Cholesteryl-Modification of a Glucomannan from Bletilla striata and Its Hydrogel Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Purification of BSP
2.2. Structural Analysis of BSP
Methylated Sugar | Linkages Types | Molar Ratio (%) | Mass Fragment (m/z) |
---|---|---|---|
2, 3, 6-Me3-Manp | →4)-d-Man-(1→ | 76.4 | 43, 87, 101, 117 |
129, 161, 203, 233, 277 | |||
2, 3, 6-Me3-Glcp | →4)-d-Glc-(1→ | 20.3 | 43, 87, 99, 101 |
117, 129, 189, 233 |
Sugar Residues | Chemical Shifts 13C/1H δ (ppm) | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
→4)-β-D-Man-(1→ | 100.26 | 70.09 | 71.57 | 76.64 | 75.15 | 60.59 |
4.70 | 4.06 | 3.72 | 3.75 | 3.50 | 3.89/3.69 | |
→4)-β-D-Glc-(1→ | 102.07 | 72.17 | 75.89 | 78.55 | 74.5 | 60.69 |
4.46 | 3.34 | 3.76 | 3.64 | 3.58 | 3.77/3.65 |
2.3. Determination of Degree of Substitution (DS) for Cholesteryl Succinate Modified BSP (CHSB)
2.4. Determination of the Critical Micelle Concentration (CMC) of CHSB by Pyrene Fluorescence Probe Spectrometry
3. Experimental Section
3.1. Materials
3.2. General Methods
3.3. Isolation and Purification
3.4. Homogeneity and Molecular Weight
3.5. Monosaccharide Composition
3.6. Methylation Analysis
3.7. Synthesis of Cholesteryl Succinate
3.8. Synthesis Cholesteryl Succinate - BSP (CHSB)
3.9. Determination of the Degree of Substitution of CHSB
3.10. Determination of CMC of CHSB
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, D.F.; Shi, J.S.; Zhang, W.M.; Gu, G.P.; Zhu, C.L.; Xue, H.M. Research Progress on Polysaccharide Gum of Bletilla striata (Thunb.) Reichb.f. Food Sci. 2009, 30, 296–298. [Google Scholar]
- Wu, X.G.; Xin, M.; Chen, H.; Yang, L.N.; Jiang, H.R. Novel mucoadhesive polysaccharide isolated from Bletilla striata improves the intraocular penetration and efficacy of levofloxacin in the topical treatment of experimental bacterial keratitis. J. Pharm. Pharmacol. 2010, 62, 1152–1157. [Google Scholar] [CrossRef]
- Li, W.Y.; Zhan, H.; Fang, K.; Chen, H.T.; Zheng, C.S. Cisplatin Bletilla striata gel microspheres in dogs in vivo pharmacokinetics. Chin. J. Hosp. Pharm. 2008, 28, 524–527. [Google Scholar]
- Tomoda, M.; Nakatsuka, S.; Tamai, M.; Nagata, M. Plant mucilages. VIII. Isolation and characterization of a mucous polysaccharide, Bletilla-glucomannan, from Bletilla striata tubers. Chem. Pharm. Bull. 1973, 21, 2667–2671. [Google Scholar] [CrossRef]
- Peng, Q.; Li, M.; Xue, F.; Liu, H.J. Structure and immunobiological activity of a new polysaccharide from Bletilla striata. Carbohydr. Polym. 2014, 107, 119–123. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Chen, S.J.; Wang, Y.; Jiang, H.X.; Yin, H.P. A new glucomannan from Bletilla striata: Structural and anti-fibrosis effects. Fitoterapia 2014, 92, 72–78. [Google Scholar] [CrossRef]
- Diao, H.J.; Li, X.; Chen, J.N.; Luo, Y.; Chen, X.; Dong, L.; Wang, C.M.; Zhang, C.Y.; Zhang, J.F. Bletilla striata polysaccharide stimulates inducible nitric oxide synthase and proinflammatory cytokine expression in macrophages. J. Biosci. Bioeng. 2008, 2, 85–89. [Google Scholar]
- Akiyama, E.; Morimoto, N.; Kujawa, P.; Ozawa, Y.; Winnik, F.M.; Akiyoshi, K. Self-assembled nanogels of cholesteryl-modified polysaccharides: Effect of the polysaccharide structure on their association characteristics in the dilute and semi dilute regimes. Biomacromolecules 2007, 8, 2366–2373. [Google Scholar] [CrossRef]
- Yang, L.; Kuang, J.; Li, Z.; Zhang, B.; Cai, X.; Zhang, L.M. Amphiphilic cholesteryl-bearing carboxymethyl-cellulose derivatives: Self-assembled and rheological behavior in aqueous solution. Cellulose 2008, 15, 659–669. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Bi, H.T.; Li, X.H.; Ni, W.H.; Han, H.; Li, N.; Wang, B.Q.; Zhou, Y.F.; Tai, G.H. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr. Polym. 2009, 77, 544–552. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Wang, C.M.; Sun, J.T.; Luo, Y.; Xue, W.H.; Diao, H.J.; Dong, L.; Chen, J.N.; Zhang, J.F. A polysaccharide isolated from the medicinal herb Bletilla striata induces endothelial cells proliferation and vascular endothelial growth factor expression in vitro. Biotechnol. Lett. 2006, 28, 539–543. [Google Scholar] [CrossRef]
- Li, M.F.; Sun, S.N.; Xu, F.; Sun, R.C. Ultrasound-enhanced extraction of lignin from bamboo (Neosinocalamu saffinis): Characterization of the ethanol-soluble fractions. Ultrason. Sonochem. 2012, 19, 243–249. [Google Scholar] [CrossRef]
- Aguire, M.J.; Isaacs, M.; Matsuhiro, B.; Mendoza, L.; Zunigai, E.A. Characterization of a neutral polysaccharide with antioxidant capacity from red wine. Carbohydr. Res. 2009, 344, 1095–1101. [Google Scholar] [CrossRef]
- Chakraborty, I.; Mondal, S.; Pramanik, M.; Rout, D.; Islam, S.S. Structural investigation of a water-soluble glucan from an edible mushroom, Astraeus hygrometricus. Carbohydr. Res. 2004, 339, 2249–2254. [Google Scholar] [CrossRef]
- Capek, P. A water soluble glucomannan isolated from an immunomodulatory activepolysaccharide of Salvia officinalis L. Carbohydr. Polym. 2009, 75, 356–359. [Google Scholar] [CrossRef]
- Hua, Y.F.; Zhang, M.; Fu, C.X.; Chen, Z.H.; Chan, G.Y.S. Structural characterization of a 2-O-acetylglucomannan from Dendrobium officinale stem. Carbohydr. Res. 2004, 339, 2219–2224. [Google Scholar] [CrossRef]
- Parente, J.P.; Adão, C.R.; Silva, B.P.D.; Tinoco, L.W. Structural characterization of an acetylated glucomannan with antiinflammatory activity and gastroprotective property from Cyrtopodium andersonii. Carbohydr. Res. 2014, 391, 16–21. [Google Scholar] [CrossRef]
- Yuan, X.B.; Li, H.; Zhu, X.X.; Woo, H.G. Self-aggregated nanoparticles composed of periodate-oxidized dextran and cholic acid: Preparation, stabilization and in vitro drug release. J. Chem. Technol. Biotechnol. 2006, 81, 746–54. [Google Scholar]
- Ding, Z.P.; Wang, M.H.; Liu, Z.H.; He, Y.; Zhao, D.Y. The determination of the cholesterol concentration in the food product and the study of the method. Food Sci. 2004, 25, 130–135. [Google Scholar]
- Zhao, Z.; Wang, Q.F. Progress on methods of measuring surface active agents critical micelle concentration. Pract. Pharm. Clin. Rem. 2010, 13, 140–144. [Google Scholar]
- Aguiar, J.; Carpena, P.; Molina-Bolı́var, J.A.; Ruiz, C.C. On the determination of the critical micelle concent ration by the pyrene 1:3 ratio method. J. Colloid. Interface Sci. 2003, 258, 116–122. [Google Scholar] [CrossRef]
- Rahman, A.; Brown, C.W. Effect of pH on the critical micelle concentration of sodium dodecyl sulphate. J. Appl. Polym. Sci. 2003, 28, 1331–1334. [Google Scholar] [CrossRef]
- Kratohvil, J.P.; Hsu, W.P.; Kwok, V. How large are the micelles of di-α-hydroxy bile salts at the critical micellization concentrations in aqueous electrolyte solutions? Results for sodium taurodeoxycholate and sodium deoxycholate. Langmuir 1986, 2, 256–258. [Google Scholar] [CrossRef]
- Bagheri, M.; Pourmirzaei, L. Synthesis and characterization of cholesteryl-modified graft copolymer from hydroxypropyl cellulose and its application as nanocarrier. Macromol. Res. 2013, 21, 801–808. [Google Scholar] [CrossRef]
- Bagheri, M.; Shateri, S. Synthesis and characterization of novel liquid crystalline cholesteryl-modified hydroxypropyl cellulose derivatives. J. Polym. Res. 2012, 19, 9842. [Google Scholar] [CrossRef]
- Bagheri, M.; Shateri, S. Thermosensitive nanosized micelles from cholesteryl-modified hydroxypropyl cellulose as a novel carrier of hydrophobic drugs. Iran. Polym. J. 2012, 21, 365–373. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ciukanu, I.; Kerek, F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984, 131, 209–217. [Google Scholar] [CrossRef]
- Wang, Y.S. Preparation of Self-Aggregated Nanopartieles of Cholesterol-Bearing Chitosan Derivatives and the Primary Study on Using Them as the Novel Carriers of drUgs. Ph.D. Thesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, May 2009. [Google Scholar]
- Lu, G.Q.; Zheng, J.; Zheng, X.C.; Lu, Y.L.; He, F.C. The study of aggregation behavior of bile salt-phosphatidylcholine mixed nano-micelle by pyrene fluorescence probe spectrometry methods and curve fitting. Drug Res. 2011, 20, 21–23. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Sun, L.; Zhao, W.; Peng, X.; Liu, F.; Wang, Y.; Bi, Y.; Zhang, H.; Zhou, Y. Cholesteryl-Modification of a Glucomannan from Bletilla striata and Its Hydrogel Properties. Molecules 2014, 19, 9089-9100. https://doi.org/10.3390/molecules19079089
Zhang M, Sun L, Zhao W, Peng X, Liu F, Wang Y, Bi Y, Zhang H, Zhou Y. Cholesteryl-Modification of a Glucomannan from Bletilla striata and Its Hydrogel Properties. Molecules. 2014; 19(7):9089-9100. https://doi.org/10.3390/molecules19079089
Chicago/Turabian StyleZhang, Mengshan, Lin Sun, Wencui Zhao, Xiaoxia Peng, Fuqiang Liu, Yanping Wang, Yajing Bi, Hengbi Zhang, and Yifa Zhou. 2014. "Cholesteryl-Modification of a Glucomannan from Bletilla striata and Its Hydrogel Properties" Molecules 19, no. 7: 9089-9100. https://doi.org/10.3390/molecules19079089
APA StyleZhang, M., Sun, L., Zhao, W., Peng, X., Liu, F., Wang, Y., Bi, Y., Zhang, H., & Zhou, Y. (2014). Cholesteryl-Modification of a Glucomannan from Bletilla striata and Its Hydrogel Properties. Molecules, 19(7), 9089-9100. https://doi.org/10.3390/molecules19079089