ossipov, D.A. In situ crosslinkable high molecular weight hyaluronan-bisphosphonate conjugate for localized delivery and cell-specific targeting: A hydrogel linked prodrug approach. J. Am. Chem. Soc. 2009, 131, 8781–8783. [Google Scholar] [CrossRef]
- Oommen, O.P.; Garousi, J.; Sloff, M.; Varghese, O.P. Tailored doxorubicin-hyaluronan conjugate as a potent anticancer glyco-drug: An alternative to prodrug approach. Macromol. Biosci. 2014. [Google Scholar] [CrossRef]
- Cai, S.; Xie, Y.; Bagby, T.R.; Forrest, M.L.; Cohen, M.S. Intralymphatic chemotherapy using a hyaluronan-cisplatin conjugate. J. Surg. Res. 2008, 147, 247–252. [Google Scholar] [CrossRef]
- Cohen, S.M.; Rockefeller, N.; Mukerji, R.; Durham, D.; Forrest, M.L.; Cai, S.; Cohen, M.S.; Shnayder, Y. Efficacy and toxicity of peritumoral delivery of nanoconjugated cisplatin in an in vivo murine model of head and neck squamous cell carcinoma. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 382–387. [Google Scholar] [CrossRef]
- Cai, S.; Thati, S.; Bagby, T.R.; Diab, H.M.; Davies, N.M.; Cohen, M.S.; Forrest, M.; Laird, M.L. Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J. Control. Release 2010, 146, 212–218. [Google Scholar] [CrossRef]
- Cohen, S.M.; Mukerji, R.; Cai, S.; Damjanov, I.; Forrest, M.L.; Cohen, M.S. Subcutaneous delivery of nanoconjugated doxorubicin and cisplatin for locally advanced breast cancer demonstrates improved efficacy and decreased toxicity at lower doses than standard systemic combination therapy in vivo. Am. J. Surg. 2011, 202, 646–653. [Google Scholar] [CrossRef]
- Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res. 2005, 11, 3987–4002. [Google Scholar] [CrossRef]
- Di Meo, C.; Panza, L.; Capitani, D.; Mannina, L.; Banzato, A.; Rondina, M.; Renier, D.; Rosato, A.; Crescenzi, V. Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy. Biomacromolecules 2007, 8, 552–559. [Google Scholar] [CrossRef]
- Di Meo, C.; Panza, L.; Campo, F.; Capitani, D.; Mannina, L.; Banzato, A.; Rondina, M.; Rosato, A.; Crescenzi, V. Novel types of carborane-carrier hyaluronan derivatives via “click chemistry”. Macromol. Biosci. 2008, 8, 670–681. [Google Scholar] [CrossRef]
- Rivkin, I.; Cohen, K.; Koffler, J.; Melikhov, D.; Peer, D.; Margalit, R. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials 2010, 31, 7106–7114. [Google Scholar] [CrossRef]
- Bachar, G.; Cohen, K.; Hod, R.; Feinmesser, R.; Mizrachi, A.; Shpitzer, T.; Katz, O.; Peer, D. Hyaluronan-grafted particle clusters loaded with mitomycin c as selective nanovectors for primary head and neck cancers. Biomaterials 2011, 32, 4840–4848. [Google Scholar] [CrossRef]
- Jain, A.; Jain, S.K. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur. J. Pharm. Sci. 2008, 35, 404–416. [Google Scholar] [CrossRef]
- Jain, A.; Jain, S.K.; Ganesh, N.; Barve, J.; Beg, A.M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanom. Nanotechnol. Biol. Med. 2010, 6, 179–190. [Google Scholar] [CrossRef]
- Yadav, A.K.; Mishra, P.; Mishra, A.K.; Jain, S.; Agrawal, G.P. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 246–257. [Google Scholar] [CrossRef]
- Yadav, A.K.; Agarwal, A.; Rai, G.; Mishra, P.; Jain, S.; Mishra, A.K.; Agrawal, H.; Agrawal, G.P. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Drug Delivery 2010, 17, 561–572. [Google Scholar] [CrossRef]
- He, M.; Zhao, Z.; Yin, L.; Tang, C.; Yin, C. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. Int. J. Pharm. 2009, 373, 165–173. [Google Scholar] [CrossRef]
- Cho, H.J.; Yoon, H.Y.; Koo, H.; Ko, S.H.; Shim, J.S.; Lee, J.H.; Kim, K.; Kwon, I.C.; Kim, D.D. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and pluronic for tumor-targeted delivery of docetaxel. Biomaterials 2011, 32, 7181–7190. [Google Scholar] [CrossRef]
- Cho, H.J.; Yoon, I.S.; Yoon, H.Y.; Koo, H.; Jin, Y.J.; Ko, S.H.; Shim, J.S.; Kim, K.; Kwon, I.C.; Kim, D.D. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 2012, 33, 1190–1200. [Google Scholar] [CrossRef]
- Jeong, Y.I.; Kim do, H.; Chung, C.W.; Yoo, J.J.; Choi, K.H.; Kim, C.H.; Ha, S.H.; Kang, D.H. Self-assembled nanoparticles of hyaluronic acid/poly(dl-lactide-co-glycolide) block copolymer. Colloids Surf. B Biointerfaces 2012, 90, 28–35. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, H.; Yu, Y.; Chen, Y.; Wang, D.; Zhang, G.; Zhou, G.; Liu, J.; Sun, Z.; Sun, D.; et al. Biodegradable self-assembled nanoparticles of poly (d,l-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer. Biomaterials 2014, 35, 550–566. [Google Scholar] [CrossRef]
- Vangara, K.K.; Liu, J.L.; Palakurthi, S. Hyaluronic acid-decorated plga-peg nanoparticles for targeted delivery of sn-38 to ovarian cancer. Anticancer Res 2013, 33, 2425–2434. [Google Scholar]
- Choi, K.Y.; Yoon, H.Y.; Kim, J.H.; Bae, S.M.; Park, R.W.; Kang, Y.M.; Kim, I.S.; Kwon, I.C.; Choi, K.; Jeong, S.Y.; et al. Smart nanocarrier based on pegylated hyaluronic acid for cancer therapy. ACS Nano 2011, 5, 8591–8599. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Koo, H.; Choi, K.Y.; Lee, S.J.; Kim, K.; Kwon, I.C.; Leary, J.F.; Park, K.; Yuk, S.H.; Park, J.H.; et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 2012, 33, 3980–3989. [Google Scholar] [CrossRef]
- Choi, K.Y.; Jeon, E.J.; Yoon, H.Y.; Lee, B.S.; Na, J.H.; Min, K.H.; Kim, S.Y.; Myung, S.J.; Lee, S.; Chen, X.; et al. Theranostic nanoparticles based on pegylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials 2012, 33, 6186–6193. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Koo, H.; Choi, K.Y.; Chan Kwon, I.; Choi, K.; Park, J.H.; Kim, K. Photo-crosslinked hyaluronic acid nanoparticles with improved stability for invivo tumor-targeted drug delivery. Biomaterials 2013, 34, 5273–5280. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, J.; Zhou, J.; Wang, T.; Zhang, Q. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int. J. Pharm. 2013, 441, 654–664. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, L.; Zhou, J.; Liu, H.; Zhang, Q. Efficient simultaneous tumor targeting delivery of all-trans retinoid acid and paclitaxel based on hyaluronic acid-based multifunctional nanocarrier. Mol. Pharm. 2013, 10, 1080–1091. [Google Scholar] [CrossRef]
- Li, S.D.; Howell, S.B. CD44-targeted microparticles for delivery of cisplatin to peritoneal metastases. Mol. Pharm. 2010, 7, 280–290. [Google Scholar] [CrossRef]
- Cerroni, B.; Chiessi, E.; Margheritelli, S.; Oddo, L.; Paradossi, G. Polymer shelled microparticles for a targeted doxorubicin delivery in cancer therapy. Biomacromolecules 2011, 12, 593–601. [Google Scholar] [CrossRef]
- Peer, D.; Margalit, R. Loading mitomycin c inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer 2004, 108, 780–789. [Google Scholar] [CrossRef]
- Peer, D.; Margalit, R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 2004, 6, 343–353. [Google Scholar] [CrossRef]
- Yerushalmi, N.; Arad, A.; Margalit, R. Molecular and cellular studies of hyaluronic acid-modified liposomes as bioahesive carriers for topical drug-delivery in wound-healing. Arch. Biochem. Biophys. 1994, 313, 267–273. [Google Scholar] [CrossRef]
- Eliaz, R.E.; Szoka, F.C. Liposome-encapsulated doxorubicin targeted to CD44: A strategy to kill cd44-overexpressing tumor cells. Cancer Res. 2001, 61, 2592–2601. [Google Scholar]
- Ruhela, D.; Riviere, K.; Szoka, F.C. Efficient synthesis of an aldehyde functionalized hyaluronic acid and its application in the preparation of hyaluronan-lipid conjugates. Bioconjugate Chem. 2006, 17, 1360–1363. [Google Scholar] [CrossRef]
- Arpicco, S.; Lerda, C.; Dalla Pozza, E.; Costanzo, C.; Tsapis, N.; Stella, B.; Donadelli, M.; Dando, I.; Fattal, E.; Cattel, L.; et al. Hyaluronic acid-coated liposomes for active targeting of gemcitabine. Eur. J. Pharm. Biopharm. 2013, 85, 373–380. [Google Scholar] [CrossRef]
- Dalla Pozza, E.; Lerda, C.; Costanzo, C.; Donadelli, M.; Dando, I.; Zoratti, E.; Scupoli, M.T.; Beghelli, S.; Scarpa, A.; Fattal, E.; et al. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. Biochim. Biophys. Acta - Biomembranes 2013, 1828, 1396–1404. [Google Scholar] [CrossRef]
- Park, J.-H.; Cho, H.-J.; Yoon, H.Y.; Yoon, I.-S.; Ko, S.-H.; Shim, J.-S.; Cho, J.-H.; Park, J.H.; Kim, K.; Kwon, I.C.; et al. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J. Control. Release 2014, 174, 98–108. [Google Scholar] [CrossRef]
- Surace, C.; Arpicco, S.; Dufay-Wojcicki, A.; Marsaud, V.; Bouclier, C.; Clay, D.; Cattel, L.; Renoir, J.M.; Fattal, E. Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol. Pharm. 2009, 6, 1062–1073. [Google Scholar] [CrossRef]
- Dufay Wojcicki, A.; Hillaireau, H.; Nascimento, T.L.; Arpicco, S.; Taverna, M.; Ribes, S.; Bourge, M.; Nicolas, V.; Bochot, A.; Vauthier, C.; et al. Hyaluronic acid-bearing lipoplexes: Physico-chemical characterization and in vitro targeting of the CD44 receptor. J. Control. Release 2012, 162, 545–552. [Google Scholar] [CrossRef]
- Taetz, S.; Bochot, A.; Surace, C.; Arpicco, S.; Renoir, J.M.; Schaefer, U.F.; Marsaud, V.; Kerdine-Roemer, S.; Lehr, C.M.; Fattal, E. Hyaluronic acid-modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44-expressing lung cancer cells. Oligonucleotides 2009, 19, 103–115. [Google Scholar] [CrossRef]
- Boussif, O.; Lezoualc'h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef]
- Ito, T.; Iida-Tanaka, N.; Niidome, T.; Kawano, T.; Kubo, K.; Yoshikawa, K.; Sato, T.; Yang, Z.; Koyama, Y. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: Protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. J. Control. Release 2006, 112, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Saraf, A.; Hacker, M.C.; Sitharaman, B.; Grande-Allen, K.J.; Barry, M.A.; Mikos, A.G. Synthesis and conformational evaluation of a novel gene delivery vector for human mesenchymal stem cells. Biomacromolecules 2008, 9, 818–827. [Google Scholar]
- Collins, M.N.; Birkinshaw, C. Investigation of the swelling behavior of crosslinked hyaluronic acid films and hydrogels produced using homogeneous reactions. J. Appl. Polym. Sci. 2008, 109, 923–931. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.S.; Jiang, G.; Kang, H.; Kim, S.; Kim, B.-S.; Park, M.H.; Hahn, S.K. In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers 2008, 89, 1144–1153. [Google Scholar] [CrossRef]
- Jiang, G.; Park, K.; Kim, J.; Kim, K.S.; Hahn, S.K. Target specific intracellular delivery of siRNA/PEI-HA complex by receptor mediated endocytosis. Mol. Pharm. 2009, 6, 727–737. [Google Scholar] [CrossRef]
- Saraf, A.; Baggett, L.S.; Raphael, R.M.; Kasper, F.K.; Mikos, A.G. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J. Control. Release 2010, 143, 95–103. [Google Scholar] [CrossRef]
- Jiang, G.; Park, K.; Kim, J.; Kim, K.S.; Oh, E.J.; Kang, H.; Han, S.-E.; Oh, Y.-K.; Park, T.G.; Kwang Hahn, S. Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers 2008, 89, 635–642. [Google Scholar] [CrossRef]
- Yao, J.; Fan, Y.; Du, R.; Zhou, J.; Lu, Y.; Wang, W.; Ren, J.; Sun, X. Amphoteric hyaluronic acid derivative for targeting gene delivery. Biomaterials 2010, 31, 9357–9365. [Google Scholar] [CrossRef]
- Needham, C.J.; Williams, A.K.; Chew, S.A.; Kasper, F.K.; Mikos, A.G. Engineering a polymeric gene delivery vector based on poly(ethylenimine) and hyaluronic acid. Biomacromolecules 2012, 13, 1429–1437. [Google Scholar] [CrossRef]
- Park, K.; Lee, M.-Y.; Kim, K.S.; Hahn, S.K. Target specific tumor treatment by vegf siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. Biomaterials 2010, 31, 5258–5265. [Google Scholar] [CrossRef]
- Park, J.H.; Saravanakumar, G.; Shin, J.M. Reduction-Sensitive Hyaluronic Acid Nanoparticles for Targeted Intracellular Delivery of Doxorubicin. In Technical Proceedings of the 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013, Washington, DC, USA, 12–16 May 2013; Taylor and Francis Group: Boca Raton, FL, USA, 2013; Volume 3, pp. 289–292. [Google Scholar]
- Upadhyay, K.K.; Meins, J.F.L.; Misra, A.; Voisin, P.; Bouchaud, V.; Ibarboure, E.; Schatz, C.; Lecommandoux, S. Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(l-benzyl glutamate) copolymers. Biomacromolecules 2009, 10, 2802–2808. [Google Scholar] [CrossRef]
- Upadhyay, K.K.; Bhatt, A.N.; Mishra, A.K.; Dwarakanath, B.S.; Jain, S.; Schatz, C.; Le Meins, J.-F.; Farooque, A.; Chandraiah, G.; Jain, A.K.; et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials 2010, 31, 2882–2892. [Google Scholar] [CrossRef]
- Upadhyay, K.K.; Bhatt, A.N.; Castro, E.; Mishra, A.K.; Chuttani, K.; Dwarakanath, B.S.; Schatz, C.; le Meins, J.-F.; Misra, A.; Lecommandoux, S. In vitro and in vivo evaluation of docetaxel loaded biodegradable polymersomes. Macromol. Biosci. 2010, 10, 503–512. [Google Scholar]
- Upadhyay, K.K.; Mishra, A.K.; Chuttani, K.; Kaul, A.; Schatz, C.; le Meins, J.-F.; Misra, A.; Lecommandoux, S. The in vivo behavior and antitumor activity of doxorubicin-loaded poly(l-benzyl l-glutamate)-block-hyaluronan polymersomes in ehrlich ascites tumor-bearing Balb/c mice. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 71–80. [Google Scholar] [CrossRef]
- Qiu, L.; Li, Z.; Qiao, M.; Long, M.; Wang, M.; Zhang, X.; Tian, C.; Chen, D. Self-assembled pH-responsive hyaluronic acid–γ-poly(l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater. 2014. [Google Scholar] [CrossRef]
- Li, J.; Huo, M.; Wang, J.; Zhou, J.; Mohammad, J.M.; Zhang, Y.; Zhu, Q.; Waddad, A.Y.; Zhang, Q. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 2012, 33, 2310–2320. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Cao, W.; Yang, J.; Lian, H.; Li, X.; Sun, Y.; Wang, Y.; Wang, S.; He, Z. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int. J. Pharm. 2011, 421, 160–169. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, C.H.; Park, T.G. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol. Biosci. 2009, 9, 336–342. [Google Scholar] [CrossRef]
- Pitarresi, G.; Palumbo, F.S.; Albanese, A.; Fiorica, C.; Picone, P.; Giammona, G. Self-assembled amphiphilic hyaluronic acid graft copolymers for targeted release of antitumoral drug. J. Drug Targeting 2010, 18, 264–276. [Google Scholar] [CrossRef]
- Lim, E.-K.; Kim, H.-O.; Jang, E.; Park, J.; Haam, S.; Suh, J.-S.; Huh, Y.-M.; Lee, K. Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by mr imaging. Biomaterials 2011, 32, 7941–7950. [Google Scholar] [CrossRef]
- Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A.L.; Keller, S.; Rädler, J.; Natile, G.; Parak, W.J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707. [Google Scholar] [CrossRef]
- Wuister, S.F.; Swart, I.; van Driel, F.; Hickey, S.G.; de Mello Donegà, C. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003, 3, 503–507. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.; Hahn, S.K. Effect of hyaluronic acid molecular weight on the morphology of quantum dot-hyaluronic acid conjugates. Int. J. Biol. Macromol. 2008, 42, 41–45. [Google Scholar] [CrossRef]
- Kim, K.S.; Park, S.-J.; Goh, E.J.; Hahn, S.K.; Hur, W.; Hong, S.W.; Choi, J.E.; Yoon, S.K. Bioimaging for targeted delivery of hyaluronic acid derivatives to the livers in cirrhotic mice using quantum dots. ACS Nano 2010, 4, 3005–3014. [Google Scholar] [CrossRef]
- Kim, K.S.; Park, S.J.; Lee, M.Y.; Lim, K.G.; Hahn, S.K. Gold half-shell coated hyaluronic acid-doxorubicin conjugate micelles for theranostic applications. Macromol. Res. 2012, 20, 277–282. [Google Scholar] [CrossRef]
- Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103–111. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Delivery Rev. 2013, 65, 1951–1963. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 2013, 5, 4015–4039. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Goh, E.J.; Kim, K.S.; Kim, Y.R.; Jung, H.S.; Beack, S.; Kong, W.H.; Scarcelli, G.; Yun, S.H.; Hahn, S.K. Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromolecules 2012, 13, 2554–2561. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Aghayee, S.; Fereydooni, Y.; Talebi, A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 2012, 22, 13773–13781. [Google Scholar] [CrossRef]
- Li, F.; Park, S.-J.; Ling, D.; Park, W.; Han, J.Y.; Na, K.; Char, K. Hyaluronic acid-conjugated graphene oxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy. J. Mater. Chem. B 2013, 1, 1678–1686. [Google Scholar] [CrossRef]
- Abdullah Al, N.; Lee, J.-E.; In, I.; Lee, H.; Lee, K.D.; Jeong, J.H.; Park, S.Y. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol. Pharm. 2013, 10, 3736–3744. [Google Scholar]
- Krishna, V.; Singh, A.; Sharma, P.; Iwakuma, N.; Wang, Q.; Zhang, Q.; Knapik, J.; Jiang, H.; Grobmyer, S.R.; Koopman, B.; et al. Polyhydroxy fullerenes for non-invasive cancer imaging and therapy. Small 2010, 6, 2236–2241. [Google Scholar] [CrossRef]
- Kwag, D.S.; Park, K.; Oh, K.T.; Lee, E.S. Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chem. Comm. 2013, 49, 282–284. [Google Scholar] [CrossRef]
- Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Delivery Rev. 2013, 65, 1964–2015. [Google Scholar] [CrossRef]
- Marega, R.; Bergamin, M.; Aroulmoji, V.; Dinon, F.; Prato, M.; Murano, E. Hyaluronan-carbon nanotube derivatives: Synthesis, conjugation with model drugs, and DOSY NMR characterization. Eur. J. Org. Chem. 2011, 2011, 5617–5625. [Google Scholar]
- Swierczewska, M.; Choi, K.Y.; Mertz, E.L.; Huang, X.; Zhang, F.; Zhu, L.; Yoon, H.Y.; Park, J.H.; Bhirde, A.; Lee, S.; et al. A facile, one-step nanocarbon functionalization for biomedical applications. Nano Lett. 2012, 12, 3613–3620. [Google Scholar] [CrossRef]
- Choi, K.Y.; Chung, H.; Min, K.H.; Yoon, H.Y.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010, 31, 106–114. [Google Scholar] [CrossRef]
- Choi, K.Y.; Min, K.H.; Na, J.H.; Choi, K.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: Synthesis, characterization, and in vivo biodistribution. J. Mater. Chem. 2009, 19, 4102–4107. [Google Scholar] [CrossRef]
- Datir, S.R.; Das, M.; Singh, R.P.; Jain, S. Hyaluronate tethered, “Smart” Multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjugate Chem. 2012, 23, 2201–2213. [Google Scholar] [CrossRef]
- Das, M.; Singh, R.P.; Datir, S.R.; Jain, S. Surface chemistry dependent "Switch" Regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes. Bioconjugate Chem. 2013, 24, 626–639. [Google Scholar] [CrossRef]
- Shi, J.; Ma, R.; Wang, L.; Zhang, J.; Liu, R.; Li, L.; Liu, Y.; Hou, L.; Yu, X.; Gao, J.; et al. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment. Int. J. Nanomed. 2013, 8, 2361–2373. [Google Scholar]
- Lee, D.E.; Kim, A.Y.; Saravanakumar, G.; Koo, H.; Kwon, I.C.; Choi, K.; Park, J.H.; Kim, K. Hyaluronidase-sensitive SPIONs for MR/optical dual imaging nanoprobes. Macromol. Res. 2011, 19, 861–867. [Google Scholar] [CrossRef]
- Lee, M.Y.; Yang, J.A.; Jung, H.S.; Beack, S.; Choi, J.E.; Hur, W.; Koo, H.; Kim, K.; Yoon, S.K.; Hahn, S.K. Hyaluronic acid-gold nanoparticle/interferon alpha complex for targeted treatment of hepatitis c virus infection. ACS Nano 2012, 6, 9522–9531. [Google Scholar] [CrossRef]
- Kamat, M.; El-Boubbou, K.; Zhu, D.C.; Lansdell, T.; Lu, X.; Li, W.; Huang, X. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjugate Chem. 2010, 21, 2128–2135. [Google Scholar] [CrossRef]
- El-Dakdouki, M.H.; Zhu, D.C.; El-Boubbou, K.; Kamat, M.; Chen, J.; Li, W.; Huang, X. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 2012, 13, 1144–1151. [Google Scholar] [CrossRef]
- Lu, J.; Liong, M.; Li, Z.; Zink, J.I.; Tamanoi, F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010, 6, 1794–1805. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Lin, Y.; Yin, M.; Ren, J.; Qu, X. Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery. Chem. Eur. J. 2013, 19, 1778–1783. [Google Scholar] [CrossRef]
- El-Dakdouki, M.H.; Puré, E.; Huang, X. Development of drug loaded nanoparticles for tumor targeting. Part 1: Synthesis, characterization, and biological evaluation in 2D cell cultures. Nanoscale 2013, 5, 3895–3903. [Google Scholar] [CrossRef]
- El-Dakdouki, M.H.; Puré, E.; Huang, X. Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models. Nanoscale 2013, 5, 3904–3911. [Google Scholar] [CrossRef]
- Gary-Bobo, M.; Brevet, D.; Benkirane-Jessel, N.; Raehm, L.; Maillard, P.; Garcia, M.; Durand, J.O. Hyaluronic acid-functionalized mesoporous silica nanoparticles for efficient photodynamic therapy of cancer cells. Photodiagn. Photodyn. 2012, 9, 256–260. [Google Scholar]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arpicco, S.; Milla, P.; Stella, B.; Dosio, F. Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment. Molecules 2014, 19, 3193-3230. https://doi.org/10.3390/molecules19033193
Arpicco S, Milla P, Stella B, Dosio F. Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment. Molecules. 2014; 19(3):3193-3230. https://doi.org/10.3390/molecules19033193
Chicago/Turabian StyleArpicco, Silvia, Paola Milla, Barbara Stella, and Franco Dosio. 2014. "Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment" Molecules 19, no. 3: 3193-3230. https://doi.org/10.3390/molecules19033193
APA StyleArpicco, S., Milla, P., Stella, B., & Dosio, F. (2014). Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment. Molecules, 19(3), 3193-3230. https://doi.org/10.3390/molecules19033193