In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants
Abstract
:1. Introduction
2. Results and Discussion
Extract/Drug | Antimalarial Activity (mg/kg) per Model Type | |||||
---|---|---|---|---|---|---|
ED50 | ED90 | |||||
PRO | SUP | CUR | PRO | SUP | CUR | |
Nauclea latifolia (Root) | 189.4 ± 2.9 b | 279.3 ± 2.9 c | 174.5 ± 1.3 b | 356.0 ± 5.1 b | 497.2 ± 4.5 d | 325.2 ± 1.7 b |
Arthocarpus altilis (Stem bark) | 214.2 ± 1.0 d | 227.2 ± 0.3 b | 310.2 ± 2.1 d | 454.3 ± 1.8 d | 373.0 ± 0.5 b | 465.6 ± 3.8 e |
Murraya koenigii (Leaf) | 195.6 ± 0.9 c | 287.1 ± 0.7 d | 252.4 ± 1.6 c | 374.4 ± 1.5 c | 397.6 ± 1.2 c | 450.1 ± 2.9 d |
Enantia chlorantha (Stem bark) | NT | NT | 317.9 ± 2.8 e | NT | NT | 432.0 ± 6.8 c |
PC (positive controls) | 0.5 ± 0.1 a | 2.2 ± 0.1 a | 2.2 ± 0.0 a | 0.9 ± 0.2 a | 4.3 ± 0.2 a | 4.1 ± 0.0 a |
Extract/Drug * | Percentage Reduction in Parasitaemia per Model Type | ||
---|---|---|---|
Prophylactic | Chemosuppressive | Curative | |
NC (negative control) | 0.0 ± 2.4 a | 0.0 ± 1.3 a | 0.0 ± 1.6 a |
Nauclea latifolia (root) | 55.6 ± 1.0 c | 34.4 ± 1.5 b | 51.1 ± 0.8 b |
Nauclea latifolia (root) + PC | 80.5 ± 0.6 d | 83.3 ± 0.5 d | 76.6 ± 0.9 d |
Arthocarpus altilis (stem bark) | 48.7 ± 0.7 b | 55.5 ± 0.2 c | 50.4 ± 0.6 b |
Arthocarpus altilis (stem bark) + PC | 95.7 ± 0.4 e | 94.4 ± 0.3 e | 82.3 ± 1.0 e |
Murraya koenigii (leaf) | 56.2 ± 0.0 c | 48.5 ± 0.2 b | 58.1 ± 0.0 c |
Murraya koenigii (leaf) + PC | 94.1 ± 0.1 e | 98.2 ± 0.3 f | 100.0 ± 0.0 g |
Enantia chlorantha (stem bark) | 53.5 ± 0.3 c | 56.4 ± 0.2 d | 49.7 ± 0.4 b |
Enantia chlorantha (stem bark) + PC | 95.2 ± 0.3 e | 96.1 ± 0.3 e,f | 81.2 ± 0.4 e |
PC (positive controls) | 96.4 ± 0.1 e | 97.0 ± 0.1 e,f | 99.3 ± 0.0 f |
Extract/Drug * | Survival time as Percentage of Negative Control per Model Type | ||
---|---|---|---|
Prophylactic | Chemosuppressive | Curative | |
NC (negative control) | 100.0 ± 6.3 a | 100.0 ± 15.8 a | 100.0 ± 8.2 a,b |
Nauclea latifolia (root) | 312.5 ± 66.1 b,c,d | 115.8 ± 19.3 a | 195.5 ± 4.6 b |
Nauclea latifolia (root) + PC | 437.5 ± 0.0 d | 184.2 ± 0.0 a | 181.1 ± 27.2 b |
Arthocarpus altilis (stem bark) | 287.5 ± 54.7 b,c,d | 100.0 ± 29.8 a | 69.1 ± 30.0 a |
Arthocarpus altilis (stem bark) + PC | 437.5 ± 0.0 d | 143.9 ± 37.7 a | 94.6 ± 5.5 a,b |
Murraya koenigii (leaf) | 212.5 ± 60.9 a,b | 119.3 ± 34.2 a | 160.0 ± 18.2 a,b |
Murraya koenigii (leaf) + PC | 290.6 ± 54.7 b,c,d | 115.8 ± 10.5 a | 170.0 ± 0.9 a,b |
Enantia chlorantha (stem bark) | 240.6 ± 48.4 a,b,c | 98.3 ± 21.9 a | 67.3 ± 20.0 a |
Enantia chlorantha (stem bark) + PC | 396.9 ± 40.6 c,d | 157.9 ± 53.5 a | 168.2 ± 50.9 a,b |
PC (positive controls) | 437.5 ± 0.0 d | 184.2 ± 0.0 a | 163.6 ± 27.3 a,b |
Extract/Drug * | Percentage Reduction in Parasitaemia per Model Type | ||
---|---|---|---|
Prophylactic | Chemosuppressive | Curative | |
NC (negative control) | 0.0 ± 2.4 a | 0.0 ± 1.3 b | 0.0 ± 1.6 b |
NL+AA | 75.0 ± 1.4 g | 44.5 ± 6.9 d | - a |
NL+MK | 58.4 ± 1.1 e | 78.9 ± 0.2 g | 56.9 ± 0.9 f |
NL+EC | 68.9 ± 2.9 f | 42.4 ± 3.1 d | 79.5 ± 3.7 g |
AA+MK | 49.5 ± 0.8 d | 64.2 ± 1.2 f | - b |
AA+EC | 56.6 ± 4.0 e | 56.4 ± 4.3 e | 38.0 ± 1.2 d,e |
MK+EC | 16.7 ± 1.1 c | 76.9 ± 0.2 g | 29.8 ± 4.8 c,d |
NL+AA+MK | 7.6 ± 2.9 b | 28.5 ± 1.4 c | 24.7 ± 1.0 c |
NL+AA+EC | 87.4 ± 1.4 h | 65.7 ± 2.5 f | - b |
NL+MK+EC | 47.5 ± 1.4 d | 23.5 ± 0.4 c | 79.8 ± 0.4 g |
AA+MK+EC | 50.3 ± 1.0 d | 73.1 ± 1.4 f,g | 20.2 ± 1.0 c |
NL+AA+MK+EC | 60.2 ± 0.5 e | - a | 52.7 ± 2.3 f |
PC (positive controls) | 96.4 ± 0.1 i | 97.0 ± 0.1 h | 99.3 ± 0.0 h |
Extract/Drug * | Survival Time as Percentage of Negative Control per Model Type | ||
---|---|---|---|
Prophylactic | Chemosuppressive | Curative | |
NC (negative control) | 100.0 ± 6.3 a,b | 100.0 ± 15.8 a,b | 100.0 ± 8.2 a,b |
NL+AA | 128.1 ± 34.4 a,b | 101.8 ± 29.8 a,b | 86.4 ± 8.2 a,b |
NL+MK | 267.2 ± 10.9 b | 121.1 ± 10.5 a,b | 112.7 ± 7.3 a,b |
NL+EC | 118.8 ± 34.4 a,b | 56.1 ± 14.0 a | 89.1 ± 4.6 a,b |
AA+MK | 256.3 ± 28.1 b | 128.1 ± 36.0 a,b | 56.4 ± 8.2 a |
AA+EC | 78.1 ± 25.0 a | 131.6 ± 30.7 a,b | 83.6 ± 6.4 a,b |
ML+EC | 231.3 ± 67.2 a,b | 101.8 ± 19.3 a,b | 74.6 ± 15.5 a,b |
NL+AA+MK | 209.4 ± 21.9 a,b | 122.8 ± 27.2 a,b | 103.6 ± 4.6 a,b |
NL+AA+EC | 181.3 ± 78.1 a,b | 73.7 ± 22.8 a,b | 83.6 ± 6.4 a,b |
NL+MK+EC | 159.4 ± 25.0 a,b | 103.5 ± 20.2 a,b | 92.7 ± 14.6 a,b |
AA+MK+EC | 268.9 ± 12.5 b | 84.2 ± 35.1 a,b | 112.7 ± 8.2 a,b |
NL+AA+MK+EC | 221.9 ± 25.0 a,b | 87.7 ± 29.8 a,b | 129.1 ± 14.6 b |
PC (positive controls) | 437.5 ± 0.0 c | 184.2 ± 0.0 b | 163.6 ± 27.3 c |
3. Experimental Section
3.1. Plant Collection and Extraction
3.2. Animals and Parasites
3.3. In Vivo Antiplasmodial Activities of the Individual Plants
3.4. In Vivo Antiplasmodial Activities of the Various Combinations of the Plants with Standard Drugs
3.5. Survival Times
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Murray, C.J.L.; Laakso, T.; Shibuya, K.; Hill, K.; Lopez, A.D. Can we achieve millenium goal 4? New analysis of country trends and forecasts of under -5 mortality to 2015. Lancet 2007, 370, 1040–1054. [Google Scholar] [CrossRef]
- Murray, C.J.; Rosenfeld, L.C.; Lim, S.S.; Andrews, K.G.; Foreman, K.J.; Haring, D.; Fullman, N.; Naghavi, M.; Lozano, R.; Lopez, A.D. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet 2012, 379, 413–431. [Google Scholar] [CrossRef]
- Moeloek, F.A. Herbal and traditional medicine: National perspectives and policies in Indonesia (Obat Herbal dan Tradisional: Perspektif dan Kebijakan Nasional di Indonesia). J. Bahan Alam Indones. 2006, 5, 293–297. [Google Scholar]
- Odediran, S.A.; Elujoba, A.A.; Adebajo, C.A. Influence of formulation ratio of the plant components on the antimalarial properties of MAMA decoction. Parasitol. Res. 2014, 113, 1977–1984. [Google Scholar] [CrossRef]
- Nosten, F.; van Vugt, M.; Price, R.; Luxemburger, C.; Thway, K.L.; Brockman, A.; McGready, R.; ter Kuile, F.; Looareesuwan, S.; White, N.J. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: A prospective study. Lancet 2000, 356, 297–302. [Google Scholar] [CrossRef]
- White, N.J. Antimalarial drug resistance. J. Clin. Investig. 2004, 113, 1084–1092. [Google Scholar] [CrossRef]
- Benoit-Vical, F.; Valentin, A.; Cournac, V.; Pélissier, Y.; Mallié, M.; Bastide, J.M. In vitro antiplasmodial activity of stem and root extracts of Nauclea latifolia S.M. (Rubiaceae). J. Ethnopharmacol. 1998, 61, 173–178. [Google Scholar] [CrossRef]
- Odugbemi, O.O.; Akinsulire, O.R.; Aibinu, I.E.; Fabeku, P.O. Medicinal plants useful for malarial therapy in Oke-Igbo, Ondo State, Southwest Nigeria. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 191–198. [Google Scholar]
- Adebajo, C.A. Isolation of Carbazole Alkaloids from Murraya koenigii (Linn.) Sprengor (Rutaceae). Ph.D. Thesis, Obafemi Awolowo University, Ile-Ife, Nigeria, 1997; p. 450. [Google Scholar]
- Jagtap, U.B.; Bapat, V.A. Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2010, 129, 142–146. [Google Scholar] [CrossRef]
- Shigemori, H.; Kagata, T.; Ishiyama, H. New monoterpene alkaloids from Nauclea latifolia. Chem. Pharm. Bull. 2003, 51, 58–61. [Google Scholar] [CrossRef]
- Lamidi, M.; Ollivier, E.; Faure, R. Quinovic acid glycosides from Nauclea diderrichi. Phytochemistry 1995, 38, 209–212. [Google Scholar] [CrossRef]
- Agbaje, E.O.; Onabanjo, A.O. The effects of extracts of Enantia chlorantha in malaria. Ann. Trop. Med. Parasitol. 1991, 85, 585–590. [Google Scholar]
- Gill, L.S. Ethnomedical Uses of Plants in Nigeria; Uniben Press: Benin, Nigeria, 1992; p. 143. [Google Scholar]
- Vennerstrom, J.L.; Klayman, D.L. Protoberberine alkaloids as antimalarials. J. Med. Chem. 1988, 31, 1084–1087. [Google Scholar] [CrossRef]
- Kamaraj, C.; Rahuman, A.A.; Roopan, S.M.; Bagavan, A.; Elango, G.; Zahir, A.A.; Rajakumar, G.; Jayaseelan, C.; Santhoshkumar, T.; Marimuthu, S.; et al. Bioassay-guided isolation and characterization of active antiplasmodial compounds from Murraya koenigii extracts against Plasmodium falciparum and Plasmodium berghei. Parasitol. Res. 2014, 113, 1657–1672. [Google Scholar] [CrossRef]
- World Health Organization. Antimalarial Combination Therapy; a Report of a WHO Technical Consultation Committee; WHO: Geneva, Switzerland, 2001; pp. 9–15. [Google Scholar]
- Adebayo, J.O.; Krettli, A.U. Potential antimalarials from Nigerian plants. J. Ethnopharmacol. 2011, 133, 289–302. [Google Scholar] [CrossRef]
- Rukunga, G.; Simons, A.J. The potentials of plants as a source of antimalarial agents: A-review. In Proceedings of the Africa Herbal Antimalarial Meeting CDE and ICRAF Nairobi, Nairobi, Kenya, 20–22 March 2006; Planta Phile Publication: Berlin, Germany, 2006; p. 72. [Google Scholar]
- Bowman, W.C.; Rand, M.J. Chemotherapy of protozoan infections. In Textbook of Pharmacology; Blackwell Scientific Publication: Oxford, UK, 1980; pp. 36.1–36.5. [Google Scholar]
- Mukherjee, P.K. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals, 1st ed.; Business Horizons Pharmaceutical Publishers: New Delhi, India, 2008; pp. 560–561. [Google Scholar]
- National Institutes of Health. NIH Guide for the Care and Use of Laboratory Animals; NIH Publication No. 85-23; Department of Health and Human Services: Washington, DC, USA, 1985. [Google Scholar]
- Peters, W. Drug resistance in Plasmodium berghei Venke and Lips 1948. I. Chloroquine resistance. Exp. Parasitol. 1965, 17, 80–89. [Google Scholar] [CrossRef]
- Ryley, J.F.; Peters, W. The antimalarial activity of some quinolone esters. Ann. Trop. Med. Parasitol. 1970, 84, 209–222. [Google Scholar]
- Sample Availability: Not applicable.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Adebajo, A.C.; Odediran, S.A.; Aliyu, F.A.; Nwafor, P.A.; Nwoko, N.T.; Umana, U.S. In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants. Molecules 2014, 19, 13136-13146. https://doi.org/10.3390/molecules190913136
Adebajo AC, Odediran SA, Aliyu FA, Nwafor PA, Nwoko NT, Umana US. In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants. Molecules. 2014; 19(9):13136-13146. https://doi.org/10.3390/molecules190913136
Chicago/Turabian StyleAdebajo, Adeleke Clement, Samuel Akintunde Odediran, Fatimah Abosede Aliyu, Paul Alozie Nwafor, Ndifreke Thomas Nwoko, and Usenobong Samuel Umana. 2014. "In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants" Molecules 19, no. 9: 13136-13146. https://doi.org/10.3390/molecules190913136
APA StyleAdebajo, A. C., Odediran, S. A., Aliyu, F. A., Nwafor, P. A., Nwoko, N. T., & Umana, U. S. (2014). In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants. Molecules, 19(9), 13136-13146. https://doi.org/10.3390/molecules190913136