Identification and Quantitative Characterization of PSORI-CM01, a Chinese Medicine Formula for Psoriasis Therapy, by Liquid Chromatography Coupled with an LTQ Orbitrap Mass Spectrometer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Chromatographic Conditions
2.2. Identification of Chemical Constituents in PSORI-CM01 Preparations
Peak No. | tR (min) | SelectedIon | ObservedMass (m/z) | CalculatedMass (m/z) | Formula | MS/MS PatternsFragmentation | Identifieation | Source a | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 0.41 | [M−H] | 191.0559 | 191.0556 | C7H12O6 | 191→173, 127, 109 | quinic acid | Sa | [8] |
2 | 0.51 | [M−H] | 133.0140 | 133.0137 | C4H6O5 | 133→115, 87, 71 | malic acid | M | |
3 | 0.60 | [M−H] | 173.0451 | 173.0450 | C7H10O5 | 173→155, 145, 129 | shikimic acid | Sm | [9] |
4 | 0.88 | [M−H] | 191.0198 | 191.0192 | C6H8O7 | 191→173, 155→111 | citric acid | M | |
5 | 0.98 | [M−H] | 115.0037 | 115.0031 | C4H4O4 | 115→97, 71 | fumaric acid | Sa | [8] |
6 | 2.16 | [M−H] | 169.0142 | 169.0137 | C7H6O5 | 169→125 | gallic acid | P | [24,25] |
7 | 2.60 | [M−H] | 331.0663 | 331.0665 | C13H16O10 | 331→169 | gallic acid-1-O-glucoside | P | |
8 | 3.28 | [M−H] | 315.0716 | 315.0716 | C13H16O9 | 315→297, 247,153 | protocatechuic acid-4-O-glucoside | P, C | |
9 | 3.64 | [M−H] | 197.0453 | 197.0450 | C9H10O5 | 197→153, 123 | syringic acid | Sa, Sm | [9] |
10 | 3.69 | [M−H] | 315.0716 | 315.0716 | C13H16O9 | 315→169 | gallic acid-1-O-rhamnoside | P | |
11 | 3.78 | [M−H] | 153.0192 | 153.0188 | C7H6O4 | 153→109 | protocatechuic acid | Sa,Sm,C | [8,9] |
12 | 3.82 | [M−H] | 493.1208 | 493.1193 | C19H26O15 | 493→313, 169 | gallic acid-1-O-glucosyl-(6→1)-glucoside | P | |
13 | 4.02 | [M−H] | 359.0977 | 359.0978 | C15H20O10 | 359→197, 179 | syringic acid-4-O-glucoside | Sa, Sm | [9] |
14 | 4.83 | [M−H] | 181.0495 | 181.0450 | C9H10O5 | 197→169, 133 | 3,5-dimethoxy-4-hydroxy-benzaldehyde | Sa | |
15 | 4.93 | [M−H] | 137.0243 | 137.0239 | C7H6O3 | 137→109, 93 | 4-hydroxybenzoic acid | C, M, Sm, Sa, | |
16 | 5.01 | [M−H] | 353.0873 | 353.0873 | C16H18O9 | 353→191, 179→135 | 3-O-caffeoylquinic acid | Sa | [8] |
17 | 5.24 | [M−H] | 165.0556 | 165.0552 | C9H10O3 | 165→151, 135 | paeonal | P | [24,25] |
18 | 5.31 | [M−H] | 345.1182 | 345.1186 | C15H22O9 | 345→183 | (3,5-dimethoxy-4-hydroxyphenyl)methy-O-glucoside | Sa | |
19 | 5.59 | [M−H] | 183.0296 | 183.0293 | C8H8O5 | 183→124 | methyl gallate | P | |
20 | 6.20 | [M−H] | 609.1445 | 609.1456 | C27H30O16 | 609→445, 301 | rutin | M | |
21 | 6.20 | [M−H] | 495.1498 | 495.1503 | C23H28O12 | 495→465,333,281 | oxypaeoniflorin | P | |
22 | 6.12 | [M−H] | 353.0872 | 353.0873 | C16H18O9 | 353→191, 179, 135 | 5-O-caffeoylquinic acid | Sa | [8] |
23 | 6.17 | [M−H] | 289.0713 | 289.0712 | C15H14O6 | 289→245, 205, 179 | (+)-catechin | P, Sm | [9] |
24 | 6.18 | [M−H] | 335.0767 | 335.0767 | C16H16O8 | 335→289, 179, 135, 111 | 3-O-caffeoylshikimic acid | Sa, Sm | [9] |
25 | 6.21 | [M−H] | 321.0246 | 321.0247 | C14H10O9 | 321→169 | p-digallic acid | P | |
26 | 6.41 | [M−H] | 353.0873 | 353.0873 | C16H18O9 | 353→191, 179, 135 | 4-O-caffeoylquinic acid | Sa | [8] |
27 | 6.43 | [M−H] | 469.1129 | 469.1135 | C24H22O10 | 469→423, 371, 315, 289 | 8-[β-(3,4-dihydroxyphenyl)-α-carboxyl-3-xoxpropyl]-substituted catechin | Sm | [9] |
28 | 6.45 | [M−H] | 179.0345 | 179.0344 | C9H8O4 | 179→135, 85 | caffeic acid | Sa, Sm, A | [8,9] |
29 | 6.59 | [M+COOH] | 447.1500 | 447.1503 | C18H26O10 | 447→401, 349, 317, 191 | phenylmethyl-glucoside-(6→1)-apiose | M | |
30 | 6.62 | [M−H] | 221.0452 | 221.0450 | C11H10O5 | 221→206 | fraxidin | Sa | [8] |
31 | 6.67 | [M−H] | 369.0821 | 369.0822 | C16H18O10 | 369→207 | fraxin | Sa | [8] |
32 | 6.87 | [M−H] | 435.1289 | 435.1291 | C21H24O10 | 435→273 | isoliquiritigenin-7-O-glucoside | Sa, P | [8] |
33 | 6.87 | [M−H] | 431.1914 | 431.1917 | C20H32O10 | 431→385, 223, 205, 153 | drovomifoliol-O-glucopyranoside | Sa | [8] |
34 | 6.96 | [M−H] | 433.2070 | 433.2074 | C20H34O10 | 433→387, 369 , 225 | dihydrovomifoliol-O-glucoside | Sa | [8] |
35 | 7.13 | [M−H] | 335.0767 | 335.0767 | C16H16O8 | 335→289, 179, 135, 111 | 4-O-caffeoylshikimic acid | Sa, Sm | [9] |
36 | 7.20 | [M−H] | 289.0712 | 289.0712 | C15H14O6 | 289→245, 205, 179 | epi-catechin | P, Sm | [9] |
37 | 7.23 | [M+COOH] | 525.1604 | 481.1710 | C23H30O11 | 525→479, 465, 121 | albiflorin | P | [24] |
38 | 7.28 | [M−H] | 207.0296 | 207.0293 | C10H8O5 | 207→192 | fraxetin | Sa | [8] |
39 | 7.38 | [M−H] | 335.0767 | 335.0767 | C16H16O8 | 335→289, 179, 135, 111 | 5-O-caffeoylshikimic acid | Sa, Sm | [9] |
40 | 7.61 | [M+COOH] | 525.1604 | 481.1710 | C23H30O11 | 525→479, 327, 283,161 | paeoniflorin | P | [24,25] |
41 | 7.72 | [M−H] | 471.1863 | 471.1866 | C22H32O11 | 471→425, 263 | sarcaglaboside G | Sa | [8] |
42 | 7.81 | [M−H] | 339.0715 | 339.0716 | C15H16O9 | 339→193, 165,137 | 6,7,8-trihydroxycoumarin-7-rhamnoside | Sa, Sm | [9] |
43 | 7.94 | [M−H] | 629.1514 | 629.1506 | C30H30O15 | 629→483, 475, 449, 303, 285 | 8-[β-(3,4-dihydroxyphenyl)-α-carboxyl-3-oxopropyl]-substituted neoastilbin | Sm | [9] |
44 | 8.05 | [M−H] | 473.2022 | 473.2023 | C22H34O11 | 473.202 | sarcaglaboside H | Sa | [8] |
45 | 8.16 | [M−H] | 629.1514 | 629.1506 | C30H30O15 | 629→483, 475, 449, 303, 285 | 8-[β-(3,4-dihydroxyphenyl)-α-carboxyl-3-oxopropyl]-substituted astilbin | Sm | [9] |
46 | 8.18 | [M−H] | 565.1552 | 565.1557 | C26H30O14 | 565→313, 193 | (2R/2S)-naringenin-6-C-β-d-glucopy ranoside-(6-1)-apiose | Sa | [8] |
47 | 8.27 | [M−H] | 537.1025 | 537.1033 | C27H22O12 | 537→493, 295, 159, 109 | lithospermic acid | A | |
48 | 8.33 | [M−H] | 565.1550 | 565.1557 | C26H30O14 | 565→313, 193 | (2R/2S)-naringenin-6-C-glucopyranoside-(6-1)-apiose | Sa | [9] |
49 | 8.52 | [M−H] | 629.1514 | 629.1506 | C30H30O15 | 629→483, 475, 449, 303, 285 | 8-[β-(3,4-dihydroxyphenyl)-α-carboxyl-3-oxopropyl]-substituted | Sm | [9] |
50 | 8.57 | [M−H] | 221.0452 | 221.0450 | C11H10O5 | 221→206, 191, 163 | isofraxidin | Sa | [8] |
51 | 8.62 | [M−H] | 417.1186 | 417.1186 | C21H22O9 | 417→255 | liquiritin | G | [26] |
52 | 8.62 | [M−H] | 549.1607 | 549.1608 | C26H30O13 | 549→429, 255 | liquiritin apioside | G | [26] |
53 | 8.77 | [M−H] | 451.1025 | 451.1029 | C24H20O9 | 451→341, 299 | cinchonain Ia | Sm | |
54 | 8.80 | [M−H] | 303.0505 | 303.0505 | C15H12O7 | 303→285 | taxifolin | Sm | [9] |
55 | 8.82 | [M−H] | 300.9986 | 300.9984 | C14H6O8 | 301→257 | gallogen | P | |
56 | 8.84 | [M−H] | 449.1088 | 449.1084 | C21H22O11 | 449→303, 285 | neoastilbin | Sa, Sm | [8,9] |
57 | 8.98 | [M−H] | 629.1514 | 629.1506 | C30H30O15 | 629→483, 475, 449, 303, 285 | 8-[β-(3,4-dihydroxyphenyl)-α-carboxyl-3-oxopropyl]-substituted isoastilbin | Sm | [9] |
58 | 8.96 | [M−H] | 631.1656 | 631.1663 | C30H32O15 | 631→613, 491, 399, 169 | galloyl paeoniflorin | P | |
59 | 9.02 | [M−H] | 477.0668 | 477.0669 | C21H18O13 | 477→301 | quercetin-3-O-glucruronide | Sa | [8] |
60 | 9.02 | [M−H] | 449.1088 | 449.1084 | C21H22O11 | 449→303, 285 | astilbin | Sa, Sm | [8,9] |
61 | 9.05 | [M−H] | 521.1295 | 521.1295 | C24H26O13 | 521→359, 197 | rosmarinic acid-4-O-glucoside | Sa | |
62 | 9.38 | [M−H] | 939.1089 | 939.1104 | C41H32O26 | 939→769, 617, 393, 317 | penta-O-galloyl-glucose | P | |
63 | 9.49 | [M−H] | 515.1184 | 515.1190 | C25H24O12 | 515→353 | dicaffeoylquinic acid | Sa | |
64 | 9.64 | [M−H] | 449.1088 | 449.1084 | C21H22O11 | 449→303, 285 | neoisoastilbin | Sa, Sm | [8,9] |
65 | 9.68 | [M−H] | 717.1442 | 717.1456 | C36H30O16 | 717→519, 475, 321 | caffeic acid tetramer | A | |
66 | 9.78 | [M−H] | 187.0974 | 187.0970 | C9H16O4 | 187→142, 125 | nonandioic acid | P, G | |
67 | 9.84 | [M−H] | 449.1088 | 449.1084 | C21H22O11 | 449→303, 285 | isoastilbin | Sa, Sm | [8,9] |
68 | 9.87 | [M−H] | 451.1025 | 451.1029 | C24H20O9 | 451→341, 299 | cinchonain Ib | Sm | |
69 | 9.95 | [M−H] | 717.1442 | 717.1456 | C36H30O16 | 717→519, 475, 321 | caffeic acid tetramer isomer | A | |
70 | 9.96 | [M−H] | 597.1605 | 597.1608 | C30H30O13 | 597→451, 341, 217 | glabraoside C | Sa | [8] |
71 | 9.95 | [M−H] | 719.1599 | 719.1512 | C36H32O16 | 719→539, 359 | dirosmarinic acid | Sa | |
72 | 10.08 | [M−H] | 433.1131 | 433.1135 | C21H22O10 | 433→343, 313, 271, 179 | (2R/2S)-naringenin-6-C-glucopyranoside | Sa | [8] |
73 | 10.17 | [M−H] | 433.1131 | 433.1135 | C21H22O10 | 433→343, 313, 271, 179 | (2R/2S)-naringenin-6-C-glucopyranoside | Sa | [8] |
74 | 10.36 | [M−H] | 587.2327 | 587.2340 | C27H40O14 | 587→451, 341, 217 | sarcaglaboside D | Sa | [8] |
75 | 10.61 | [M−H] | 515.1184 | 515.1190 | C25H24O12 | 515→353 | dicaffeoylquinic acid | Sa | |
76 | 10.64 | [M−H] | 359.0768 | 359.0767 | C18H16O8 | 359→197, 161 | rosmarinic acid | Sa, Sm | [8,9] |
77 | 10.73 | [M−H] | 279.1234 | 279.1232 | C15H20O5 | 279→235, 139 | zedoalactone D | Sa | [8] |
78 | 10.97 | [M+COOH] | 507.1497 | 461.1448 | C23H26O10 | 461→417, 295 | lactiflorin | P | |
79 | 11.03 | [M−H] | 433.1132 | 433.1135 | C21H22O10 | 433→287, 269 | engeletin | Sm | [9] |
80 | 11.41 | [M−H] | 423.1653 | 423.1655 | C21H28O9 | 423→261, 243 | chloranoside A | Sa | [8] |
81 | 11.80 | [M−H] | 549.1603 | 549.1608 | C26H30O13 | 549→417, 255 | isoliquiritin apioside | G | [26] |
82 | 11.94 | [M−H] | 433.1132 | 433.1135 | C21H22O10 | 433→287, 269 | isoengeletin | Sa, Sm | [8,9] |
83 | 11.82 | [M−H] | 549.1607 | 549.1608 | C26H30O13 | 549→417, 255 | liquiritin apioside | G | [26] |
84 | 12.40 | [M−H] | 417.1183 | 417.1186 | C21H22O9 | 417→255 | isoliquiritin | G | [26] |
85 | 12.97 | [M−H] | 599.1756 | 599.1765 | C30H32O13 | 599→569 | benzoyloxypaeoniflorin | P | [24] |
86 | 12.98 | [M−H] | 451.1027 | 451.1029 | C24H20O9 | 451→341, 299 | cinchonain Ic | Sm | [8] |
87 | 13.06 | [M−H] | 255.0658 | 255.0657 | C15H12O4 | 255→135 | liquiritigenin | G | [26] |
88 | 13.14 | [M−H] | 451.1025 | 451.1029 | C24H20O9 | 451→341, 299 | cinchonain Id | Sm | [8] |
89 | 13.33 | [M−H] | 373.0918 | 373.0923 | C19H18O8 | 373→211, 161 | methyl rosmarina | Sa, Sm | [8] |
90 | 13.52 | [M−H] | 823.4102 | 823.4116 | C42H64O16 | 823→647, 351 | uralsaponin C | G | [27] |
91 | 13.86 | [M−H] | 835.3742 | 835.3752 | C42H60O17 | 823→661, 351 | uralsaponin D | G | [27] |
92 | 13.52 | [M−H] | 999.4421 | 999.4433 | C48H72O22 | 999→837, 645, 351 | 24-hydroxyl-licorice-saponin A3 | G | [27] |
93 | 13.64 | [M−H] | 895.3950 | 895.3964 | C44H64O19 | 895→719, 501,351 | uralsaponin F | G | [27] |
94 | 13.63 | [M−H] | 853.3845 | 853.3858 | C42H62O18 | 853→809, 791, 677, 351 | 22-hydroxyl-licorice-saponin G2 | G | [27] |
95 | 13.61 | [M−H] | 983.4470 | 983.4488 | C48H72O21 | 983→821, 645, 351 | licorice saponin A3 | G | [27] |
96 | 13.68 | [M−H] | 1025.4579 | 1025.4593 | C50H74O22 | 1025→993, 833, 497 | 22-acetoxyl-rhaoglycyrrhizin | G | [27] |
97 | 13.70 | [M−H] | 849.3538 | 849.3545 | C42H58O18 | 849→673, 479 | uralsaponin E | G | [27] |
98 | 13.76 | [M−H] | 879.3996 | 879.4014 | C44H64O18 | 879→861, 643, 351 | 22-acetoxyl-glycyrrhizin | G | [27] |
99 | 13.77 | [M−H] | 837.3891 | 837.3909 | C42H62O17 | 837→819, 661, 351 | 24-hydroxyl-glycyrrhizin | G | [27] |
100 | 13.78 | [M−H] | 271.0607 | 271.0606 | C15H12O5 | 271→254, 177 | naringenin | Sm | [27] |
101 | 13.86 | [M−H] | 835.3742 | 835.3752 | C42H60O17 | 823→661, 351 | 24-hydroxyl-licorice-saponin E2 | G | [27] |
102 | 14.00 | [M−H] | 837.3891 | 837.3909 | C42H62O17 | 837→819, 775, 661, 351 | licorice saponin G2 | G | [27] |
103 | 14.00 | [M−H] | 967.4523 | 967.4539 | C48H72O20 | 967→805,497, 407, 321 | rhaoglycyrrhizin | G | [27] |
104 | 14.01 | [M−H] | 819.3787 | 819.3803 | C42H60O16 | 819→777, 643, 351 | licorice saponin E2 | G | [27] |
105 | 14.06 | [M−H] | 863.4049 | 863.4065 | C44H64O17 | 863→819, 729, 687, 351, 289 | 22-acetoxyl-glycyrrhaldehyde | G | [27] |
106 | 14.13 | [M−H] | 255.0660 | 255.0657 | C15H12O4 | 255→135 | isoliquiritigenin | G | [27] |
107 | 14.14 | [M−H] | 821.3945 | 821.3945 | C42H62O16 | 821→803, 759, 645, 351 | glycyrrhizin | G | [27] |
108 | 14.33 | [M−H] | 821.3945 | 821.3960 | C42H62O16 | 821→803, 759, 645, 351 | 18α-glycyrrhizin | G | [27] |
2.3. Method Validation of the Quantitative Analysis
Analyte | Linear Range (μg/mL) | Calibration Curve (n = 7) | r2 | LOQ (μg/mL) | Repeatability RSD (%) |
---|---|---|---|---|---|
3-O-Caffeoylquinic acid (16) | 0.16–6.37 | y = 301,311 x− 46,304 | 0.9984 | 0.064 | 2.3 |
5-O-Caffeoylquinic acid (22) | 0.23–9.24 | y = 341,667 x− 39,368 | 0.9982 | 0.046 | 3.2 |
4-O-Caffeoylquinic acid (24) | 0.41–16.34 | y = 267,929 x− 80,795 | 0.9990 | 0.065 | 3.8 |
5-O-Caffeoylskimic acid (39) | 0.57–22.92 | y = 396,547 x + 152,855 | 0.9985 | 0.057 | 3.5 |
Paeoniflorin (40) | 2.54–101.62 | y = 207,558 x + 1,315,316 | 0.9988 | 0.040 | 1.7 |
Liquiritin (51) | 0.46–18.24 | y = 616,184 x+ 109,090 | 0.9987 | 0.036 | 1.8 |
Neoastilbin (56) | 0.47–18.84 | y = 572,723 x + 139,006 | 0.9983 | 0.016 | 1.7 |
Astilbin (60) | 0.55–22.16 | y = 500,903 x + 165,817 | 0.9990 | 0.055 | 1.5 |
Neoisoastilbin (64) | 0.39–15.77 | y = 339,480 x + 93,661 | 0.9986 | 0.067 | 2.0 |
Isoastilbin (67) | 0.32–12.84 | y = 531,497 x− 76,292 | 0.9984 | 0.018 | 1.5 |
Engeletin (79) | 0.31–12.50 | y = 743,986 x− 120,215 | 0.9983 | 0.013 | 2.1 |
Isoengeletin (82) | 0.67–26.66 | y = 355,937 x+ 110,394 | 0.9987 | 0.027 | 3.8 |
Liquiritigenin (87) | 0.07–2.96 | y = 426,840 x− 24,980 | 0.9981 | 0.030 | 2.0 |
glycyrrhizic acid (107) | 0.99–39.56 | y = 422,502 x+ 468,934 | 0.9986 | 0.040 | 1.6 |
Analyte | Intra-Day (RSD, %) (n = 6) | Inter-Day (RSD, %) (n = 3) | Recoveries (n = 6) | ||||
---|---|---|---|---|---|---|---|
Initial (μg) | Spiked (μg) | Detected (μg) | Recoveries (%) | RSD (%) | |||
3-O-Caffeoylquinic acid (16) | 2.9 | 2.8 | 1.71 | 1.75 | 3.23 | 92.6 | 4.8 |
5-O-Caffeoylquinic acid (22) | 1.3 | 4.4 | 1.38 | 1.27 | 2.87 | 108.4 | 3.8 |
4-O-Caffeoylquinic acid (24) | 1.3 | 3.4 | 2.07 | 2.25 | 4.51 | 104.1 | 3.4 |
5-O-Caffeoylskimic acid (39) | 0.6 | 3.7 | 2.99 | 3.15 | 5.54 | 90.2 | 1.4 |
Paeoniflorin (40) | 3.2 | 2.7 | 27.34 | 27.95 | 57.69 | 104.5 | 3.8 |
Liquiritin (51) | 2.9 | 2.5 | 4.95 | 5.02 | 10.05 | 101.3 | 2.5 |
Neoastilbin (56) | 1.9 | 3.1 | 5.25 | 5.18 | 11.38 | 109.5 | 2.3 |
Astilbin (60) | 3.4 | 3.0 | 6.02 | 6.10 | 11.86 | 97.8 | 3.7 |
Neoisoastilbin (64) | 3.0 | 3.2 | 4.24 | 4.34 | 8.21 | 95.6 | 3.9 |
Isoastilbin (67) | 3.2 | 3.1 | 3.60 | 3.53 | 7.49 | 105.1 | 3.2 |
Engeletin (79) | 2.5 | 2.8 | 3.31 | 3.44 | 6.99 | 104.1 | 4.1 |
Isoengeletin (82) | 3.8 | 2.3 | 2.51 | 2.62 | 4.83 | 94.4 | 3.0 |
Liquiritigenin (87) | 2.3 | 2.6 | 0.82 | 0.81 | 1.52 | 93.2 | 2.4 |
glycyrrhizic acid (107) | 0.8 | 1.5 | 10.75 | 10.88 | 22.83 | 106.0 | 2.1 |
2.4. Quantitative Determination of PSORI-CM01 Preparations
Analyte a | KLJ-1 | KLJ-2 | PJ-3 | PJ-4 | PJ-5 | TJ-6 | TJ-7 | TJ-8 |
---|---|---|---|---|---|---|---|---|
3-O-Caffeoylquinic acid (16) | 520.94 | 531.48 | 391.56 | 132.01 | 429.07 | 122.89 | 30.68 | 121.18 |
5-O-Caffeoylquinic acid (22) | 514.55 | 503.94 | 391.56 | 146.51 | 488.10 | 123.45 | 27.30 | 183.64 |
4-O-Caffeoylquinic acid (24) | 601.74 | 545.00 | 558.82 | 211.85 | 683.57 | 129.75 | 40.53 | 160.64 |
5-O-Caffeoylskimic acid (39) | 540.55 | 520.10 | 789.39 | 324.27 | 397.06 | 333.60 | 153.44 | 429.46 |
Paeoniflorin (40) | 5855.02 | 6030.52 | 7218.12 | 5177.23 | 5368.14 | 2326.21 | 445.51 | 3511.46 |
Liquiritin (51) | 1654.18 | 1650.73 | 892.15 | 360.64 | 1115.65 | 145.56 | 71.55 | 248.20 |
Neoastilbin (56) | 2545.86 | 2767.29 | 2442.62 | 423.15 | 1680.52 | 369.88 | 124.41 | 588.89 |
Astilbin (60) | 3819.23 | 4061.92 | 3743.95 | 844.53 | 2575.83 | 661.96 | 174.14 | 879.05 |
Neoisoastilbin (64) | 2459.06 | 2359.70 | 1872.94 | 736.75 | 2211.36 | 605.51 | 154.36 | 802.79 |
Isoastilbin (67) | 879.60 | 916.61 | 650.53 | 260.87 | 902.06 | 244.03 | 74.96 | 418.97 |
Engeletin (79) | 678.32 | 740.00 | 503.10 | 196.27 | 621.69 | 165.13 | 84.25 | 274.81 |
Isoengeletin (82) | 543.19 | 1089.55 | 348.12 | 132.29 | 331.67 | 119.27 | 16.30 | 116.39 |
Liquiritigenin (87) | 224.07 | 246.07 | 477.28 | 62.14 | 202.73 | 75.50 | 24.55 | 130.18 |
glycyrrhizic acid (107) | 2225.13 | 2359.89 | 2610.50 | 933.51 | 2770.51 | 306.01 | 68.44 | 257.72 |
3. Experimental Section
3.1. Chemicals and Materials
3.2. Standard Solutions and Sample Preparation
3.3. UHPLC-ESI-MS/MS System
3.4. Qualitative Characteristic of Chemical Constituents
3.5. Validation of the Quantitative Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yao, X.S.; Ye, W.C.; Kurihara, H. Reveal the scientific connotation of TCM for promoting its modernization and innovative drug research process. Prog. Chem. 2009, 21, 2–13. [Google Scholar]
- Qin, K.M.; Cai, H.; Zhang, L.; Shi, Y.; Li, P.; Cai, B.C. Chemical constituents and effective substances of traditional Chinese eedicinal formula. Prog. Chem. 2010, 22, 2436–2449. [Google Scholar]
- Nagler, E.V.; Webster, A.C.; Vanholder, R.; Zoccali, C. Antidepressants for depression in stage 3–5 chronic kidney disease: A systematic review of pharmacokinetics, efficacy and safety with recommendations by European Renal Best Practice (ERBP). Nephrol. Dial. Transplant. 2012, 27, 3736–3745. [Google Scholar] [CrossRef]
- Lu, C.J.; Xiang, Y.; Xie, X.L.; Xuan, M.L.; He, Z.H. A randomized controlled single-blind clinical trial on 84 outpatients with psoriasis vulgaris by auricular therapy combined with optimized Yinxieling formula. Chin. J. Inter. Med. 2012, 3, 186–191. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.Q. Clinical observation of Yinxieling tablets on treating psoriasis vulgaris. Guangzhou Zhongyiyao Daxue Xuebao 2009, 26, 520–521. [Google Scholar]
- Zhong, J.B.; Yin, X.; Lu, C.J.; Xuan, G.W. Experience introduction of Xuan Guo Wei professor in treating psoriasis. J. New Chin. Med. 2004, 9, 11–12. [Google Scholar]
- Liu, E.H.; Qi, L.W.; Li, B.; Peng, Y.B.; Li, P.; Li, C.Y.; Cao, J. High-speed separation and characterization of major constituents in Radix Paeoniae Rubra by fast highperformance liquid chromatography coupled with diode-array detection and time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.F.; Zeng, X.; Yang, L.; Deng, Y.H. Chemical profiling of bioactive constituents in Sarcandra glabra and its preparations using ultra-high-pressure liquid chromatography coupled with LTQ Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2439–2447. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.D.; Lu, C.J.; Zhao, R.Z. Qualitative and quantitative analysis of Rhizoma Smilacis glabrae by ultra high performance liquid chromatography coupled with LTQ OrbitrapXL hybrid mass spectrometry. Molecules 2014, 19, 10427–10439. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Jin, X.J. Chemical constituents of Lithospermum erythrorhizon. Chem. Res. Chin. Univ. 1994, 10, 263–265. [Google Scholar]
- Kawata, J.; Kameda, M.; Miyazawa, M. Cyclooxygenase-2 inhibitory effects and composition of the volatile oil from the dried roots of Lithospermum erythrorhizon. J. Nat. Med. 2008, 62, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.G.; En, B.T.; Zhang, Z.Q. Simultaneous determination of eight organic acids in Fructus Mume by RP-HPLC. China J. Chin. Mater. Med. 2006, 31, 1783–1786. [Google Scholar]
- Zhang, Q.Y.; Ye, M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A 2009, 1216, 1954–1969. [Google Scholar] [CrossRef] [PubMed]
- Phan, M.G.; Tran, T.T.N.; Phan, T.S.; Matsunami, K.; Otsuka, H. Guaianolides from Curcuma kwangsiensis. Phytochem. Lett. 2014, 9, 137–140. [Google Scholar] [CrossRef]
- Li, J.; Zhao, F.; Li, M.Z.; Chen, L.X.; Qiu, F. Diarylheptanoids from the Rhizomes of Curcuma kwangsiensis. J. Nat. Prod. 2010, 73, 1667–1671. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Li, Y; Yan, Y.N.; Liu, H.W.; Ji, X.H. Determination of flavonoids in Semen Cuscutae by RP-HPLC. J. Pharm. Biomed. Anal. 2002, 28, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.H.; Zou, G.A.; Preiss, A.; Zhang, H.W.; Zou, Z.M. Online identification of antioxidant constituents of traditional Chinese medicine formular Chaihu-Shu-Gan-San by LC-LTQ-Orbitrap mass spectrometry and microplate spectrophotometer. J. Pharm. Biomed. Anal. 2010, 53, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.H.; Kang, Z.; Ouyang, D.S.; Zhou, H.H. Progresses in the pharmacology of chlorogenic acid. Nat. Prod. Res. Dev. 2006, 18, 691–694. [Google Scholar]
- Zheng, Y.Q.; Wei, W.; Zhu, L.; Liu, J.X. Effects and mechanisms of Paeoniflorin, a bioactive glucoside from paeony root, on adjuvant arthritis in rats. Inflamm. Res. 2007, 56, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Shimada, Y.; Akechi, Y.; Kohta, K.; Hattori, M.; Terasawa, K. Endothelium-dependent vasodilator effect of extract prepared from the roots of Paeonia lactiflora on isolated rat aorta. Planta Med. 1996, 62, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Q.; Cheng, Z.H.; Shi, H.M.; Xin, W.B.; Wang, T.T.Y.; Yu, L.L. Isolation and characterization of two flavonoids, engeletin and astilbin, from the leaves of Engelhardia roxburghiana and their potential anti-inflammatory properties. J. Agric. Food. Chem. 2011, 59, 4562–4569. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.H.; Jia, S.S. Pharmacological activities of flavonoids from licorice. Chin. Pharm. J. 1998, 33, 513–516. [Google Scholar]
- Wang, X.F.; Shan, F.P. Advance in glycyrrhizin’s anti-inflammation and antitumor mechanism. J. Microbiol. 2013, 33, 88–92. [Google Scholar]
- Zhang, H.J.; Shen, P.; Cheng, Y.Y. Identification and determination of the major constituents in traditional Chinese medicine Si-Wu-Tang by HPLC coupled with DAD and ESI-MS. J. Pharm. Biomed. Anal. 2004, 34, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Woa, S.K.; Wang, L.; Lau, C.B.S.; Lee, V.H.L.; Chow, M.S.S.; Zuo, Z. Simultaneous quantification of active components in the herbs and products of Si-Wu-Tang by high performance liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2009, 50, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, M.K.; Liao, X.; Zhu, X.M.; Peng, S.L.; Ding, L.S. Rapid identification of compounds in Glycyrrhiza Uralensis by liquid chromatography/tandem mass spectrometry. Chin. J. Anal. Chem. 2004, 32, 174–178. [Google Scholar]
- Zheng, Y.F.; Qi, L.W.; Zhou, J.L.; Li, P. Structural characterization and identification of oleananetype triterpene saponins in Glycyrrhiza uralensis Fischer by rapid-resolution liquid chromatography coupled with time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 3261–3270. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds 16, 22, 24, 39, 40, 51, 56, 60, 64, 67, 79, 82, 87 and 107 are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-D.; Lu, C.-J.; Zhao, R.-Z. Identification and Quantitative Characterization of PSORI-CM01, a Chinese Medicine Formula for Psoriasis Therapy, by Liquid Chromatography Coupled with an LTQ Orbitrap Mass Spectrometer. Molecules 2015, 20, 1594-1609. https://doi.org/10.3390/molecules20011594
Chen S-D, Lu C-J, Zhao R-Z. Identification and Quantitative Characterization of PSORI-CM01, a Chinese Medicine Formula for Psoriasis Therapy, by Liquid Chromatography Coupled with an LTQ Orbitrap Mass Spectrometer. Molecules. 2015; 20(1):1594-1609. https://doi.org/10.3390/molecules20011594
Chicago/Turabian StyleChen, Shao-Dan, Chuan-Jian Lu, and Rui-Zhi Zhao. 2015. "Identification and Quantitative Characterization of PSORI-CM01, a Chinese Medicine Formula for Psoriasis Therapy, by Liquid Chromatography Coupled with an LTQ Orbitrap Mass Spectrometer" Molecules 20, no. 1: 1594-1609. https://doi.org/10.3390/molecules20011594
APA StyleChen, S. -D., Lu, C. -J., & Zhao, R. -Z. (2015). Identification and Quantitative Characterization of PSORI-CM01, a Chinese Medicine Formula for Psoriasis Therapy, by Liquid Chromatography Coupled with an LTQ Orbitrap Mass Spectrometer. Molecules, 20(1), 1594-1609. https://doi.org/10.3390/molecules20011594