Effect on the Aroma Profile of Graciano and Tempranillo Red Wines of the Application of Two Antifungal Treatments onto Vines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Application under GAPS of Boscalid + Kresoxim-Methyl and Metrafenone on the Volatile Composition of Graciano and Tempranillo Red Wines
Volatile Compounds | Tempranillo Red Wines | Graciano Red Wines | Grape Variety × Fungicide Treatment | |||||
---|---|---|---|---|---|---|---|---|
Wine A a | Wine B b | Wine C c | Wine A a | Wine B b | Wine C c | F-values | ||
Varietal compounds | Monoterpenes | |||||||
(±)-Linalool | 1.0 ± 0.061 | 1.4 ± 0.15 | 1.2 ± 0.14 | 2.5 ± 0.14 | 4.5 ± 0.68 | 4.2 ± 0.24 | ||
α-Terpineol | ≤0.2 | ≤0.2 | ≤0.2 | 1.0 ± 0.061 | 1.2 ± 0.025 | 1.2 ± 0.088 | ||
(±)-β-Citronellol | 11 ± 1.4 | 5.0 ± 0.66 | 11 ± 0.27 | 8.7 ± 0.37 | 12 ± 0.35 | 12 ± 0.43 | ||
Geraniol | 8.8 ± 0.85 | 7.7 ± 0.70 | 6.6 ± 0.83 | 10 ± 0.92 | 13 ± 1.0 | 12 ± 0.78 | ||
Sum of monoterpenes | 21 ± 2.3 bd | 14 ± 1.4 a | 19 ± 1.1 ab | 23 ± 1.2 a | 31 ± 1.1 b | 30 ± 1.3 b | 15.53 *** | |
C13-norisoprenoids | ||||||||
β-Damascenone | 1.4 ± 0.19 | 2.0 ± 0.19 | 1.5 ± 0.23 | 3.2 ± 0.045 | 8.4 ± 0.59 | 7.9 ± 0.28 | ||
β-Ionone | 0.31 ± 0.025 | 0.35 ± 0.012 | 0.28 ± 0.0030 | 0.69 ± 0.033 | 1.4 ± 0.11 | 1.0 ± 0.00 | ||
Sum of C13-norisoprenoids | 1.7 ± 0.20 a | 2.3 ± 0.18 b | 1.8 ± 0.010 a | 3.9 ± 0.061 a | 9.8 ± 0.068 b | 8.9 ± 0.28 b | 1.24 ns | |
Pre-fermentative compounds | C6 alcohols | |||||||
1-Hexanol | 2,534 ± 374 | 2,389 ± 98 | 1,583 ± 104 | 2,745 ± 189 | 3,611 ± 396 | 2,720 ± 133 | ||
trans-3-Hexen-1-ol | 57 ± 4.3 | 62 ± 5.7 | 52 ± 6.5 | 58 ± 1.8 | 95 ± 8.4 | 76 ± 4.5 | ||
cis-3-Hexen-1-ol | 225 ± 6.5 | 360 ± 16 | 241 ± 33 | 22 ± 1.3 | 66 ± 5.3 | 30 ± 1.78 | ||
Sum of C6 alcohols | 2,815 ± 387 a | 2,812 ± 119 a | 1,888 ± 152 a | 2,873 ± 197 a | 3,773 ± 409 b | 2,826 ± 128 a | 0.00 ns | |
Fermentative compounds | Aliphatic alcohols | |||||||
2-Methyl-1-propanol | 567 ± 58 | 516 ± 66 | 438 ± 40 | 545 ± 92 | 491 ± 41 | 642 ± 63 | ||
1-Butanol | 44 ± 2.4 | 357 ± 18 | 414 ± 44 | 342 ± 67 | 389 ± 49 | 405 ± 6.2 | ||
Isoamyl alcohols | 169,570 ± 12,312 | 169,948 ± 4,518 | 132,191 ± 16,528 | 133,225 ± 8,480 | 104,536 ±5,096 | 141,672 ± 24,804 | ||
1-Octanol | 15 ± 1.6 | 15 ± 1.8 | 22 ± 0.36 | 4.2 ± 0.63 | 12 ± 0.10 | 9.1 ± 0.30 | ||
Sum of aliphatic alcohols | 170,196 ± 12,256 a | 170,836 ± 4,469 a | 133,226 ± 16,648 a | 134,057 ± 8,631 a | 105,431 ± 5,223 a | 142,729 ± 24,754 a | 11.14 ** | |
Aromatic alcohols | ||||||||
Benzyl alcohol | 121 ± 11 | 82 ± 7.0 | 111 ± 15 | 816 ± 71 | 648 ± 3.9 | 983 ± 84 | ||
2-Phenylethanol | 52,910 ± 7,178 | 49,544 ± 4,631 | 30,315 ± 2,328 | 53,576 ± 3,927 | 29,182 ± 4,317 | 28,644 ± 658 | ||
Sum of aromatic alcohols | 53,032 ± 7,169 b | 49,626 ± 4,636 ab | 30,430 ± 2,347 a | 54,393 ± 3,945 b | 29,924 ± 4,481 a | 29,642 ± 610 a | 19.81 *** | |
Ethyl esters | ||||||||
Ethyl caproate | 427 ± 65 | 526 ± 19 | 336 ± 48 | 287 ± 32 | 309 ± 12 | 331 ± 78 | ||
Ethyl lactate | 2,800 ± 206 | 3,086 ± 167 | 2,799 ± 126 | 1,583 ± 227 | 1,246 ± 155 | 1,415 ± 52 | ||
Ethyl caprylate | 495 ± 63 | 500 ± 41 | 330 ± 38 | 270 ± 22 | 238 ± 8.5 | 252 ± 5.9 | ||
Ethyl 3-hydroxybutyrate | 905 ± 66 | 644 ± 61 | 1,139 ± 153 | 312 ± 13 | 290 ± 23 | 264 ± 12 | ||
Ethyl decanoate | 44 ± 2.7 | 48 ± 3.6 | 50 ± 6.6 | 39 ± 0.71 | 43 ± 3.5 | 42 ± 2.5 | ||
Diethyl succinate | 505 ± 42 | 340 ± 12 | 984 ± 59 | 651 ± 92 | 383 ± 28 | 519 ± 12 | ||
Ethyl laurate | 10 ± 1.5 | 6.4 ± 0.60 | 9.4 ± 0.69 | 37 ± 2.0 | 26 ± 3.1 | 18 ± 0.38 | ||
Diethyl malate | 369 ± 29 | 383 ± 37 | 401 ± 58 | 226 ± 23 | 98 ± 12 | 92 ± 5.4 | ||
Sum of ethyl esters | 5,522 ± 274 a | 5,534 ± 31 a | 6,106 ± 543 a | 3,404 ± 383 a | 2,650 ± 321 a | 2,934 ± 49 a | 0.03 ns | |
Acetates | ||||||||
Isopentyl acetate | 462 ± 67 | 605 ± 27 | 265 ± 12 | 410 ± 32 | 248 ± 4.5 | 250 ± 14 | ||
Hexyl acetate | 5.0 ± 0.64 | 3.9 ± 0.33 | 1.8 ± 0.19 | 5.3 ± 0.19 | 12 ± 0.77 | 15 ± 0.57 | ||
2-Phenylethyl acetate | 19 ± 2.7 | 18 ± 1.7 | 13 ± 1.7 | 0.84 ± 0.018 | 10 ± 0.94 | 11 ± 0.53 | ||
Sum of acetates | 485 ± 68 b | 626 ± 29 b | 280 ± 13 a | 416 ± 32 b | 271 ± 4.5 a | 277 ± 13 a | 251.34 **** | |
Fatty acids | ||||||||
Acetic acid | 229 ± 5 | 223 ± 30 | 176 ± 0.70 | 446 ± 63 | 399 ± 34 | 560 ± 86 | ||
Isobutyric acid | 775 ± 80 | 1,043 ± 60 | 1,170 ± 165 | 1,265 ± 130 | 1,740 ± 104 | 2,080 ± 122 | ||
Butanoic acid | 751 ± 42 | 856 ± 65 | 771 ± 101 | 512 ± 35 | 532 ± 56 | 557 ± 36 | ||
Isovaleric acid | 909 ± 140 | 844 ± 7.6 | 691 ± 38 | 719 ± 87 | 678 ± 92 | 851 ± 45 | ||
Caprylic acid | 2,948 ± 313 | 2,065 ± 68 | 1,206 ± 78 | 1,170 ± 106 | 763 ± 151 | 863 ± 46 | ||
Capric acid | 571 ± 87 | 566 ± 18 | 419 ± 8.5 | 290 ± 17 | 166 ± 20 | 237 ± 22 | ||
Sum of fatty acids | 9,058 ± 769 b | 8,116 ± 257 ab | 5,959 ± 603 a | 6,478 ± 515 a | 5,278 ± 464 a | 6,422 ± 246 a | 51.31 **** | |
Volatile phenols | ||||||||
Guaiacol | 3.4 ± 0.37 | 5.0 ± 0.093 | 7.8 ± 1.0 | 1.5 ± 0.057 | 1.7 ± 0.071 | 1.5 ± 0.097 | ||
Eugenol | 2.1 ± 0.29 | 1.8 ± 0.13 | 2.2 ± 0.33 | 6.9 ± 0.18 | 9.5 ± 1.0 | 9.1 ± 0.46 | ||
4-Ethylphenol | 0.41 ± 0.045 | 0.65 ± 0.024 | 0.73 ± 0.058 | 0.96 ± 0.17 | 1.1 ± 0.13 | 0.57 ± 0.042 | ||
Syringol | 6.4 ± 0.36 | 2.5 ± 0.11 | 5.0 ± 0.24 | 3.7 ± 0.12 | 6.3 ± 0.73 | 6.1 ± 0.14 | ||
Vanillin | 6.5 ± 0.11 | 3.9 ± 0.63 | 4.7 ± 0.10 | 23 ± 0.76 | 63 ± 7.5 | 28 ± 0.68 | ||
Ethyl vanillate | 79 ± 4.0 | 43 ± 2.0 | 70 ± 7.8 | 202 ± 27 | 137 ± 29 | 162 ± 13 | ||
Acetovanillone | 40 ± 2.1 | 25 ± 3.9 | 42 ± 5.6 | 11 ± 0.36 | 12 ± 1.1 | 13 ± 0.57 | ||
Sum of volatile phenols | 138 ± 6.2 b | 85 ± 3.1 a | 135 ± 18 b | 242 ± 27 a | 244 ± 44 a | 220 ± 14 a | 2.50 ns | |
Lactones | ||||||||
γ-Butyrolactone | 131 ± 12 | 116 ± 12 | 119 ± 9.9 | 154 ± 21 | 280 ± 15 | 120 ± 8.0 | ||
γ-Nonalactone | 8.7 ± 0.51 | 7.1 ± 0.44 | 9.3 ± 0.74 | 52 ± 1.0 | 81 ± 7.1 | 54 ± 2.8 | ||
Sum of lactones | 139 ± 11 a | 123 ± 12 a | 128 ± 11 a | 207 ± 22 a | 361 ± 25 b | 173 ± 11 a | 87.22 **** | |
Aldehydes | ||||||||
Benzaldehyde | 97 ± 6.7 | 113 ± 11 | 96 ± 13 | 161 ± 4.8 | 463 ± 15 | 355 ± 3.2 | ||
Sum of aldehydes | 97 ± 6.7 a | 113 ± 11 a | 96 ± 13 a | 161 ± 4.8 a | 463 ± 15 c | 355 ± 3.2 b | 19.22 *** |
2.2. Effect of Application under GAPS of Boscalid + Kresoxim-Methyl and Metrafenone on the Aromatic Profile of Tempranillo and Graciano Red Wines
Volatile Compounds | Odour Threshold (μg/L) | Odour Descriptors | Odourant Series a |
---|---|---|---|
(±)-Linalol | 15 b | Orange flowers, citrus | 2; 4 |
α-Terpineol | 250 c | Lilac | 4 |
(±)-β-Citronellol | 100 d | Rose, citrus | 2; 4 |
Geraniol | 30 b | Geranium, rose, citric | 2; 4 |
C13-norisoprenoids | |||
β-Damascenone | 0.05 b | Dry plum | 1 |
β-Ionone | 0.09 c | Violets | 4 |
C6 alcohols | |||
1-Hexanol | 8000 b | Grass | 7 |
trans-3-Hexen-1-ol | 1000 f | Green | 7 |
cis-3-Hexen-1-ol | 400 b | Grass | 7 |
Aromatic alcohols | |||
Benzyl alcohol | 200,000 d | Walnut, fruity | 2 |
2-Phenylethanol | 10,000 b | Rose | 4 |
Aliphatic alcohols | |||
2-Methyl-1-propanol | 40,000 d | Alcohol | 5 |
1-Butanol | 150,000 d | Alcohol | 5 |
Isomayl alcohols | 30,000 b | Alcohol | 5 |
1-Octanol | 10,000 e | Rose, jasmine, citrus | 2; 4 |
Acetates | |||
Isopentyl acetate | 30 c | Banana | 1 |
Hexyl acetate | 1500 c | Apple, pear, banana | 1; 2 |
2-Phenylethyl acetate | 250 b | Rose | 4 |
Esters | |||
Ethyl caproate | 14 d | Green apple, banana | 1; 2 |
Ethyl lactate | 154,636 c | Strawberry, raspberry, buttery | 2; 3 |
Ethyl caprylate | 5 d | Pineapple, strawberry | 1; 2 |
Ethyl 3-hydroxybutyrate | 20,000 d | Grape-like | 2; 5 |
Ethyl decanoate | 200 c | Sweet, fruity | 1 |
Diethyl succinate | 200,000 d | Wine-like | 5 |
Ethyl laurate | 500 f | Fruity, floral | 2; 4 |
Diethyl malate | 760,000 d | Over-ripe, peach | 1 |
Fatty acids | |||
Acetic acid | 200,000 b | Pungent, vinegar | 3 |
Isobutyric acid | 2300 d | Rancid, butter, cheese | 3 |
Butanoic acid | 173 d | Rancid, butter, sweat | 3 |
Isovaleric acid | 33 c | Acid, rancid | 3 |
Caproic acid | 420 c | Sweat | 3 |
Caprylic acid | 500 c | Sweat, cheese | 3 |
Capric acid | 1000 d | Rancid fat | 3 |
Volatile phenols | |||
Guaiacol | 10 c | Sweet, smoky | 6 |
Eugenol | 6 c | Clove, liquorice | 6 |
4-Ethylphenol | 450 g | Phenolic, bitumen | 6 |
Syringol | 570 g | Smoky | 6 |
Vanillin | 60 d | Vanilla | 6 |
Ethyl vanillate | 990 d | Honey, vanillin | 6 |
Acetovanillone | 1000 d | Vanilla, clove | 6 |
Lactones | |||
γ-Butyrolactone | 35 c | Coconut | 1 |
γ-Nonalactone | 30 c | Coconut | 1 |
Aldehydes | |||
Benzaldehyde | 350 c | Sweet, cherry | 1; 2 |
Wine | A a | B | C |
---|---|---|---|
Commercial name | - | Collis | Vivando |
Fungicide formulation | - | 20% boscalid + 10% kresoxim-methyl | 50% metrafenone |
Fungal disease | - | Grey mould and powdery mildew | Powdery mildew |
Fungicide concetration in Tempranillo grapes (mg/Kg) b | - | 15 + 5.4 | 2.8 |
Fungicide concetration in Graciano grapes (mg/Kg) b | - | 22 + 8.2 | 1.5 |
Residual concentrations of fungicides in Tempranillo wines (μg/L)b | - | 1087 + 388 | 197 |
Residual concentrations of fungicides in Graciano wines (μg/L) b | - | 1548 + 586 | 107 |
3. Experimental Section
3.1. Fungicide Treatments, Winemaking Process and Wine Samples
3.2. Chemicals
General Parameter | Tempranillo Wines | Graciano Wines | ||||
---|---|---|---|---|---|---|
Wine A | Wine B | Wine C | Wine A | Wine B | Wine C | |
Total titratable acidity a (g tartaric acid/L) | 5.7 ± 0.5 | 6.2 ± 0.5 | 5.3 ± 0.5 | 5.5 ± 0.5 | 6.8 ± 0.5 | 5.8 ± 0.5 |
Total volatile acidity a (g acetic acid/L) | 0.5 ± 0.11 | 0.42 ± 0.11 | 0.62 ± 0.11 | 0.42 ± 0.11 | 0.45 ± 0.11 | 0.44 ± 0.11 |
Reducing sugars b (glucose+fructose) (g/L) | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |
Ethanol a (%, v/v) | 14.3 ± 0.2 | 13.9 ± 0.2 | 14.5 ± 0.2 | 14.2 ± 0.2 | 13.9 ± 0.2 | 14.5 ± 0.2 |
pH a | 3.67 ± 0.12 | 3.56 ± 0.12 | 3.91 ± 0.12 | 3.51 ± 0.12 | 3.35 ± 0.12 | 3.69 ± 0.12 |
Free SO2c (mg/L) | <10 | <10 | <10 | <10 | <10 | <10 |
Total SO2c (mg/L) | 11 | 13 | <10 | <10 | <10 | <10 |
3.3. Extraction, Separation and Identification Procedures
3.4. Odour Activity Values
3.5. Statistical Treatment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Petit, A.; Fontaine, F.; Clément, C.; Vaillant-Gaveau, N. Photosynthesis limitations of grapevine after treatment with the fungicide fludioxonil. J. Agric. Food Chem. 2008, 56, 6731–6767. [Google Scholar]
- Kleemann, F.; von Fragstein, M.; Vornam, B.; Müller, A.; Leuschner, C.; Holzschuh, A.; Tscharntke, T.; Finkeldey, R.; Polle, A. Relating genetic variation of ecologically important tree traits to associated organisms in full-sib aspen families. Eur. J. Forest Res. 2011, 130, 707–716. [Google Scholar] [CrossRef]
- Saladin, G.; Magne, C.; Clement, C. Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L. Pest Manag. Sci. 2003, 59, 1083–1092. [Google Scholar] [CrossRef]
- Campagnac, E.; Fontaine, J.; Sahraoui, A.L.-H.; Laruelle, F.; Durand, R.; Grandmougin-Ferjani, A. Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots. Phytochemistry 2008, 69, 2912–2919. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Gopi, R.; Panneerselvam, R. Alterations in lipid peroxidation, electrolyte leakage, and proline metabolism in Catharanthus roseus under treatment with triadimefon, a systemic fungicide. Comptes Rendus Biol. 2007, 330, 905–912. [Google Scholar] [CrossRef]
- Aubert, C.; Baumes, R.; Günata, Z.; Lepoutre, J.P.; Cooper, J.F.; Bayonove, C. Effects of sterol biosynthesis inhibiting fungicides on the aroma of grape. Sci. Aliment. 1998, 18, 41–58. [Google Scholar]
- Aubert, C.; Baumes, R.; Günata, Z.; Lepoutre, J.P.; Cooper, J.F.; Bayonove, C. Effects of flusilazole, a sterol biosynthesis inhibitor fungicide, on the free and bound aroma fraction of Muscat of Alexandria wines. J. Int. Sci. Vigne Vin 1997, 31, 57–64. [Google Scholar]
- Cabras, P.; Angioni, A.; Garau, V.L.; Pirisi, F.M.; Espinoza, J.; Mendoza, A.; Cabitza, F.; Pala, M.; Brandolini, V. Fate of azoxystrobin, fluazinam, kresoxim-methyl, mepanipyrim, and tetraconazole from vine to wine. J. Agric. Food Chem. 1998, 46, 3249–3251. [Google Scholar] [CrossRef]
- Cabras, P.; Conte, E. Pesticide residues in grapes and wine in Italy. Food Addit. Contam. 2001, 18, 880–885. [Google Scholar] [CrossRef]
- Fernández, M.Z.; Oliva, J.; Barba, A.; Camara, M.A. Fungicide dissipation curves in winemaking processes with and without maceration step. J. Agric. Food Chem. 2005, 53, 804–811. [Google Scholar] [CrossRef]
- González-Rodríguez, R.M.; Cancho-Grande, B.; Simal-Gándara, J. Efficacy of new commercial formulations to control downy mildew and dissipation of their active fungicides in wine after good agricultural practices. J. Agric. Food Chem. 2009, 89, 2625–2635. [Google Scholar]
- González-Rodríguez, R.M.; Cancho-Grande, B.; Torrado-Agrasar, A.; Simal-Gándara, J.; Mazaira-Pérez, J. Evolution of tebuconazole residues through the winemaking process of Mencía grapes. Food Chem. 2009, 117, 529–537. [Google Scholar] [CrossRef]
- Navarro, S.; Barba, A; Oliva, J.; Navarro, G.; Pardo, F. Evolution of residual levels of six pesticides during elaboration of red wines. Effect of winemaking process in their disappearance. J. Agric. Food Chem. 1999, 47, 264–270. [Google Scholar] [CrossRef]
- Cabras, P.; Farris, G.A.; Fiori, M.G.; Pusino, A. Interaction between fenhexamid and yeasts during the alcoholic fermentation of Saccharomyces cerevisiae. J. Agric. Food Chem. 2003, 51, 5012–5015. [Google Scholar] [CrossRef]
- Cus, F.; Raspor, P. The effect of pyrimethanil on the growth of wine yeasts. Lett. Appl. Microbiol. 2008, 47, 54–59. [Google Scholar] [CrossRef]
- González-Rodríguez, R.M.; González-Barreiro, C.; Rial-Otero, R.; Regueiro, J.; Torrado-Agrasar, A.; Martínez-Carballo, E.; Cancho-Grande, B. Influence of new fungicides-metiram and pyraclostrobin- on Saccharomyces cerevisiae yeast growth and alcoholic fermentation course for wine production. CyTA J. Food 2011, 9, 329–334. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; Torrado-Agrasar, A.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Influence of new generation fungicides on Saccharomyces cerevisiae growth, grape must fermentation and aroma biosynthesis. Food Chem. 2014, 146, 234–241. [Google Scholar] [CrossRef]
- Sarris, D.; Kotseridis, Y.; Linga, M.; Galiotou-Panayotou, M.; Papanikolaou, S. Enhanced ethanol production, volatile compound biosynthesis and fungicide removal during growth of a newly isolated Saccharomyces cerevisiae strain on enriched pasteurized grape musts. Eng. Life Sci. 2009, 9, 29–37. [Google Scholar]
- Oliva, J.; Navarro, S.; Barba, A.; Navarro, G.; Salinas, M.R. Effect of pesticide residues on the aromatic composition of red wines. J. Agric. Food Chem. 1999, 47, 2830–2836. [Google Scholar] [CrossRef]
- Oliva, J.; Zalacaín, A.; Payá, P.; Salinas, M.R.; Barba, A. Effect of the use of recent commercial fungicides, under good and critical agricultural practices, on the aroma composition of Monastrell red wines. Anal. Chim. Acta 2008, 617, 107–118. [Google Scholar] [CrossRef]
- González-Rodríguez, R.M.; Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Application of new fungicides under good agricultural practices and their effects on the volatile profile of white wines. Food Res. Int. 2011, 44, 397–403. [Google Scholar] [CrossRef]
- González-Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Impact of phytosanitary treatments with fungicides (cyzofamid, famoxadone, mandipropamid and valifenalate) on aroma compounds of Godello white wines. Food Chem. 2012, 131, 826–836. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Influence of tebuconazole residues on the aroma composition of Mencía red wines. Food Chem. 2011, 124, 1525–1532. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; Sieiro-Sampedro, T.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Effects of botryticides on winemaking and aroma quality of Rioja wines. J. Hazard. Mater. 2014. submitted. [Google Scholar]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its importance in wine aroma: A review. S. Afr. J. Enol. Viticult. 2000, 21, 97–129. [Google Scholar]
- Crouzet, J. Los constituyentes volátiles de la etapa prefermentativa. In Enología: Fundamentos Científicos y Tecnológicos, 2nd ed.; Flanzy, C., Ed.; AMV Ediciones & Mundi-prensa: Madrid, Spain, 2003; pp. 146–147. [Google Scholar]
- Ayräpäa, T. Biosynthetic formation of higher alcohols by yeast. Dependence on the nitrogenous nutrient level of the medium. J. Inst. Brew. 1971, 77, 266–276. [Google Scholar] [CrossRef]
- MacDonall, J.; Reeve, P.T.V.; Ruddlesden, J.D.; White, F.H. Current approaches to brewery fermentations. In Progress in Industrial Microbiology. Modern Applications of Traditional Biotechnologies; Bushell, D.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 47–198. [Google Scholar]
- García, E.; Chacón, J.L.; Martínez, J.; Izquierdo, P.M. Changes in volatile compounds during ripening in grapes of Airén, Macabeo and Chardonnay white varieties grown in La Mancha Region. Food Sci. Technol. Int. 2003, 9, 33–41. [Google Scholar] [CrossRef]
- Laminkanra, O.; Grimm, C.C.; Inyang, I.D. Formation and occurrence of flavor components in Noble muscadine wine. Food Chem. 1996, 53, 373–376. [Google Scholar]
- García, M.A.; Oliva, J.; Barba, A.; Cámara, M.A.; Pardo, F.; Díaz-Plaza, E.M. Effect of fungicide residues on the aromatic composition of white wine inoculated with three Saccharomyces cerevisiae strains. J. Agric. Food Chem. 2004, 52, 1241–1247. [Google Scholar]
- Etiévant, P.X. Volatile compounds in foods and beverages. In Wine; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Alcohols and other volatile compounds. In Hadbook of Enology, The Chemistry of Wine: Stabilization and Treatments; Wiley & Sons Ltd.: Chichester, UK, 2006; Volume 2, pp. 51–64. [Google Scholar]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef]
- Gómez-Plaza, E.; Mestre-Ortuño, L.; Ruiz-García, Y.; Fernández-Fernández, J.I.; López-Roca, J.M. Effect of benzothiadiazole and methyl jasmonate on the volatile compound composition of Vitis vinifera L. Monastrell grapes and wines. Am. J. Enol. Vitic. 2012, 63, 394–401. [Google Scholar]
- Ruiz-García, Y.; López-Roca, J.M.; Bautista-Ortín, A.B.; Gil-Muñoz, R.; Gómez-Plaza, E. Effect of combined use of benzothiadiazole and methyl jasmonate on volatile compounds of Monastrell wine. Am. J. Enol. Vitic. 2014, 65, 238–243. [Google Scholar] [CrossRef]
- Vitalini, S.; Ruggiero, A.; Rapparini, F.; Neri, L.; Tonni, M.; Iriti, M. The application of chitosan and benzothiadiazole in the vineyard (Vitis vinífera L. cv Groppello Gentile) changes the aromatic profile and sensory attributes of wine. Food Chem. 2014, 162, 192–205. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Moreno, J.A.; Zea, L.; Moyano, L.; Medina, M. Aroma compounds as markers of the changes in sherry wines subjected to biological ageing. Food Control 2005, 16, 333–338. [Google Scholar] [CrossRef]
- Moyano, L.; Zea, L.; Moreno, J.; Medina, M. Analytical study of aromatic series in sherry wines subjected to biological aging. J. Agric. Food Chem. 2002, 50, 7356–7361. [Google Scholar] [CrossRef]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Lagunas-Allué, L.; Sanz-Asensio, J.; Martínez-Soria, M.-T. Optimization and validation of a simple and fast method for the determination of fungicides in must and wine samples by SPE and GC/MS. J. AOAC Int. 2012, 95, 1511–1519. [Google Scholar] [CrossRef]
- Shinohara, T. Gas chromatographic analysis of volatile fatty acids in wines. Agric. Biol. Chem. 1985, 49, 2211–2212. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Santiago, J.L.; Martínez, M.C.; Simal-Gándara, J. Aroma potential of Brancellao grapes from different cluster positions. Food Chem. 2012, 132, 112–124. [Google Scholar] [CrossRef]
- Lamorte, S.A.; Gambuti, A.; Genovesse, A.; Moio, L. Volatile secondary metabolites of Greco (Vitis vinifera L.) must. Int. J. Food Sci. Technol. 2014, 49, 711–717. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Quantitative determination and characterisation of the main odourants of Mencía monovarietal red wines. Food Chem. 2009, 117, 473–484. [Google Scholar] [CrossRef]
- Cabaroglu, T.; Canbas, A.; Lepoutre, J.P.; Gunata, Z. Free and bound volatile composition of red wines of Vitis vinifera L. cv. Okuzgozu and Bogazkere grown in Turkey. Am. J. Enol. Vitic. 2002, 53, 64–68. [Google Scholar]
- Cutzach, I.; Chatonnet, P.; Henry, R.; Pons, M.; Dubourdieu, D. Etude sur l’arôme des vins doux naturels non muscatés. 28 partie: Dosages des certains composés volatils intervenant dansl’arôme des vins doux naturels au cours de leur vieillissements. J. Int. Sci. Vigne Vin 1998, 32, 211–221. [Google Scholar]
- Sample Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Noguerol-Pato, R.; Sieiro-Sampredro, T.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Effect on the Aroma Profile of Graciano and Tempranillo Red Wines of the Application of Two Antifungal Treatments onto Vines. Molecules 2014, 19, 12173-12193. https://doi.org/10.3390/molecules190812173
Noguerol-Pato R, Sieiro-Sampredro T, González-Barreiro C, Cancho-Grande B, Simal-Gándara J. Effect on the Aroma Profile of Graciano and Tempranillo Red Wines of the Application of Two Antifungal Treatments onto Vines. Molecules. 2014; 19(8):12173-12193. https://doi.org/10.3390/molecules190812173
Chicago/Turabian StyleNoguerol-Pato, Raquel, Thais Sieiro-Sampredro, Carmen González-Barreiro, Beatriz Cancho-Grande, and Jesús Simal-Gándara. 2014. "Effect on the Aroma Profile of Graciano and Tempranillo Red Wines of the Application of Two Antifungal Treatments onto Vines" Molecules 19, no. 8: 12173-12193. https://doi.org/10.3390/molecules190812173
APA StyleNoguerol-Pato, R., Sieiro-Sampredro, T., González-Barreiro, C., Cancho-Grande, B., & Simal-Gándara, J. (2014). Effect on the Aroma Profile of Graciano and Tempranillo Red Wines of the Application of Two Antifungal Treatments onto Vines. Molecules, 19(8), 12173-12193. https://doi.org/10.3390/molecules190812173