Influence of Vinegar and Wine Processing on the Alkaloid Content and Composition of the Traditional Chinese Medicine Corydalis Rhizoma (Yanhusuo)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development and Validation
Compound | Retention Time (min) a | Precursor Ion (m/z) | Main MS2 Fragment Ions (>10% rel. int.) (m/z) | λmax (nm) |
---|---|---|---|---|
1 | 20.2 | 354.1 [M+H]+ | 336.4 (21), 323.3 (11), 275.3 (33), 247.3 (16), 206.3 (11), 189.3 (67), 188.3 (100), 149.3 (79), 119.4 (17) | 211, 239, 288 |
2 | 21.5 | 370.1 [M+H]+ | 352.4 (42), 291.3 (12), 290.3 (25), 206.3 (12), 188.3 (100) | 209, 229, 284 |
3 | 22.2 | 342.2 [M+H]+ | 178.3 (100) | 211, 226, 282 |
4 | 22.8 | 320.1 M+ | 292.3 (100), 260.8 (13) | 228, 238, 266, 358, 460 |
5 | 25.4 | 352.2 M+ | 337.4 (100), 336.4 (55), 308.3 (64) | 226, 265, 272, 345, 423 |
6 | 26.4 | 336.1 M+ | 321.3 (100), 320.3 (48), 292.3 (47) | 230, 264, 347, 427 |
7 | 27.0 | 366.2 M+ | 351.4 (100), 350.4 (76), 322.4 (51) | 230, 263, 336, 417 |
8 | 28.9 | 356.2 [M+H]+ | 192.3 (100), 165.3 (23) | 211, 230, 281 |
9 | 34.8 | 340.1 [M+H]+ | 176.3 (100) | 208, 231, 285 |
10 | 37.3 | 370.2 [M+H]+ | 218.3 (12), 205.3 (16), 192.3 (93), 179.3 (16), 165.3 (100), 151.3 (14), 150.3 (39), 136.3 (12), 135.4 (12) | 211, 229, 282 |
11 | 39.2 | 324.1 [M+H]+ | 176.3 (100), 149.3 (54) | 201, 237, 289 |
Compound | Regression Equation | r2 | Linear Range (μg) | LOQ (μg) | LOD (μg) |
---|---|---|---|---|---|
1 | y = 1062369x + 14016 | 0.9997 | 4.120–0.008 | 0.008 | 0.004 |
2 | y = 799236x + 12725 | 0.9998 | 6.260–0.012 | 0.012 | 0.006 |
3 | y = 838091x + 26101 | 0.9994 | 6.600–0.013 | 0.013 | 0.006 |
4 | y = 2514102x + 11571 | 0.9998 | 2.630–0.005 | 0.005 | 0.003 |
5 | y = 3704272x + 51320 | 0.9997 | 3.400–0.007 | 0.007 | 0.003 |
6 | y = 2483438x + 31925 | 0.9997 | 4.040–0.008 | 0.008 | 0.004 |
7 | y = 3483721x + 57730 | 0.9997 | 4.100–0.008 | 0.008 | 0.004 |
8 | y = 931781x + 18150 | 0.9997 | 5.200–0.010 | 0.010 | 0.005 |
9 | y = 1029317x + 6872 | 0.9998 | 3.040–0.006 | 0.006 | 0.003 |
10 | y = 809393x + 23046 | 0.9996 | 5.500–0.011 | 0.011 | 0.005 |
11 | y = 665716x + 14423 | 0.9997 | 5.600–0.011 | 0.011 | 0.005 |
Compound | Precision | Repeatability (n = 6) | Recovery (n = 6) | |||||
---|---|---|---|---|---|---|---|---|
Intra-Day (n = 3) | Inter-Day (n = 9) | Mean (mg/g) | RSD (%) | Mean (%) | RSD (%) | |||
Mean (mg/mL) | RSD (%) | Mean (mg/mL) | RSD (%) | |||||
1 | 0.116 | 1.26 | 0.121 | 3.35 | 0.31 | 0.86 | 99.7 | 4.01 |
2 | 0.169 | 1.50 | 0.169 | 2.71 | 1.19 | 1.70 | 102.3 | 1.50 |
3 | 0.173 | 2.17 | 0.181 | 4.91 | 1.87 | 3.38 | 97.1 | 1.53 |
4 | 0.057 | 2.19 | 0.058 | 3.20 | 0.85 | 0.59 | 94.1 | 2.92 |
5 | 0.085 | 1.05 | 0.089 | 3.54 | 0.55 | 2.02 | 96.9 | 3.91 |
6 | 0.135 | 1.06 | 0.140 | 3.31 | 0.29 | 2.63 | 97.5 | 2.77 |
7 | 0.131 | 0.95 | 0.137 | 3.69 | 2.09 | 1.78 | 100.1 | 3.71 |
8 | 0.137 | 0.92 | 0.143 | 3.36 | 0.41 | 1.96 | 97.2 | 1.80 |
9 | 0.082 | 1.76 | 0.083 | 2.18 | 0.12 | 1.44 | 99.4 | 2.21 |
10 | 0.145 | 1.11 | 0.151 | 3.26 | 0.51 | 2.02 | 97.3 | 3.18 |
11 | 0.148 | 1.04 | 0.153 | 2.94 | 0.16 | 2.89 | 99.6 | 4.35 |
2.2. Influence of Vinegar and Wine Processing on the Total Alkaloid Content of Corydalis Rhizoma
Compound | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total amount | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methanolextract (mg/g) | UP | 0.310 ± 0.003 | 1.191 ± 0.020 | 1.866 ± 0.063 | 0.851 ± 0.005 | 0.548 ± 0.011 | 0.286 ± 0.008 | 2.093 ± 0.037 | 0.406 ± 0.008 | 0.120 ± 0.002 | 0.511 ± 0.010 | 0.162 ± 0.005 | 8.342 ± 0.141 |
VP | 0.301 ± 0.010 | 1.133 ± 0.040 | 1.826 ± 0.036 | 0.752 ± 0.030 ** | 0.504 ± 0.010 ** | 0.248 ± 0.014 * | 1.889 ± 0.087 * | 0.397 ± 0.015 | 0.122 ± 0.003 | 0.513 ± 0.006 | 0.157 ± 0.004 | 7.833 ± 0.250 * | |
WP | 0.296 ± 0.007 * | 0.997 ± 0.007 ** | 2.268 ± 0.035 ** | 0.724 ± 0.005 ** | 0.381 ± 0.004 ** | 0.203 ± 0.003 ** | 1.614 ± 0.025 ** | 0.701 ± 0.016 ** | 0.169 ± 0.002 ** | 0.806 ± 0.015 ** | 0.248 ± 0.002 ** | 8.406 ± 0.106 | |
Water decoction (mg/g) | UP | 0.216 ± 0.002 | 0.559 ± 0.013 | 1.340 ± 0.123 | 0.290 ± 0.019 | 0.180 ± 0.013 | 0.084 ± 0.006 | 0.800 ± 0.059 | 0.321 ± 0.006 | 0.032 ± 0.003 | 0.189 ± 0.012 | 0.033 ± 0.004 | 4.040 ± 0.251 |
VP | 0.249 ± 0.024 | 0.644 ± 0.072 | 1.473 ± 0.179 | 0.300 ± 0.037 | 0.204 ± 0.017 | 0.092 ± 0.002 | 0.851 ± 0.114 | 0.381 ± 0.023 ** | 0.040 ± 0.004 | 0.233 ± 0.018 * | 0.044 ± 0.006 | 4.430 ± 0.526 | |
WP | 0.241 ± 0.010 * | 0.585 ± 0.032 | 1.379 ± 0.050 | 0.281 ± 0.023 | 0.177 ± 0.014 | 0.078 ± 0.005 | 0.797 ± 0.063 | 0.339 ± 0.026 | 0.036 ± 0.003 | 0.224 ± 0.025 | 0.036 ± 0.003 | 4.170 ± 0.245 | |
Jin Ling Zi Sandecoction(mg/g) | UP | 0.260 ± 0.021 | 0.599 ± 0.030 | 1.448 ± 0.077 | 0.344 ± 0.032 | 0.199 ± 0.014 | 0.102 ± 0.006 | 0.859 ± 0.050 | 0.434 ± 0.002 | 0.053 ± 0.000 | 0.301 ± 0.026 | 0.056 ± 0.002 | 4.610 ± 0.164 |
VP | 0.267 ± 0.023 | 0.596 ± 0.030 | 1.632 ± 0.015 * | 0.316 ± 0.027 | 0.189 ± 0.011 | 0.092 ± 0.006 | 0.832 ± 0.044 | 0.415 ± 0.020 | 0.057 ± 0.001 | 0.326 ± 0.003 | 0.066 ± 0.006 | 4.860 ± 0.064 | |
WP | 0.305 ± 0.023 * | 0.658 ± 0.026 * | 1.878 ± 0.008 ** | 0.344 ± 0.014 | 0.212 ± 0.011 | 0.103 ± 0.006 | 0.924 ± 0.029 | 0.523 ± 0.025 ** | 0.069 ± 0.005 ** | 0.427 ± 0.006 ** | 0.091 ± 0.005 ** | 5.530 ± 0.158 ** |
2.3. Influence of Vinegar and Wine Processing on the Alkaloid Content of the Methanol Extract of Corydalis Rhizoma
2.4. Influence of Vinegar and Wine Processing on the Alkaloid Content of the Water Decoctions of Corydalis Rhizoma and JLZS
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Processing of Corydalis Rhizoma According to the Pharmacopoeia [1]
3.4. Extraction
3.4.1. Methanol Extract
3.4.2. Water Decoction
3.4.3. JLZS Decoction
3.5. Quantitative Analysis of the Alkaloid Content of Corydalis Rhizoma and Its Formulations by HPLC-DAD
3.6. Qualitative Analysis of Typical Samples by LC-MS
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Editorial Committee for the Pharmacopoeia of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China 2010; Chemical Industry Press: Beijing, China, 2010; Volume 1, p. 133. [Google Scholar]
- Wang, X.L.; Zheng, Z.; Hong, Z.; Fan, G. Advancements on chemical components and quality control of rhizoma corydalis. Lishizhen Med. Mater. Med. Res. 2011, 22, 227–229. [Google Scholar]
- Adsersen, A.; Kjølbye, A.; Dall, O.; Jäger, A.K. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis Cava Schweigg. & Kort. J. Ethnopharmacol. 2007, 113, 179–182. [Google Scholar] [CrossRef]
- Chang, C.K.; Lin, M.T. DL-tetrahydropalmatine may act through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats. Neurosci. Lett. 2001, 307, 163–166. [Google Scholar] [CrossRef]
- Lin, M.T.; Wang, J.J.; Young, M.S. The protective effect of DL-tetrahydropalmatine against the development of amygdala kindling seizures in rats. Neurosci. Lett. 2002, 320, 113–116. [Google Scholar] [CrossRef]
- Yue, K.; Ma, B.; Ru, Q.; Chen, L.; Gan, Y.; Wang, D.; Jin, G.; Li, C. The dopamine receptor antagonist levo-tetrahydropalmatine attenuates heroin self-administration and heroin-induced reinstatement in rats. Pharmacol. Biochem. Behav. 2012, 102, 1–5. [Google Scholar] [CrossRef]
- An, H.J.; Rim, H.K.; Chung, H.S.; Choi, I.Y.; Kim, N.H.; Kim, S.J.; Moon, P.D.; Myun, N.Y.; Jeong, H.J.; Jeong, C.H.; et al. Epression of inducible nitric oxide synthase by Corydalis turtschaninovii on interferon-γ stimulated macrophages. J. Ethnopharmacol. 2009, 122, 573–578. [Google Scholar] [CrossRef]
- Lei, Y.; Tan, J.; Wink, M.; Ma, Y.; Li, N.; Su, G. An isoquinoline alkaloid from the Chinese herbal plant Corydalis yanhusuo W.T. Wang inhibits P-glycoprotein and multidrug resistance-associate protein 1. Food Chem. 2013, 136, 1117–1121. [Google Scholar] [CrossRef]
- Kim, Y.A.; Kong, C.S.; Yea, S.S.; Seo, Y. Constituents of Corydalis heterocarpa and their anti-proliferative effects on human cancer cells. Food Chem. Toxicol. 2010, 48, 722–728. [Google Scholar] [CrossRef]
- Kang, K.H.; Kong, C.S.; Seo, Y.; Kim, M.M.; Kim, S.K. Anti-inflammatory effect of coumarins isolated from Corydalis heterocarpa in HT-29 human colon carcinoma cells. Food Chem. Toxicol. 2009, 47, 2129–2134. [Google Scholar] [CrossRef]
- Yun, K.J.; Shin, J.S.; Choi, J.H.; Back, N.I.; Chung, H.G.; Lee, K.T. Quaternary alkaloid, pseudocoptisine isolated from tubers of Corydalis turtschaninovi inhibits LPS-induced nitric oxide, PGE(2), and pro-inflammatory cytokines production via the down-regulation of NF-KappaB in RAW 264.7 murine macrophage cells. Int. Immunopharmacol. 2009, 9, 1323–1331. [Google Scholar] [CrossRef]
- Cao, F.L.; Shang, G.W.; Wang, Y.; Yang, F.; Li, C.L.; Chen, J. Antinociceptive effects of intragastric dl-tetrahydropalmatine on Visceral and somatic persistent nociception and pain hypersensitivity in rats. Pharmacol. Biochem. Behav. 2011, 100, 199–204. [Google Scholar] [CrossRef]
- Wang, T.; Sun, N.L.; Zhang , W.D.; Li, H.L.; Lu, G.C.; Yuan, B.J.; Jiang, H.; She, J.H.; Zhang, C. Protective effects of dehydrocavidine on carbon tetrachloride-induced acute hepatotoxicity in rats. J. Ethnopharmacol. 2008, 117, 300–308. [Google Scholar] [CrossRef]
- Wangchuk, P.; Keller, P.A.; Pyne, S.G.; Willis, A.C.; Kamchonwongpaisan, S. Antimalarial alkaloids from a bhutanese traditional medicinal plant Corydalis dubia. J. Ethnopharmacol. 2012, 143, 310–313. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Shi, Y.; Zhen, S.L.; Sun, H.; Jin, W. HPLC-MS Analysis of ethanol extract of Corydalis yanhusuo and simultaneous determination of eight protoberberine quaternary alkaloids by HPLC–DAD. J. Chromatogr. Sci. 2010, 48, 441–444. [Google Scholar] [CrossRef]
- Ding, B.; Zhou, T.; Fan, G.; Hong, Z.; Wu, Y. Qualitative and quantitative determination of ten alkaloids in traditional Chinese medicine Corydalis yanhusuo W.T. Wang by LC-MS/MS and LC-DAD. J. Pharm. Biomed. Anal. 2007, 45, 219–226. [Google Scholar] [CrossRef]
- Bensky, D.; Steven, C.; Stöger, E. Chinese Herbal Medicine. Materia. Medica, 3rd ed.; Eastland Press Inc.: Seattle, WA, USA, 2004; p. 606. [Google Scholar]
- Editorial Committee of Zhonghuabencao of State Administration of Traditional Chinese Medicine of People’s Republic of China. Zhonghuabencao; Shanghai Science and Technology Press: Shanghai, China, 1999; Volume 9, pp. 3–643. [Google Scholar]
- Dou, Z.Y.; Li, K.F.; Wang, P.; Cao, L. Effect of wine and vinegar processing of rhizoma corydalis on the tissue distribution of tetrahydropalmatine, protopine and dehydrocorydaline in rats. Molecules 2012, 17, 951–970. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.; Mao, C. Analgesic and anti-inflammatory effects of different kinds of Corydalis yanhusuo. Shizhen Guoyi Guoyao 2009, 20, 449–450. [Google Scholar]
- Chen, X.; Lu, T.; Zhang, X.H. Determination of tetrahydropalmatine of different processed products of rhizoma corydalis by HPLC. Chin. Traditional Patent Med. 2003, 25, 726–727. [Google Scholar]
- Zhang, X.Y.; Zhang, X.D.; Liu, X.P. Effect of vinegar processing on contents of 3 alkaloids in rhizoma Corydalis yanhusuo. J. Nanjing Univ. Traditional Chin. Med. 2008, 24, 410–411. [Google Scholar]
- Wang, P.; Wang, Y.; Cao, Y.; Dou, Z.Y. Research progress of Jin Ling Zi San. Her. Med. 2011, 30, 1179–1181. [Google Scholar]
- Li, F.; Zhu, X.; Chen, M.; Zhou, Y. Study on the chemical constituents from fructus toosendan. J. Chin. Med. Mater. 2010, 33, 910–912. [Google Scholar]
- Jeong, E.K.; Lee, S.Y.; Yu, S.M.; Park, N.H.; Lee, H.S.; Yim, Y.H.; Hwang, G.S.; Cheong, C.; Jung, J.H.; Hong, J. Identification of structurally diverse alkaloids in Corydalis species by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1661–1674. [Google Scholar] [CrossRef]
- Hänsel, R.; Sticher, O.; Steinegger, E. Pharmacognosie–Phytopharmazie; Springer-Verlag: Heidelberg, Germany, 1999; p. 950. [Google Scholar]
- Cao, L.; Dou, Z.Y.; Wang, P.; Tian, Y.L. Effect of different processes on the contents of active ingredients in corydalis. Chin. J. Inf. Traditional Chin. Med. 2009, 16, 42–44. [Google Scholar]
- Zhu, Y.P. Chinese Materia Medica: Chemistry, Pharmacology and Applications; CRC Press LLC: Florida, FL, USA, 1998; p. 18. [Google Scholar]
- Zhai, X.; Chi, J.; Tang, W.; Ji, Z.; Zhao, F.; Jiang, C.; Lv, H.; Guo, H. Yellow wine polyphenolic compounds inhibit matrix metalloproteinase-2, -9 expression and improve atherosclerotic plaque in LDL-receptor-knockout mice. J. Pharm. Sci. 2014, 125, 132–141. [Google Scholar] [CrossRef]
- Choi, R.C.Y.; Gao, Q.T.; Cheung, A.W.H.; Zhu, J.T.T.; Lau, F.T.C.; Li, J.; Li, W.Z.M.; Chu, G.K.Y.; Duan, R.; Cheung, J.K.H.; et al. A Chinese herbal decoction, Danggui Buxue Tang, stimulates proliferation, differentiation and gene expression of cultured osteosarcoma cells: Genomic approach to reveal specific gene activation. Evid. Based Complement. Alternat. Med. 2011. [Google Scholar] [CrossRef]
- Zheng, K.Y.Z.; Zhang, Z.X.; Du, C.Y.Q.; Zhang, W.L.; Bi, C.W.C.; Choi, R.C.Y.; Dong, T.T.; Tsim, K.W. Ferulic acid enhances the chemical and biological properties of astragali radix: A stimulator for Danggui Buxue Tang, an ancient Chinese herbal decoction. Planta Med. 2014, 80, 159–164. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Zhu, X.Z. Development of natural products as drugs acting on central nervous system. Mem. Inst. Oswaldo. Cruz 1991, 86, 173–175. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.B.; Sun, C.M.; Sun, S.G. Experimental study of protective effect of l-tetrahydropalmatine on cerebral ischemia/reperfusion injury. Chin. J. Rehabil. 2003, 18, 135–138. [Google Scholar]
- Han, Y.; Zhang, W.; Tang, Y.; Bai, W.; Yang, F.; Xie, L.; Li, X.; Zhou, S.; Pan, S.; Chen, Q.; et al. L-Tetrahydropalmatine, an active component of Corydalis yanhusuo W.T. Wang, protects against myocardial ischaemia-reperfusion injury in rats. PLoS One 2012, 7, e38627. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Fan, G.; Zou, H. Screening of antinociceptive components in Corydalis yanhusuo W.T. Wang by comprehensive two-dimensional liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 396, 1731–1740. [Google Scholar] [CrossRef]
- Shen, X.L.; Witt, M.R.; Dekermendjian, K.; Nielsen, M. Isolation and identification of tetrahydrocolumbamine as a dopamine receptor ligand from Polygala tenuifolia willd. Yao Xue Xue Bao 1994, 29, 887–890. [Google Scholar]
- Xuan, B.; Wang, W.; Li, D.X. Inhibitory Effect of tetrahydroberberine on platelet aggregation and thrombosis. Zhongguo Yao Li Xue Bao 1994, 15, 133–135. [Google Scholar]
- Sun, A.Y.; Li, D.X. Antifibrillatory effect of tetrahydroberberine. Zhongguo Yao Li Xue Bao 1993, 14, 301–305. [Google Scholar]
- Li, W.; Huang, H.; Niu, X.; Fan, T.; Mu, Q.; Li, H. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice. Toxicol. Appl. Pharmacol. 2013, 272, 21–29. [Google Scholar] [CrossRef]
- Rütters, H.; Möhring, T.; Rullkötter, J.; Griep-Raming, J.; Metzger, J.O. The persistent memory effect of triethylamine in the analysis of phospholipids by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 122–123. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds protopine, α-allocryptopine, tetrahydrocolumbamine, coptisine, palmatine, berberine, dehydrocorydaline, d,l-tetrahydropalmatine, tetrahydroberberine, corydaline and tetrahydrocoptisine are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wu, H.; Waldbauer, K.; Tang, L.; Xie, L.; McKinnon, R.; Zehl, M.; Yang, H.; Xu, H.; Kopp, B. Influence of Vinegar and Wine Processing on the Alkaloid Content and Composition of the Traditional Chinese Medicine Corydalis Rhizoma (Yanhusuo). Molecules 2014, 19, 11487-11504. https://doi.org/10.3390/molecules190811487
Wu H, Waldbauer K, Tang L, Xie L, McKinnon R, Zehl M, Yang H, Xu H, Kopp B. Influence of Vinegar and Wine Processing on the Alkaloid Content and Composition of the Traditional Chinese Medicine Corydalis Rhizoma (Yanhusuo). Molecules. 2014; 19(8):11487-11504. https://doi.org/10.3390/molecules190811487
Chicago/Turabian StyleWu, Hongwei, Katharina Waldbauer, Liying Tang, Lianwu Xie, Ruxandra McKinnon, Martin Zehl, Hongjun Yang, Haiyu Xu, and Brigitte Kopp. 2014. "Influence of Vinegar and Wine Processing on the Alkaloid Content and Composition of the Traditional Chinese Medicine Corydalis Rhizoma (Yanhusuo)" Molecules 19, no. 8: 11487-11504. https://doi.org/10.3390/molecules190811487
APA StyleWu, H., Waldbauer, K., Tang, L., Xie, L., McKinnon, R., Zehl, M., Yang, H., Xu, H., & Kopp, B. (2014). Influence of Vinegar and Wine Processing on the Alkaloid Content and Composition of the Traditional Chinese Medicine Corydalis Rhizoma (Yanhusuo). Molecules, 19(8), 11487-11504. https://doi.org/10.3390/molecules190811487