Beyond the Excluded Volume Effects: Mechanistic Complexity of the Crowded Milieu
Abstract
:1. What Is the Macromolecular Crowding and How Can It Be Modeled?
2. What Can Crowding Do to a Protein?
3. Excluded Volume Effects
3.1. Excluded Volume Simplified
3.2. Effect of Excluded Volume on Chemical Equilibria
3.2.1. Protein Folding and Conformational Stability
3.2.2. Changes in Protein Compaction and Shape
3.3. Effect of Excluded Volume on Association Reactions
3.4. Enzymatic Reactions in Crowded Media
4. Crowded Environments beyond the Excluded Volume Effects
4.1. Not All Crowding Agents Are Created Equal
4.2. Roles of Direct Interactions of Proteins with Crowding Agents
4.3. Soft Interactions between Target Proteins and Crowding Agents
4.4. Effects of Solvent Viscosity
4.5. Perturbed Diffusion of Target Proteins in Crowded Milieu
4.6. Changes in Protein Hydration and Hydration Dynamics
4.7. Effects of Crowding Agents on Solvent Properties
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zimmerman, S.B.; Trach, S.O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of escherichia coli. J. Mol. Biol. 1991, 222, 599–620. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, B.; Ellis, R.J.; Dobson, C.M. Effects of macromolecular crowding on protein folding and aggregation. EMBO J. 1999, 18, 6927–6933. [Google Scholar] [CrossRef] [PubMed]
- Rivas, G.; Ferrone, F.; Herzfeld, J. Life in a crowded world. EMBO Rep. 2004, 5, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J.; Minton, A.P. Cell biology: Join the crowd. Nature 2003, 425, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.B.; Minton, A.P. Macromolecular crowding: Biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 27–65. [Google Scholar] [CrossRef] [PubMed]
- Fulton, A.B. How crowded is the cytoplasm? Cell 1982, 30, 345–347. [Google Scholar] [CrossRef]
- Minton, A.P. Influence of excluded volume upon macromolecular structure and associations in “crowded” media. Curr. Opin. Biotechnol. 1997, 8, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 2001, 26, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Protein folding: Thickening the broth. Curr. Biol. 2000, 10, R97–R99. [Google Scholar] [CrossRef] [PubMed]
- Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Molecular Cell Biology, 4th ed.; W.H. Freeman: New York, NY, USA, 2000. [Google Scholar]
- Minton, A.P. Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 2000, 10, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Homouz, D.; Perham, M.; Samiotakis, A.; Cheung, M.S.; Wittung-Stafshede, P. Crowded, cell-like environment induces shape changes in aspherical protein. Proc. Natl. Acad. Sci. USA 2008, 105, 11754–11759. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: Macromolecular crowding and protein stability revisited. Biophys. J. 2005, 88, 971–985. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 2001, 276, 10577–10580. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Loe, F.; Blocki, A.; Peng, Y.; Raghunath, M. Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv. Drug Deliv. Rev. 2011, 63, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Hatters, D.M.; Minton, A.P.; Howlett, G.J. Macromolecular crowding accelerates amyloid formation by human apolipoprotein c-ii. J. Biol. Chem. 2002, 277, 7824–7830. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Macromolecular crowding and molecular recognition. J. Mol. Recognit. JMR 1993, 6, 211–214. [Google Scholar] [CrossRef]
- Tokuriki, N.; Kinjo, M.; Negi, S.; Hoshino, M.; Goto, Y.; Urabe, I.; Yomo, T. Protein folding by the effects of macromolecular crowding. Protein Sci. 2004, 13, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Eggers, D.K.; Valentine, J.S. Crowding and hydration effects on protein conformation: A study with sol-gel encapsulated proteins. J. Mol. Biol. 2001, 314, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Eggers, D.K.; Valentine, J.S. Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci. 2001, 10, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Lan, E.H.; Dave, B.C.; Fukuto, J.M.; Dunn, B.; Zink, J.I.; Valentine, J.S. Synthesis of sol-gel encapsulated heme proteins with chemical sensing properties. J. Mater. Chem. 1999, 9, 45–53. [Google Scholar] [CrossRef]
- Gottfried, D.S.; Kagan, A.; Hoffman, B.M.; Friedman, J.M. Impeded rotation of a protein in sol-gel matrix. J. Phys. Chem. B 1999, 103, 2803–2807. [Google Scholar] [CrossRef]
- Brennan, J.D. Using fluorescence to investigate proteins entrapped in sol-gel derived materials. Appl. Spectrosc. 1999, 53, 106A–121A. [Google Scholar] [CrossRef]
- Bismuto, E.; Irace, G. The effect of molecular confinement on the conformational dynamics of the native and partly folded state of apomyoglobin. FEBS Lett. 2001, 509, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Dave, B.C.; Dunn, B.; Valentine, J.S.; Zink, J.I. Sol-gel encapsulation methods for biosensors. Anal. Chem. 1994, 66, 1120–1127. [Google Scholar] [CrossRef]
- Gill, I.; Ballestros, A. Bioencapsulation within synthetic polymers (part 1): Sol-gel encapsulated biologicals. Trends Biotechnol. 2000, 18, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, M.R.; Flynn, P.F.; Wand, A.J. Preparation of encapsulated proteins dissolved in low viscosity fluids. J. Biomol. NMR 1999, 14, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Babu, C.R.; Flynn, P.F.; Wand, A.J. Preparation, characterization, and NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids. J. Biomol. NMR 2003, 25, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.W.; Lefebvre, B.G.; Wand, A.J. High-resolution NMR studies of encapsulated proteins in liquid ethane. J. Am. Chem. Soc. 2005, 127, 10176–10177. [Google Scholar] [CrossRef] [PubMed]
- Pometun, M.S.; Peterson, R.W.; Babu, C.R.; Wand, A.J. Cold denaturation of encapsulated ubiquitin. J. Am. Chem. Soc. 2006, 128, 10652–10653. [Google Scholar] [CrossRef] [PubMed]
- Roche, C.J.; Dantsker, D.; Heller, E.R.; Sabat, J.E.; Friedman, J.M. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin. Chem. Phys. 2013, 430, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Grandi, C.; Smith, R.E.; Luisi, P.L. Micellar solubilization of biopolymers in organic solvents. Activity and conformation of lysozyme in isooctane reverse micelles. J. Biol. Chem. 1981, 256, 837–843. [Google Scholar] [PubMed]
- Davis, D.M.; McLoskey, D.; Birch, D.J.; Gellert, P.R.; Kittlety, R.S.; Swart, R.M. The fluorescence and circular dichroism of proteins in reverse micelles: Application to the photophysics of human serum albumin and n-acetyl-l-tryptophanamide. Biophys. Chem. 1996, 60, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Pileni, M.P. Reverse micelles as microreactors. J. Phys. Chem. 1993, 97, 6961–6973. [Google Scholar] [CrossRef]
- Christ, S.; Schurtenberger, P. Optical contrast variation experiments in water-in-oil microemulsions: Size distribution and structure of protein-free and protein-containing microemulsions. J. Phys. Chem. 1994, 98, 12708–12714. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chowdhury, P.; Gai, F. Tuning the cooperativity of the helix-coil transition by aqueous reverse micelles. J. Phys. Chem. B 2006, 110, 11615–11619. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, R.; Zhao, S.; Gies, H.; Winter, R. Protein encapsulation in mesoporous silicate: The effects of confinement on protein stability, hydration, and volumetric properties. J. Am. Chem. Soc. 2004, 126, 12224–12225. [Google Scholar] [CrossRef] [PubMed]
- Siefker, J.; Karande, P.; Coppens, M.O. Packaging biological cargoes in mesoporous materials: Opportunities for drug delivery. Expert Opin. Drug Deliv. 2014, 11, 1781–1793. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.S.; Cristiglio, V.; Lindner, P.; Bhattacharyya, A.J. Small-angle neutron scattering studies of hemoglobin confined inside silica tubes of varying sizes. ChemPhysChem 2014, 15, 302–309. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.P.; Stan, G.; Thirumalai, D.; Brooks, B.R. Factors governing helix formation in peptides confined to carbon nanotubes. Nano Lett. 2008, 8, 3702–3708. [Google Scholar] [CrossRef] [PubMed]
- Bolis, D.; Politou, A.S.; Kelly, G.; Pastore, A.; Temussi, P.A. Protein stability in nanocages: A novel approach for influencing protein stability by molecular confinement. J. Mol. Biol. 2004, 336, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Pastore, A.; Salvadori, S.; Temussi, P.A. Peptides and proteins in a confined environment: Nmr spectra at natural isotopic abundance. J. Pept. Sci. 2007, 13, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Sanfelice, D.; Tancredi, T.; Politou, A.; Pastore, A.; Temussi, P.A. Cold denaturation and aggregation: A comparative nmr study of titin i28 in bulk and in a confined environment. J. Am. Chem. Soc. 2009, 131, 11662–11663. [Google Scholar] [CrossRef] [PubMed]
- Sanfelice, D.; Politou, A.; Martin, S.R.; De Los Rios, P.; Temussi, P.; Pastore, A. The effect of crowding and confinement: A comparison of yfh1 stability in different environments. Phys. Biol. 2013, 10, 045002. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishna, M.; Grimaldi, J.; Belfort, G.; Kumar, S.K. Stability of proteins inside a hydrophobic cavity. Langmuir 2013, 29, 8922–8928. [Google Scholar] [CrossRef] [PubMed]
- Kameta, N.; Minamikawa, H.; Someya, Y.; Yui, H.; Masuda, M.; Shimizu, T. Confinement effect of organic nanotubes toward green fluorescent protein (gfp) depending on the inner diameter size. Chemistry 2010, 16, 4217–4223. [Google Scholar] [CrossRef] [PubMed]
- Ralston, G.B. Effects of “crowding” in protein solutions. J. Chem. Educ. 1990, 67, 857–860. [Google Scholar] [CrossRef]
- Bismuto, E.; Martelli, P.L.; De Maio, A.; Mita, D.G.; Irace, G.; Casadio, R. Effect of molecular confinement on internal enzyme dynamics: Frequency domain fluorometry and molecular dynamics simulation studies. Biopolymers 2002, 67, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Excluded volume as a determinant of protein structure and stability. Biophys. J. 1980, 32, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Turoverov, K.K.; Kuznetsova, I.M.; Uversky, V.N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci. 2014, 15, 23090–23140. [Google Scholar] [CrossRef] [PubMed]
- Morar, A.S.; Olteanu, A.; Young, G.B.; Pielak, G.J. Solvent-induced collapse of alpha-synuclein and acid-denatured cytochrome c. Protein Sci. 2001, 10, 2195–2199. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Cooper, E.M.; Bower, K.S.; Li, J.; Fink, A.L. Accelerated alpha-synuclein fibrillation in crowded milieu. FEBS Lett. 2002, 515, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Shtilerman, M.D.; Ding, T.T.; Lansbury, P.T., Jr. Molecular crowding accelerates fibrillization of alpha-synuclein: Could an increase in the cytoplasmic protein concentration induce parkinson’s disease? Biochemistry 2002, 41, 3855–3860. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P.; Wilf, J. Effect of macromolecular crowding upon the structure and function of an enzyme: Glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 1981, 20, 4821–4826. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P.; Colclasure, G.C.; Parker, J.C. Model for the role of macromolecular crowding in regulation of cellular volume. Proc. Natl. Acad. Sci. USA 1992, 89, 10504–10506. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Molecular crowding: Analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzymol. 1998, 295, 127–149. [Google Scholar] [PubMed]
- Hall, D.; Minton, A.P. Macromolecular crowding: Qualitative and semiquantitative successes, quantitative challenges. Biochim. Biophys. Acta 2003, 1649, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Influence of macromolecular crowding upon the stability and state of association of proteins: Predictions and observations. J. Pharm. Sci. 2005, 94, 1668–1675. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci. 2006, 119, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.X.; Rivas, G.; Minton, A.P. Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 2008, 37, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Adair, G.S. A theory of partial osmotic pressures and membrane equilibria, with special reference to the application of dalton’s law to hemoglobin solutions in the presence of salt. Proc. R. Soc. Lond. Ser. A 1928, 120, 573–603. [Google Scholar] [CrossRef]
- Ai, X.; Zhou, Z.; Bai, Y.; Choy, W.Y. 15N NMR spin relaxation dispersion study of the molecular crowding effects on protein folding under native conditions. J. Am. Chem. Soc. 2006, 128, 3916–3917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, H.; Li, S. Effect of ficoll 70 on thermal stability and structure of creatine kinase. Biochemistry (Mosc.) 2010, 75, 648–654. [Google Scholar] [CrossRef]
- Fan, Y.Q.; Liu, H.J.; Li, C.; Luan, Y.S.; Yang, J.M.; Wang, Y.L. Inactivation of recombinant human brain-type creatine kinase during denaturation by guanidine hydrochloride in a macromolecular crowding system. Appl. Biochem. Biotechnol. 2013, 169, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Bolen, D.W. Efficacy of macromolecular crowding in forcing proteins to fold. Biophys. Chem. 2002, 101–102, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Stagg, L.; Zhang, S.Q.; Cheung, M.S.; Wittung-Stafshede, P. Molecular crowding enhances native structure and stability of alpha/beta protein flavodoxin. Proc. Natl. Acad. Sci. USA 2007, 104, 18976–18981. [Google Scholar] [CrossRef] [PubMed]
- Perham, M.; Stagg, L.; Wittung-Stafshede, P. Macromolecular crowding increases structural content of folded proteins. FEBS Lett. 2007, 581, 5065–5069. [Google Scholar] [CrossRef] [PubMed]
- Dhar, A.; Samiotakis, A.; Ebbinghaus, S.; Nienhaus, L.; Homouz, D.; Gruebele, M.; Cheung, M.S. Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. Proc. Natl. Acad. Sci. USA 2010, 107, 17586–17591. [Google Scholar] [CrossRef] [PubMed]
- Homouz, D.; Sanabria, H.; Waxham, M.N.; Cheung, M.S. Modulation of calmodulin plasticity by the effect of macromolecular crowding. J. Mol. Biol. 2009, 391, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.X. Loops, linkages, rings, catenanes, cages, and crowders: Entropy-based strategies for stabilizing proteins. Acc. Chem. Res. 2004, 37, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.S.; Klimov, D.; Thirumalai, D. Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc. Natl. Acad. Sci. USA 2005, 102, 4753–4758. [Google Scholar] [CrossRef] [PubMed]
- Mikaelsson, T.; Aden, J.; Johansson, L.B.; Wittung-Stafshede, P. Direct observation of protein unfolded state compaction in the presence of macromolecular crowding. Biophys. J. 2013, 104, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Wang, C. Effects of macromolecular crowding on the refolding of glucose-6-phosphate dehydrogenase and protein disulfide isomerase. J. Biol. Chem. 2001, 276, 34396–34401. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.B.; Pheiffer, B.H. Macromolecular crowding allows blunt-end ligation by DNA ligases from rat liver or escherichia coli. Proc. Natl. Acad. Sci. USA 1983, 80, 5852–5856. [Google Scholar] [CrossRef] [PubMed]
- Harrison, B.; Zimmerman, S.B. Polymer-stimulated ligation: Enhanced ligation of oligo- and polynucleotides by t4 rna ligase in polymer solutions. Nucleic Acids Res. 1984, 12, 8235–8251. [Google Scholar] [CrossRef] [PubMed]
- Somalinga, B.R.; Roy, R.P. Volume exclusion effect as a driving force for reverse proteolysis. Implications for polypeptide assemblage in a macromolecular crowded milieu. J. Biol. Chem. 2002, 277, 43253–43261. [Google Scholar] [CrossRef] [PubMed]
- Akabayov, S.R.; Akabayov, B.; Richardson, C.C.; Wagner, G. Molecular crowding enhanced atpase activity of the rna helicase eif4a correlates with compaction of its quaternary structure and association with eif4g. J. Am. Chem. Soc. 2013, 135, 10040–10047. [Google Scholar] [CrossRef] [PubMed]
- Rohwer, J.M.; Postma, P.W.; Kholodenko, B.N.; Westerhoff, H.V. Implications of macromolecular crowding for signal transduction and metabolite channeling. Proc. Natl. Acad. Sci. USA 1998, 95, 10547–10552. [Google Scholar] [CrossRef] [PubMed]
- Kholodenko, B.N.; Rohwer, J.M.; Cascante, M.; Westerhoff, H.V. Subtleties in control by metabolic channelling and enzyme organization. Mol. Cell. Biochem. 1998, 184, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Senske, M.; Tork, L.; Born, B.; Havenith, M.; Herrmann, C.; Ebbinghaus, S. Protein stabilization by macromolecular crowding through enthalpy rather than entropy. J. Am. Chem. Soc. 2014, 136, 9036–9041. [Google Scholar] [CrossRef] [PubMed]
- Elcock, A.H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 2010, 20, 196–206. [Google Scholar] [CrossRef] [PubMed]
- King, J.T.; Arthur, E.J.; Brooks Ш, C.L.; Kubarych, K.J. Crowding induced collective hydration of biological macromolecules over extended distances. J. Am. Chem. Soc. 2014, 136, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Derham, B.K.; Harding, J.J. The effect of the presence of globular proteins and elongated polymers on enzyme activity. Biochim. Biophys. Acta 2006, 1764, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Singh, L.R. Macromolecular crowding decelerates aggregation of a beta-rich protein, bovine carbonic anhydrase: A case study. J. Biochem. 2014, 156, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.R.; Liang, Y.; Du, F.; Zhou, Z.; Chen, J. Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme: Implications for protein folding in intracellular environments. J. Biol. Chem. 2004, 279, 55109–55116. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Zhou, Z.; Mo, Z.Y.; Shi, J.Z.; Chen, J.; Liang, Y. Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: Implications for protein folding in physiological environments. J. Mol. Biol. 2006, 364, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Breydo, L.; Reddy, K.D.; Piai, A.; Felli, I.C.; Pierattelli, R.; Uversky, V.N. The crowd you’re in with: Effects of different types of crowding agents on protein aggregation. Biochim. Biophys. Acta 2014, 1844, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.L.; Wu, L.J.; Chen, J.; Liang, Y. Effects of macromolecular crowding on the structural stability of human alpha-lactalbumin. Acta Biochim. Biophys. Sin. (Shanghai) 2012, 44, 703–711. [Google Scholar] [CrossRef]
- Goodell, D.J.; Eliseeva, T.A.; Coultrap, S.J.; Bayer, K.U. Camkii binding to glun2b is differentially affected by macromolecular crowding reagents. PLoS One 2014, 9, e96522. [Google Scholar] [CrossRef] [PubMed]
- Calderon, C.; Abuin, E.; Lissi, E.; Montecinos, R. Effect of human serum albumin on the kinetics of 4-methylumbelliferyl-beta-d-N-N'-N'' triacetylchitotrioside hydrolysis catalyzed by hen egg white lysozyme. Protein J. 2011, 30, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Buczek, O.; Green, B.R.; Bulaj, G. Albumin is a redox-active crowding agent that promotes oxidative folding of cysteine-rich peptides. Biopolymers 2007, 88, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Luh, L.M.; Hansel, R.; Lohr, F.; Kirchner, D.K.; Krauskopf, K.; Pitzius, S.; Schafer, B.; Tufar, P.; Corbeski, I.; Guntert, P.; et al. Molecular crowding drives active pin1 into nonspecific complexes with endogenous proteins prior to substrate recognition. J. Am. Chem. Soc. 2013, 135, 13796–13803. [Google Scholar] [CrossRef] [PubMed]
- McConkey, E.H. Molecular evolution, intracellular organization, and the quinary structure of proteins. Proc. Natl. Acad. Sci. USA 1982, 79, 3236–3240. [Google Scholar] [CrossRef] [PubMed]
- Minton, A.P. Quantitative assessment of the relative contributions of steric repulsion and chemical interactions to macromolecular crowding. Biopolymers 2013, 99, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Politi, R.; Harries, D. Enthalpically driven peptide stabilization by protective osmolytes. Chem. Commun. 2010, 46, 6449–6451. [Google Scholar] [CrossRef]
- Sukenik, S.; Sapir, L.; Gilman-Politi, R.; Harries, D. Diversity in the mechanisms of cosolute action on biomolecular processes. Faraday Discuss. 2013, 160, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Sapir, L.; Harries, D. Origin of enthalpic depletion forces. J. Phys. Chem. Lett. 2014, 5, 1061–1065. [Google Scholar] [CrossRef]
- Schlesinger, A.P.; Wang, Y.; Tadeo, X.; Millet, O.; Pielak, G.J. Macromolecular crowding fails to fold a globular protein in cells. J. Am. Chem. Soc. 2011, 133, 8082–8085. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sarkar, M.; Smith, A.E.; Krois, A.S.; Pielak, G.J. Macromolecular crowding and protein stability. J. Am. Chem. Soc. 2012, 134, 16614–16618. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Smith, A.E.; Pielak, G.J. Impact of reconstituted cytosol on protein stability. Proc. Natl. Acad. Sci. USA 2013, 110, 19342–19347. [Google Scholar] [CrossRef] [PubMed]
- Monteith, W.B.; Pielak, G.J. Residue level quantification of protein stability in living cells. Proc. Natl. Acad. Sci. USA 2014, 111, 11335–11340. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Lu, J.; Pielak, G.J. Protein crowder charge and protein stability. Biochemistry 2014, 53, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Gnutt, D.; Gao, M.; Brylski, O.; Heyden, M.; Ebbinghaus, S. Excluded-volume effects in living cells. Angew. Chem. Int. Ed. 2014. [Google Scholar] [CrossRef]
- Ma, B.; Nussinov, R. Structured crowding and its effects on enzyme catalysis. Top. Curr. Chem. 2013, 337, 123–137. [Google Scholar] [PubMed]
- Erlkamp, M.; Grobelny, S.; Winter, R. Crowding effects on the temperature and pressure dependent structure, stability and folding kinetics of staphylococcal nuclease. Phys. Chem. Chem. Phys. 2014, 16, 5965–5976. [Google Scholar] [CrossRef] [PubMed]
- Munishkina, L.A.; Cooper, E.M.; Uversky, V.N.; Fink, A.L. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J. Mol. Recognit. 2004, 17, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.F.; Bird, S.; Shaw, M.; Jean, L.; Vaux, D.J. Combined effects of agitation, macromolecular crowding, and interfaces on amyloidogenesis. J. Biol. Chem. 2012, 287, 38006–38019. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Perez, A.I.; Lopez-Beltran, E.A.; Kluner, P.; Luque, J.; Ballesteros, P.; Cerdan, S. Molecular crowding and viscosity as determinants of translational diffusion of metabolites in subcellular organelles. Arch. Biochem. Biophys. 1999, 362, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Kozer, N.; Schreiber, G. Effect of crowding on protein-protein association rates: Fundamental differences between low and high mass crowding agents. J. Mol. Biol. 2004, 336, 763–774. [Google Scholar] [CrossRef]
- Schlarb-Ridley, B.G.; Mi, H.; Teale, W.D.; Meyer, V.S.; Howe, C.J.; Bendall, D.S. Implications of the effects of viscosity, macromolecular crowding, and temperature for the transient interaction between cytochrome f and plastocyanin from the cyanobacterium Phormidium laminosum. Biochemistry 2005, 44, 6232–6238. [Google Scholar] [CrossRef] [PubMed]
- Roosen-Runge, F.; Hennig, M.; Zhang, F.; Jacobs, R.M.; Sztucki, M.; Schober, H.; Seydel, T.; Schreiber, F. Protein self-diffusion in crowded solutions. Proc. Natl. Acad. Sci. USA 2011, 108, 11815–11820. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M. Crowding, diffusion, and biochemical reactions. Int. Rev. Cell Mol. Biol. 2014, 307, 383–417. [Google Scholar] [PubMed]
- Wojcieszyn, J.W.; Schlegel, R.A.; Wu, E.S.; Jacobson, K.A. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc. Natl. Acad. Sci. USA 1981, 78, 4407–4410. [Google Scholar] [CrossRef] [PubMed]
- Arrio-Dupont, M.; Foucault, G.; Vacher, M.; Devaux, P.F.; Cribier, S. Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells. Biophys. J. 2000, 78, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem. Sci. 2002, 27, 27–33. [Google Scholar] [CrossRef]
- Ando, T.; Skolnick, J. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl. Acad. Sci. USA 2010, 107, 18457–18462. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, N.; Minton, A.P. Tracer diffusion of globular proteins in concentrated protein solutions. Proc. Natl. Acad. Sci. USA 1988, 85, 2984–2988. [Google Scholar] [CrossRef] [PubMed]
- Dix, J.A.; Verkman, A.S. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 2008, 37, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Banks, D.S.; Fradin, C. Anomalous diffusion of proteins due to molecular crowding. Biophys. J. 2005, 89, 2960–2971. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Pielak, G.J. Effects of proteins on protein diffusion. J. Am. Chem. Soc. 2010, 132, 9392–9397. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Elsner, M.; Kartberg, F.; Nilsson, T. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 2004, 87, 3518–3524. [Google Scholar] [CrossRef] [PubMed]
- Guigas, G.; Weiss, M. Sampling the cell with anomalous diffusion—The discovery of slowness. Biophys. J. 2008, 94, 90–94. [Google Scholar] [CrossRef]
- Luby-Phelps, K.; Castle, P.E.; Taylor, D.L.; Lanni, F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3t3 cells. Proc. Natl. Acad. Sci. USA 1987, 84, 4910–4913. [Google Scholar] [CrossRef] [PubMed]
- Seksek, O.; Biwersi, J.; Verkman, A.S. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J. Cell Biol. 1997, 138, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Phillip, Y.; Kiss, V.; Schreiber, G. Protein-binding dynamics imaged in a living cell. Proc. Natl. Acad. Sci. USA 2012, 109, 1461–1466. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Benton, L.A.; Singh, V.; Pielak, G.J. Disordered protein diffusion under crowded conditions. J. Phys. Chem. Lett. 2012, 3, 2703–2706. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.K.; Rakshit, S.; Mitra, R.K.; Pal, S.K. Role of hydration on the functionality of a proteolytic enzyme alpha-chymotrypsin under crowded environment. Biochimie 2011, 93, 1424–1433. [Google Scholar] [CrossRef] [PubMed]
- Partridge, J.; Dennison, P.R.; Moore, B.D.; Halling, P.J. Activity and mobility of subtilisin in low water organic media: Hydration is more important than solvent dielectric. Biochim. Biophys. Acta 1998, 1386, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Pocker, Y. Water in enzyme reactions: Biophysical aspects of hydration-dehydration processes. Cell. Mol. Life Sci. 2000, 57, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Kornblatt, J.A.; Kornblatt, M.J. Water as it applies to the function of enzymes. Int. Rev. Cytol. 2002, 215, 49–73. [Google Scholar] [PubMed]
- Yang, L.; Dordick, J.S.; Garde, S. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys. J. 2004, 87, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Halling, P.J. What can we learn by studying enzymes in non-aqueous media? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 1287–1296. [Google Scholar] [CrossRef]
- Klibanov, A.M. Enzymatic catalysis in anhydrous organic solvents. Trends Biochem. Sci. 1989, 14, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature 2001, 409, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Zaks, A.; Klibanov, A.M. Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA 1985, 82, 3192–3196. [Google Scholar] [CrossRef] [PubMed]
- Zaks, A.; Klibanov, A.M. Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 1988, 263, 3194–3201. [Google Scholar] [PubMed]
- Zaks, A.; Klibanov, A.M. The effect of water on enzyme action in organic media. J. Biol. Chem. 1988, 263, 8017–8021. [Google Scholar] [PubMed]
- Reid, C.; Rand, R.P. Probing protein hydration and conformational states in solution. Biophys. J. 1997, 72, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- King, J.T.; Kubarych, K.J. Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2d-ir spectroscopy. J. Am. Chem. Soc. 2012, 134, 18705–18712. [Google Scholar] [CrossRef] [PubMed]
- Ebbinghaus, S.; Kim, S.J.; Heyden, M.; Yu, X.; Heugen, U.; Gruebele, M.; Leitner, D.M.; Havenith, M. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA 2007, 104, 20749–20752. [Google Scholar] [CrossRef] [PubMed]
- Arnold, K.; Herrmann, A.; Pratsch, L.; Gawrisch, K. The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 1985, 815, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, B. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- Ananthapadmanabhan, K.P.; Goddard, E.D. Aqueous biphase formation in polyethylene oxide-inorganic salt systems. Langmuir 1987, 3, 25–31. [Google Scholar] [CrossRef]
- Albertsson, P.A. Partition of Cell Particles and Macromolecules, 3rd ed.; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Walter, H.; Brooks, D.E.; Fisher, D. Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Use, and Applications to Biotechnology; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Madeira, P.P.; Reis, C.A.; Rodrigues, A.E.; Mikheeva, L.M.; Zaslavsky, B.Y. Solvent properties governing solute partitioning in polymer/polymer aqueous two-phase systems: Nonionic compounds. J. Phys. Chem. B 2010, 114, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.A.; Parpot, P.; Teixeira, J.A.; Mikheeva, L.M.; Zaslavsky, B.Y. Effect of nacl additive on properties of aqueous peg-sodium sulfate two-phase system. J. Chromatogr. A 2012, 1220, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Madeira, P.P.; Bessa, A.; Alvares-Ribeiro, L.; Aires-Barros, M.R.; Reis, C.A.; Rodrigues, A.E.; Zaslavsky, B.Y. Salt effects on solvent features of coexisting phases in aqueous polymer/polymer two-phase systems. J. Chromatogr. A 2012, 1229, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Madeira, P.P.; Reis, C.A.; Rodrigues, A.E.; Mikheeva, L.M.; Chait, A.; Zaslavsky, B.Y. Solvent properties governing protein partitioning in polymer/polymer aqueous two-phase systems. J. Chromatogr. A 2011, 1218, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Moody, M.L.; Willauer, H.D.; Griffin, S.T.; Huddleston, J.G.; Rogers, R.D. Solvent property characterization of poly(ethylene glycol)/dextran aqueous biphasic systems using the free energy of transfer of a methylene group and a linear solvation energy relationship. Ind. Eng. Chem. Res. 2005, 44, 3749–3760. [Google Scholar] [CrossRef]
- Willauer, H.D.; Huddleston, J.G.; Rogers, R.D. Solvent properties of aqueous biphasic systems composed of polyethylene glycol and salt characterized by the free energy of transfer of a methylene group between the phases and by a linear solvation energy relationship. Ind. Eng. Chem. Res. 2002, 41, 2591–2601. [Google Scholar] [CrossRef]
- Keating, C.D. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc. Chem. Res. 2012, 45, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Tolstoguzov, V. Phase behaviour of macromolecular components in biological and food systems. Die Nahrung 2000, 44, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Madeira, P.P.; Teixeira, J.A.; Macedo, E.A.; Mikheeva, L.M.; Zaslavsky, B.Y. “On the collander equation”: Protein partitioning in polymer/polymer aqueous two-phase systems. J. Chromatogr. A 2008, 1190, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeira, P.; Teixeira, J.A.; Macedo, E.A.; Mikheeva, L.M.; Zaslavsky, B.Y. Correlations between distribution coefficients of various biomolecules in different polymer/polymer aqueous two-phase systems. Fluid Phase Equilibria 2008, 267, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Silvério, S.C.; Rodriguez, O.; Teixeira, J.A.; Macedo, E.A. Solute partitioning in polymer-salt atps: The collander equation. Fluid Phase Equilibria 2010, 296, 173–177. [Google Scholar] [CrossRef]
- Da Silva, N.R.; Ferreira, L.A.; Mikheeva, L.M.; Teixeira, J.A.; Zaslavsky, B.Y. Origin of salt additive effect on solute partitioning in aqueous polyethylene glycol-8000-sodium sulfate two-phase system. J. Chromatogr. A 2014, 1337, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Fan, X.; Mikheeva, L.M.; Madeira, P.P.; Kurgan, L.; Uversky, V.N.; Zaslavsky, B.Y. Structural features important for differences in protein partitioning in aqueous dextran-polyethylene glycol two-phase systems of different ionic compositions. Biochim. Biophys. Acta 2014, 1844, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.A.; Madeira, P.P.; Breydo, L.; Reichardt, C.; Uversky, V.N.; Zaslavsky, B.Y. Role of solvent properties of aqueous media in macromolecular crowding effects. J. Biomol. Struct. Dyn. 2015, in press. [Google Scholar]
- Madeira, P.P.; Bessa, A.; Alvares-Ribeiro, L.; Raquel Aires-Barros, M.; Rodrigues, A.E.; Uversky, V.N.; Zaslavsky, B.Y. Amino acid/water interactions study: A new amino acid scale. J. Biomol. Struct. Dyn. 2014, 32, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, A.; Madeira, P.; Breydo, L.; Uversky, V.N.; Chait, A.; Zaslavsky, B. High throughput characterization of structural differences between closely related proteins in solution. Biochim. Biophys. Acta 2013, 1834, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Breydo, L.; Mikheeva, L.M.; Madeira, P.P.; Zaslavsky, B.Y.; Uversky, V.N. Solvent interaction analysis of intrinsically disordered proteins in aqueous two-phase systems. Mol. BioSyst. 2013, 9, 3068–3079. [Google Scholar] [CrossRef] [PubMed]
- Cabot, R.; Hunter, C.A. Molecular probes of solvation phenomena. Chem. Soc. Rev. 2012, 41, 3485–3492. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Marcus, Y. The Properties of Solvents; Wiley: Chichester, UK, 1998. [Google Scholar]
- Reichardt, C. Solvents and solvent effects: An introduction. Org. Process Res. Dev. 2007, 11, 105–113. [Google Scholar] [CrossRef]
- Ab Rani, M.A.; Brant, A.; Crowhurst, L.; Dolan, A.; Lui, M.; Hassan, N.H.; Hallett, J.P.; Hunt, P.A.; Niedermeyer, H.; Perez-Arlandis, J.M.; et al. Understanding the polarity of ionic liquids. Phys. Chem. Chem. Phys. 2011, 13, 16831–16840. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, B.Y.; Miheeva, L.M.; Masimov, E.A.; Djafarov, S.F.; Reichardt, C. Solvent polarity of aqueous polymer-solutions as measured by the solvatochromic technique. J. Chem. Soc. Faraday Trans. 1990, 86, 519–524. [Google Scholar] [CrossRef]
- Zaslavsky, B.Y.; Miheeva, L.M.; Gulaeva, N.D.; Borovskaya, A.A.; Rubtsov, M.I.; Lukatskaya, L.L.; Mchedlovpetrossyan, N.O. Influence of nonionic polymers on solvent properties of water as detected by studies of acid-base equilibria of sulphonephthalein and fluorescein dyes. J. Chem. Soc. Faraday Trans. 1991, 87, 931–938. [Google Scholar] [CrossRef]
- Zaslavsky, B.Y.; Borvskaya, A.A.; Gulaeva, N.D.; Miheeva, L.M. Physico-chemical features of solvent media in the phases of aqueous polymer two-phase systems. Biotechnol. Bioeng. 1992, 40, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, B.Y. Bioanalytical applications of partitioning in aqueous polymer two-phase systems. Anal. Chem. 1992, 64, 765A–773A. [Google Scholar] [CrossRef] [PubMed]
- Taft, R.W.; Kamlet, M.J. The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 1976, 98, 2886–2894. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Taft, R.W. Solvatochromic comparison method. 1. Beta-scale of solvent hydrogen-bond acceptor (hba) basicities. J. Am. Chem. Soc. 1976, 98, 377–383. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Hall, T.N.; Boykin, J.; Taft, R.W. Linear solvation energy relationships. 6. Additions to and correlations with the pi* scale of solvent polarities. J. Org. Chem. 1979, 44, 2599–2604. [Google Scholar] [CrossRef]
- Theillet, F.X.; Binolfi, A.; Frembgen-Kesner, T.; Hingorani, K.; Sarkar, M.; Kyne, C.; Li, C.; Crowley, P.B.; Gierasch, L.; Pielak, G.J.; et al. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPS). Chem. Rev. 2014, 114, 6661–6714. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, I.M.; Zaslavsky, B.Y.; Breydo, L.; Turoverov, K.K.; Uversky, V.N. Beyond the Excluded Volume Effects: Mechanistic Complexity of the Crowded Milieu. Molecules 2015, 20, 1377-1409. https://doi.org/10.3390/molecules20011377
Kuznetsova IM, Zaslavsky BY, Breydo L, Turoverov KK, Uversky VN. Beyond the Excluded Volume Effects: Mechanistic Complexity of the Crowded Milieu. Molecules. 2015; 20(1):1377-1409. https://doi.org/10.3390/molecules20011377
Chicago/Turabian StyleKuznetsova, Irina M., Boris Y. Zaslavsky, Leonid Breydo, Konstantin K. Turoverov, and Vladimir N. Uversky. 2015. "Beyond the Excluded Volume Effects: Mechanistic Complexity of the Crowded Milieu" Molecules 20, no. 1: 1377-1409. https://doi.org/10.3390/molecules20011377
APA StyleKuznetsova, I. M., Zaslavsky, B. Y., Breydo, L., Turoverov, K. K., & Uversky, V. N. (2015). Beyond the Excluded Volume Effects: Mechanistic Complexity of the Crowded Milieu. Molecules, 20(1), 1377-1409. https://doi.org/10.3390/molecules20011377