Antiprotozoal Activity of Achillea ptarmica (Asteraceae) and Its Main Alkamide Constituents †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antiprotozoal Activity of Achillea Crude Extracts
Tbr | Tcr | Ldo | Pf | Tox. L6 | SI Tbr | SI Pf | |
---|---|---|---|---|---|---|---|
Crude extracts | |||||||
A. ptarmica (aerial flowering parts; CH2Cl2-extract) | 0.67 ± 0.35 | 43.7 ± 8.1 | 14.9 ± 0.7 | 6.58 a ± 1.15 | 27.9 ± 8.0 | 41.64 | 4.24 |
A. millefolium (aerial flowering parts; Et2O-extract) | 23.5 ± 1.5 | 44.7 ± 4.5 | 6.76 ± 2.51 | 2.82 a ± 0.26 | 41.2 ± 13.0 | 1.75 | 14.6 |
E. purpurea (flowering aerial parts; CH2Cl2-extract) | 3.70 ± 1.71 | >10 | >10 c | 4.39 ± 0.31 b | 52.5 ± 2.1 | 14.2 | 12.0 |
A. pyrethrum (roots, CH2Cl2-extract) | >10 c | 8.83 ± 0.75 | 4.22 ± 1.57 | 3.04 b ± 0.07 | 13.4 ± 3.2 | <1.34 | 4.41 |
Isolated alkamides | |||||||
Pellitorine (1) | 5.35 ± 0.54 (24.0) | 8.45 ± 1.08 (37.9) | 5.96 ± 0.16 (26.7) | 3.26 b ± 0.53 (14.6) | 45.5 ± 9.1 (201.8) | 8.41 | 13.85 |
8,9-Z-Dehydropellitorine (2) | 2.00 ± 0.06 (9.1) | 14.2 ± 2.5 (64.3) | 5.01 ± 0.12 (22.7) | 6.48 b ± 0.55 (29.3) | 16.5 ± 0.2 (74.7) | 8.25 | 2.55 |
(3) | 6.66 ± 0.22 (29.1) | 19.9 ± 1.5 (86.9) | 8.87 ± 1.33 (38.7) | 5.84 b ± 0.17 (25.5) | 46.1 ± 3.2 (201.3) | 6.92 | 7.89 |
(4+5) (3:1 mixture) | 3.50 ± 0.44 | 8.36 ± 2.90 | 11.8 ± 0.1 | 6.89 ± 0.21 b | 43.4 ± 5.0 | 12.4 | 6.30 |
Anacycline (6) | 5.12 ± 0.95 (18.9) | 42.0 ± 4.5 (154.9) | >100 (>369) | 7.23 ± 0.40 b(26.7) | 48.7 ± 1.1 (18.0) | 9.5 | 6.74 |
Positive controls | |||||||
Melarsoprol | 0.003 ± 0.001 (0.008) | ||||||
Benznidazole | 0.439 ± 0.094 (1.688) | ||||||
Miltefosine | 0.127 ± 0.052 (0.312) | ||||||
Chloroquine | 0.080 a ± 0.003 (0.250) | ||||||
Chloroquine | 0.003 b ± 0.001 (0.009) | ||||||
Podophyllotoxin | 0.008 ± 0.001 (0.019) |
2.2. Bioassay-Guided Fractionation of Achillea ptarmica Extract and Isolation of Alkamides
Tbr | Tcr | Ldo | Pf (NF54) | |||||
---|---|---|---|---|---|---|---|---|
10 µg/mL | 2 µg/mL | 10 µg/mL | 2 µg/mL | 10 µg/mL | 2 µg/mL | 10 µg/mL | 2 µg/mL | |
Total extract | 100 | 0 | 1 | 3.4 | 19.4 | 9.4 | 63.8 | 6.1 |
CC fractions | ||||||||
II | 4.3 | 25 | 0.6 | 0 | 8.9 | 5.1 | 5 | 4.7 |
IV | 7.2 | 0 | 0 | 16.6 | 27.5 | 15.3 | 6 | 0 |
Vb | 0 | 25 | 0 | 0 | 17.8 | 11.8 | 0 | 3.9 |
XVI | 45.3 | 0 | 21.1 | 21.9 | 25.4 | 9.2 | 47.1 | 2.5 |
XX | 66.8 | 0 | 18.9 | 0 | 17.2 | 21.7 | 9.8 | 0 |
XXII | 90.2 | 6.4 | 8.5 | 0 | 35.7 | 8 | 35.7 | 7.7 |
XXIII | 99.9 | 0 | 4.2 | 0 | 32.4 | 9.1 | 96.8 | 3.9 |
XXV | 100 | 0 | 3.9 | 0 | 53.6 | 10.1 | 99.9 | 13.7 |
XXVIII | 100 | 9.4 | 0 | 0 | 42.1 | 10 | 99.6 | 11.7 |
2.3. Antiprotozoal Activity of Isolated Alkamides
2.4. Antiprotozoal Activity of Further Alkamide-Containing Plant Species
3. Experimental
3.1. Analytical Procedures and Instrumentation
3.1.1. Preparative High-Performance Liquid Chromatography (HPLC)
3.1.2. UHPLC/+ESI-QTOF-MS/MS
3.1.3. NMR Spectroscopy
3.2. Isolation Process
3.2.1. Plant Material
3.2.2. Soxhlet Extraction
3.2.3. Gravity Flow Column Chromatography (CC)
Combined eluates (10 mL/tube) | Elution volume (mL) | Yield (g) | Isolated compound | |
---|---|---|---|---|
Fraction I–XIV | 1–1070 | 10,700 | 2.4906 | |
Fractions XV–XVIII containing chlorophylls | 1071–1359 | 2890 | 0.3426 | |
Fractions XIX-XXX containing alkamides | XIX 1390–1460 | 1100 | 0.0889 | |
XX 1461–1560 | 1000 | 0.3034 | ||
XXI 1561–1600 | 400 | 0.2738 | 1 | |
XXII 1601–1780 | 1800 | 0.4904 | 2 | |
XXIII 1781–1920 | 2200 | 0.1344 | 6 | |
XXIV 2001–2070 | 700 | 0.0187 | ||
XXV 2071–2120 | 500 | 0.0635 | 3, 4 + 5 | |
XXVI 2121–2160 | 400 | 0.0196 | ||
XXVII 2161–2310 | 1500 | 0.1627 | ||
XXVIII | 950 | 0.1017 | 3, 4 + 5 | |
XXVIX | 940 | 0.1139 | ||
XXX | 4920 | empty | ||
total | 30,000 | 4.6042 |
3.2.4. Purification of the Alkamides by Preparative High Performance Liquid Chromatography (prep. HPLC)
3.2.5. Analytical Data
3.3. In Vitro Assays and IC50 Determination
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Althaus, J.B.; Kaiser, M.; Brun, R.; Schmidt, T.J. Bioassay-guided isolation of alkamides from an extract of Achillea ptarmica L. with antiprotozoal activity. Planta Med. 2013, 79, 1129. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.A.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.G.; et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—Part I. Curr. Med. Chem. 2012, 19, 2128–2175. [Google Scholar]
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.A.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.G.; et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—Part II. Curr. Med. Chem. 2012, 19, 2176–2228. [Google Scholar]
- Schmidt, T.J.; Nour, A.M.M.; Khalid, S.A.; Kaiser, M.; Brun, R. Quantitative Structure-Antiprotozoal Activity Relationships of Sesquiterpene Lactones. Molecules 2009, 14, 2062–2076. [Google Scholar]
- Schmidt, T.J.; Da Costa, F.B.; Lopes, N.P.; Kaiser, M.; Brun, R. In silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrob. Agents Chemother. 2014, 58, 325–332. [Google Scholar]
- Nour, A.M.M.; Khalid, S.A.; Brun, R.; Kaiser, M.; Schmidt, T.J. The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. J. Ethnopharmacol. 2010, 129, 127–130. [Google Scholar]
- Harel, D.; Khalid, S.A.; Kaiser, M.; Brun, R.; Wünsch, B.; Schmidt, T.J. Encecalol angelate, an unstable chromene from Ageratum conyzoides L.: Total Synthesis and Investigation of its Antiprotozoal Activity. J. Ethnopharmacol. 2011, 137, 620–625. [Google Scholar]
- Kuropka, G.; Neugebauer, M.; Glombitza, K.W. Essential Oils of Achillea ptarmica. Planta Med. 1991, 57, 492–494. [Google Scholar]
- Valant-Vetschera, K. Flavonoid diversification in Achillea ptarmica and allied taxa. Biochem. Syst. Ecol. 1985, 13, 15–21. [Google Scholar]
- Kuropka, G.; Koch, M.; Glombitza, K.-W. Säureamide aus Achillea ptarmica (Acid amides from Achillea ptarmica). Planta Med. 1986, 244–245. [Google Scholar]
- Kuropka, G.; Glombitza, K.W. Further Polyenic and Polyynic Carboxamides and Sesamin from Achillea ptarmica. Planta Med. 1987, 53, 440–442. [Google Scholar]
- Greger, H. Alkamides: Structural Relationships, Distribution and Biological Activity. Planta Med. 1984, 50, 366–375. [Google Scholar]
- Woelkart, K.; Bauer, R. The role of alkamides as an active principle of Echinacea. Planta Med. 2007, 73, 615–623. [Google Scholar]
- Hofer, O.; Greger, H.; Robien, W.; Werner, A. 13C-NMR and 1H lanthanide induced shifts of naturally occurring alkamides with cyclic amide moieties—Amides from Achillea falcata. Tetrahedron 1986, 42, 2707–2716. [Google Scholar]
- Rukachaisirikul, T.; Siriwattanakit, P.; Sukcharoenphol, K.; Wongvein, C.; Ruttanaweang, P.; Wongwattanavuch, P.; Suksamrarn, A. Chemical constituents and bioactivity of Piper sarmentosum. J. Ethnopharmacol. 2004, 93, 173–176. [Google Scholar]
- Weenen, H.; Nkunya, M.H.H.; Bray, D.H.; Mwasumbi, L.B.; Kinabo, L.S.; Kilimali, V.A.E.B.; Wijnberg, J.B.P.A. Antimalarial Compounds Containing an α,β-Unsaturated Carbonyl Moiety from Tanzanian Medicinal Plants. Planta Med. 1990, 56, 371–373. [Google Scholar]
- Christensen, L.P. Acetylenes and related compounds in Anthemideae. Phytochemistry 1992, 31, 7–49. [Google Scholar]
- Zimmermann, S.; Thomi, S.; Kaiser, M.; Hamburger, M.; Adams, M. Screening and HPLC-Based Activity Profiling for New Antiprotozoal Leads from European Plants. Sci. Pharm. 2012, 80, 205–213. [Google Scholar] [Green Version]
- Canlas, J.; Hudson, J.B.; Sharma, M.; Nandan, D. Echinacea and trypanosomatid parasite interactions: Growth-inhibitory and anti-inflammatory effects of Echinacea. Pharm. Biol. 2010, 48, 1047–1052. [Google Scholar]
- Sample Availability: Samples of the compounds 1–6 are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Althaus, J.B.; Kaiser, M.; Brun, R.; Schmidt, T.J. Antiprotozoal Activity of Achillea ptarmica (Asteraceae) and Its Main Alkamide Constituents. Molecules 2014, 19, 6428-6438. https://doi.org/10.3390/molecules19056428
Althaus JB, Kaiser M, Brun R, Schmidt TJ. Antiprotozoal Activity of Achillea ptarmica (Asteraceae) and Its Main Alkamide Constituents. Molecules. 2014; 19(5):6428-6438. https://doi.org/10.3390/molecules19056428
Chicago/Turabian StyleAlthaus, Julia B., Marcel Kaiser, Reto Brun, and Thomas J. Schmidt. 2014. "Antiprotozoal Activity of Achillea ptarmica (Asteraceae) and Its Main Alkamide Constituents" Molecules 19, no. 5: 6428-6438. https://doi.org/10.3390/molecules19056428
APA StyleAlthaus, J. B., Kaiser, M., Brun, R., & Schmidt, T. J. (2014). Antiprotozoal Activity of Achillea ptarmica (Asteraceae) and Its Main Alkamide Constituents. Molecules, 19(5), 6428-6438. https://doi.org/10.3390/molecules19056428