Characterization of Non-Anthocyanic Flavonoids in Some Hybrid Red Grape Extracts Potentially Interesting for Industrial Uses
Abstract
:1. Introduction
2. Results and Discussion
Flavonoids Identified | Rt | Formula | [M − H]− Ion | Error | Id Score | MS/MS | |
---|---|---|---|---|---|---|---|
(min) | Experimental Theoretical | (ppm) | (%) | m/z | |||
(−)-epicatechin | 13.63 | C15H14O6 | 289.0723 | 289.0718 | 1.7 | 97.8 | 205.0502 151.0399 |
(+)-catechin | 12.61 | C15H14O6 | 289.0715 | 289.0718 | −1.0 | 99.3 | 205.0500 151.0396 |
(−)-epicatechin-3-O-gallate | 15.11 | C22H18O10 | 441.0831 | 441.0827 | 0.9 | 98.3 | 289.0719 169.0142 |
dihydrokaempferol-3-O-rhamnoside | 15.98 | C21H22O10 | 433.1148 | 433.1140 | 1.8 | 73.6 | 287.0563 269.0457 |
dihydroquercetin-3-O-hexoside | 14.34 | C21H22O12 | 465.1048 | 465.1038 | 2.1 | 90.0 | 303.0512 151.0040 |
isorhamnetin-3-O-glucoside | 15.72 | C22H22O12 | 477.1045 | 477.1038 | 1.5 | 98.5 | 314.0431 271.0242 |
isorhamnetin-glucuronide | 15.90 | C22H20O13 | 491.0842 | 491.0831 | 2.2 | 79.7 | 315.0514 271.0243 |
isorhamnetin-p-coumaroylglucoside | 17.67 | C31H28O14 | 623.1412 | 623.1406 | 0.9 | 93.8 | 477.1021 315.0511 |
kaempferide-p-coumaroylhexoside | 17.80 | C31H28O13 | 607.1459 | 607.1457 | 0.3 | 80.4 | 461.1088 299.0557 |
kaempferol-3-O-galactoside | 15.41 | C21H20O11 | 447.0942 | 447.0933 | 2.0 | 93.2 | 284.0337 255.0305 |
kaempferol-3-O-glucoside | 15.61 | C21H20O11 | 447.0943 | 447.0933 | 2.2 | 94.3 | 284.0333 255.0299 |
laricitrin-3-O-glucoside | 15.01 | C22H22O13 | 493.0994 | 493.0988 | 1.2 | 98.0 | 330.0377 315.0143 |
methylnaringenin | 22.37 | C16H14O5 | 285.0773 | 285.0768 | 1.7 | 98.3 | 270.0539 164.0116 |
myricetin-3-O-glucoside | 14.27 | C21H20O13 | 479.0845 | 479.0831 | 2.9 | 95.3 | 316.0233 271.0248 |
myricetin-3-O-glucuronide | 14.20 | C21H18O14 | 493.0622 | 493.0624 | −0.4 | 98.9 | 317.0303 271.0242 |
myricetin-dihexoside | 14.11 | C27H30O18 | 641.1362 | 641.1359 | 0.5 | 99.5 | 479.0838 316.0231 |
myricetin-glucoside-glucuronide | 14.10 | C27H28O19 | 655.1153 | 655.1152 | 0.1 | 95.0 | 479.0815 317.0299 |
pentahydroxy flavone (isom. quercetin) | 16.66 | C15H10O7 | 301.0356 | 301.0354 | 0.7 | 99.7 | 149.0244 151.0035 |
procyanidin B1 | 12.02 | C30H26O12 | 577.1348 | 577.1351 | −0.5 | 99.2 | 407.0772 289.0718 |
procyanidin B3/B4/B5 | 12.35 | C30H26O12 | 577.1345 | 577.1351 | −1.0 | 94.6 | 407.0779 289.0724 |
procyanidin B2 | 13.25 | C30H26O12 | 577.1353 | 577.1351 | 0.3 | 95.1 | 407.0771 289.0716 |
procyanidin T2/T3/T4/C1 | 12.84 | C45H38O18 | 865.1987 | 865.1985 | 0.2 | 91.4 | 577.1349 289.0716 |
quercetin | 18.01 | C15H10O7 | 301.0356 | 301.0354 | 0.7 | 99.5 | 273.0406 151.0040 |
quercetin-3-O-galactoside | 14.91 | C21H20O12 | 463.0892 | 463.0882 | 2.2 | 97.1 | 300.0284 151.0038 |
quercetin-3-O-glucoside | 15.02 | C21H20O12 | 463.0889 | 463.0882 | 1.5 | 98.4 | 300.0284 151.0036 |
quercetin-3-O-glucuronide | 14.96 | C21H18O13 | 477.0688 | 477.0675 | 2.7 | 96.5 | 301.0360 151.0036 |
rutin (querc-3-O-rutinoside) | 14.63 | C27H30O16 | 609.1467 | 609.1461 | 1.0 | 97.4 | 463.0877 300.0279 |
syringetin-3-O-galactoside | 15.53 | C23H24O13 | 507.1147 | 507.1144 | 0.6 | 94.7 | 345.0623 330.0390 |
syringetin-3-O-glucoside | 15.68 | C23H24O13 | 507.1148 | 507.1144 | 0.8 | 98.1 | 344.0536 329.0298 |
syringetin-dihexoside | 13.94 | C29H34O18 | 669.1672 | 669.1672 | 0.0 | 99.7 | 507.1144 345.0621 |
tetrahydroxy-dimethoxyflavanone-hexoside | 14.19 | C23H26O13 | 509.1308 | 509.1301 | 1.4 | 98.6 | 346.0694 329.0674 |
Flavonoids | Unknown Red | Seibel 19881 | Seyve Villard 12-347 | Seyve Villard 29-399 | Seibel 8357 |
---|---|---|---|---|---|
μg/kg Grape | |||||
Flavan-3-ols | |||||
(−)-epicatechin a | 4555 ± 1631 | 6117 ± 241 | 7467 ± 3491 | 11640 ± 2133 | 7126 ± 2447 |
(+)-catechin b | 5578 ± 1173 | 13186 ± 802 | 11450 ± 3299 | 13257 ± 813 | 1032 ± 531 |
(−)-epicatechin-3-O-gallate c | 1140 ± 146 | 1028 ± 293 | 673 ± 154 | 2111 ± 270 | 674 ± 74 |
Total flavan-3-ols | 11273 | 20331 | 19590 | 27009 | 8832 |
Flavanonols | |||||
dihydrokaempferol-3-O-rhamnoside d | 15 ± 1 | 1082 ± 155 | 25 ± 4 | 374 ± 88 | 19 ± 2 |
dihydroquercetin-3-O-hexoside e | 40 ± 7 | 2602 ± 680 | n.d. | 224 ± 94 | n.d. |
Flavonols | |||||
isorhamnetin-3-O-glucoside f | 46 ± 15 | 1090 ± 119 | 591 ± 192 | 258 ± 26 | 254 ± 56 |
isorhamnetin-glucuronide f | n.d. | 6 ± 1 | n.d. | n.d. | n.d. |
isorhamnetin-p-coumaroylglucoside f | n.d. | 46 ± 4 | 7 ± 2 | n.d. | 22 ± 5 |
kaempferide-p-coumaroylhexoside d | n.d. | 39 ± 8 | n.d. | n.d. | 34 ± 1 |
kaempferol-3-O-galactoside d | 9 ± 0 | 579 ± 10 | 933 ± 51 | 45 ± 9 | 36 ± 15 |
kaempferol-3-O-glucoside d | 29 ± 5 | 2124 ± 75 | 2456 ± 47 | 161 ± 40 | 162 ± 78 |
laricitrin-3-O-glucoside e | 560 ± 5 | 1681 ± 165 | 410 ± 60 | 177 ± 50 | 3240 ± 1240 |
myricetin-3-O-glucoside h | 26702 ± 511 | 41569 ± 2324 | 24859 ± 4236 | 12458 ± 2148 | 35751 ± 1204 |
myricetin-3-O-glucuronide h | 269 ± 32 | 202 ± 12 | 68 ± 1 | 50 ± 2 | 154 ± 23 |
myricetin-diglucoside h | 538 ± 137 | 376 ± 74 | 612 ± 103 | 334 ± 70 | 682 ± 5 |
myricetin-glucoside-glucuronide h | 46 ± 8 | 23 ± 2 | n.d. | n.d. | n.d. |
pentahydroxy flavone (isom. quercetin) f | 98 ± 22 | 444 ± 125 | 100 ± 23 | 75 ± 46 | 522 ± 50 |
quercetin f | 34 ± 8 | 316 ± 29 | 182 ± 49 | 52 ± 11 | 119 ± 45 |
quercetin-3-O-galactoside e | 159 ± 2 | 5124 ± 331 | 4803 ± 452 | 705 ± 338 | 1027 ± 637 |
quercetin-3-O-glucoside e | 2347 ± 380 | 12559 ± 69 | 16381 ± 548 | 6943 ± 1928 | 6124 ± 1758 |
quercetin-3-O-glucuronide e | 618 ± 21 | 11411 ± 33 | 2501 ± 610 | 1142 ± 395 | 2220 ± 896 |
rutin (querc-3-O-rutinoside) h | n.d | 13468 ± 1381 | 9887 ± 1496 | 2747 ± 1337 | 6091 ± 3070 |
syringetin-3-O-galactoside f | 13 ± 0 | 57 ± 15 | 21 ± 2 | 22 ± 8 | 25 ± 4 |
syringetin-3-O-glucoside f | 252 ± 70 | 1823 ± 139 | 228 ± 29 | 350 ± 49 | 1327 ± 388 |
syringetin-dihexoside f | 8 ± 2 | 176 ± 49 | 37 ± 6 | 39 ± 18 | 18 ± 7 |
Total flavonols * | 31632 | 92669 | 63976 | 25484 | 57285 |
Procyanidins | |||||
procyanidin B1 i | 3638 ± 903 | 2698 ± 515 | 7418 ± 1253 | 9698 ± 2364 | 1528 ± 636 |
procyanidin B3/B4/B5 i | 1117 ± 127 | 1332 ± 81 | 3929 ± 1363 | 3913 ± 110 | 2684 ± 886 |
procyanidin B2 l | 3836 ± 445 | 1603 ± 212 | 5029 ± 2393 | 6135 ± 4 | 634 ± 129 |
procyanidin T2/T3/T4/C1 i | 339 ± 17 | 389 ± 32 | 617 ± 246 | 849 ± 17 | 591 ± 166 |
Total procyanidins | 8930 | 6022 | 16992 | 20596 | 5437 |
Flavanones | |||||
methylnaringenin g | 114 ± 7 | 203 ± 7 | 88 ± 13 | 114 ± 11 | 136 ± 2 |
tetrahydroxy-dimethoxyflavanone-hexoside f | 949 ± 294 | 3600 ± 630 | 910 ± 546 | 530 ± 398 | 7427 ± 449 |
Total flavonoids | 53052 | 126953 | 101681 | 74406 | 79660 |
3. Experimental Section
3.1. Chemicals, Samples and Sample Preparation
3.2. LC/QTOF Mass Spectrometry
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Labinskyy, N.; Csiszar, A.; Veress, G.; Stef, G.; Pacher, P.; Oroszi, G.; Wu, J.; Ungvari, Z. Vascular dysfunction in aging: Potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr. Med. Chem. 2006, 13, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- Goldberg, D.M.; Hahn, S.E.; Parkes, J.G. Beyond alcohol: Beverage consumption and cardiovascular mortality. Clin. Chim. Acta 1995, 237, 155–187. [Google Scholar] [CrossRef]
- Renaud, S.; Lorgeril, D. Wine, alcohol, platelets, and the French paradox for coronary heart. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- German, J.B.; Frankel, E.N.; Waterhouse, A.L.; Hansen, R.J.; Walzem, R.L. Wine phenolics and targets of chronic disease. In Wine, Nutritional and Therapeutic Benefits; Watkins, T.R., Ed.; American Chemical Society: Washington, DC, USA, 1997; pp. 196–214. [Google Scholar]
- Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Riberéau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic compounds. In Handbook of Enology: The Chemistry of Wine. Stabilization and Treatments, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2006; Volume 2, pp. 141–203. [Google Scholar]
- Shahidi, F.; Naczk, M. Phenolic compounds of beverages. In Phenolics in Food and Nutraceuticals; CRC PRESS, Taylor and Francis Group: Boca Raton, FL, USA, 2004; p. 271. [Google Scholar]
- Delcambre, A.; Saucier, C. Identification of new flavan-3-ol monoglycosides by UHPLC-ESI-Q-TOF in grapes and wine. J. Mass Spectrom. 2012, 47, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N.; Kanner, J.; German, J.B.; Parks, E.; Kinsella, J.E. Inhibition of human low-density lipoprotein by phenolic substances in red wine. Lancet 1993, 341, 454–457. [Google Scholar] [CrossRef]
- Frankel, E.N.; Waterhouse, A.L.; Teissedre, P.L. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1995, 43, 890–894. [Google Scholar] [CrossRef]
- Meyer, A.S.; Heinonen, M.; Frankel, E.N. Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin and ellagic acid on human LDL oxidation. Food Chem. 1998, 61, 71–75. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compos. Anal. 2010, 23, 699–705. [Google Scholar] [CrossRef]
- Di Stefano, R.; Flamini, R. High performance liquid chromatography analysis of grape and wine polyphenols. In Hyphenated Techniques in Grape and Wine Chemistry; Flamini, R., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 33–80. [Google Scholar]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Gómez, M.V.; Velders, A.H.; Hermosín-Gutiérrez, I. Flavonol 3-O-glycosides series of Vitis vinifera Cv. Petit Verdot red wine grapes. J. Agric. Food Chem. 2009, 57, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef] [PubMed]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Sakkiadi, A.V.; Stavrakakis, M.N.; Haroutounian, S.A. Direct HPLC assay of five biologically interesting phenolic antioxidants in varietal Greek red wines. Lebensm. Wiss. Technol. 2001, 34, 410–413. [Google Scholar] [CrossRef]
- Schwarz, M.; Picazo-Bacete, J.J.; Winterhalter, P.; Hermosín-Gutiérrez, I. Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. J. Agric. Food Chem. 2005, 53, 8372–8381. [Google Scholar] [CrossRef] [PubMed]
- Mané, C.; Souquet, J.M.; Ollé, D.; Véran, F.; Mazerolles, G.; Cheynier, V.; Fulcrand, H. Optimisation of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of Champagne grape varieties. J. Agric. Food Chem. 2007, 55, 7224–7233. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R.T. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Flamini, R.; De Rosso, M. Polyphenols analysis by liquid mass spectrometry. In Hyphenated Techniques in Grape and Wine Chemistry; Flamini, R., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 81–128. [Google Scholar]
- Flamini, R.; Traldi, P. Grape and wine polyphenols. In Mass Spectrometry in Grape and Wine Chemistry; Flamini, R., Traldi, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 163–225. [Google Scholar]
- Flamini, R.; de Rosso, M.; Bavaresco, L. Study of grape polyphenols by liquid chromatography-high-resolution mass spectrometry (UHPLC/QTOF) and suspect screening analysis. J. Anal. Methods Chem. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Flamini, R.; de Rosso, M.; de Marchi, F.; Dalla Vedova, A.; Panighel, A.; Gardiman, M.; Maoz, I.; Bavaresco, L. An innovative approach to grape metabolomics: Stilbene profiling by suspect screening analysis. Metabolomics 2013, 9, 1243–1253. [Google Scholar] [CrossRef]
- De Rosso, M.; Tonidandel, L.; Larcher, R.; Nicolini, G.; Dalla Vedova, A.; de Marchi, F.; Gardiman, M.; Giust, M.; Flamini, R. Study of anthocyanic profiles of twenty-one hybrid grape varieties by liquid chromatography and precursor-ion mass spectrometry. Anal. Chim. Acta 2012, 732, 120–129. [Google Scholar] [CrossRef] [PubMed]
- De Rosso, M.; Tonidandel, L.; Larcher, R.; Nicolini, G.; Dalla Vedova, A.; de Marchi, F.; Gardiman, M.; Giust, M.; Flamini, R. Identification of new flavonols in hybrid grapes by combined liquid chromatography-mass spectrometry approaches. Food Chem. 2014, 163, 244–251. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, F.; Seraglia, R.; Molin, L.; Traldi, P.; de Rosso, M.; Panighel, A.; Dalla Vedova, A.; Gardiman, M.; Giust, M.; Carraro, R.; et al. Characterization of seed proanthocyanidins of thirty-two red and white hybrid grape varieties. Vitis 2015, 54, 121–128. [Google Scholar]
- Kueger, S.; Steinhauser, D.; Willmitzer, L.; Giavalisco, P. High resolution plant metabolomics: From mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 2012, 70, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Sana, T.R.; Roark, J.C.; Li, X.; Waddell, K.; Fischer, S.M. Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Technol. 2008, 9, 258–266. [Google Scholar]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
- Panighel, A.; de Rosso, M.; Dalla Vedova, A.; Flamini, R. Putative identification of new p-coumaroyl glycoside flavonoids in grape by ultra-high performance liquid chromatography/high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Yang, Y.; Cheng, L.; Zhong, G.Y. Characterization of polyphenolic metabolites in grape hybrids. Vitis 2013, 52, 51–59. [Google Scholar]
- Lago-Vanzela, E.S.; Da-Silva, R.; Gómes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic composition of the edible parts (flesh and skin) of Bordô Grape (V. labrusca) using HPLC-DAD-ESI-MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146. [Google Scholar] [CrossRef] [PubMed]
- Lago-Vanzela, E.S.; Da-Silva, R.; Gómes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic composition of the Brazilian Seedless Table Grape Varieties BRS Clara and BRS Morena. J. Agric. Food Chem. 2011, 59, 8314–8323. [Google Scholar] [CrossRef] [PubMed]
- Rebello, L.P.G.; Lago-Vanzela, E.S.; Barcia, M.T.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; Castillo-Muñoz, N.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Phenolic composition of the berry parts of hybrid grape cultivar BRS Violeta (BRS Rubea × IAC 1398-21) using HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 54, 356–366. [Google Scholar] [CrossRef]
- Leite da Silva Porto, P.A.; Nave Laranjinha, J.A.; Pererira de Freitas, V.A. Antioxidant protection of low density lipoprotein by procyanidins: Structure/activity relationships. Biochem. Pharmacol. 2003, 66, 947–954. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are not available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rosso, M.; Panighel, A.; Vedova, A.D.; Gardiman, M.; Flamini, R. Characterization of Non-Anthocyanic Flavonoids in Some Hybrid Red Grape Extracts Potentially Interesting for Industrial Uses. Molecules 2015, 20, 18095-18106. https://doi.org/10.3390/molecules201018095
De Rosso M, Panighel A, Vedova AD, Gardiman M, Flamini R. Characterization of Non-Anthocyanic Flavonoids in Some Hybrid Red Grape Extracts Potentially Interesting for Industrial Uses. Molecules. 2015; 20(10):18095-18106. https://doi.org/10.3390/molecules201018095
Chicago/Turabian StyleDe Rosso, Mirko, Annarita Panighel, Antonio Dalla Vedova, Massimo Gardiman, and Riccardo Flamini. 2015. "Characterization of Non-Anthocyanic Flavonoids in Some Hybrid Red Grape Extracts Potentially Interesting for Industrial Uses" Molecules 20, no. 10: 18095-18106. https://doi.org/10.3390/molecules201018095
APA StyleDe Rosso, M., Panighel, A., Vedova, A. D., Gardiman, M., & Flamini, R. (2015). Characterization of Non-Anthocyanic Flavonoids in Some Hybrid Red Grape Extracts Potentially Interesting for Industrial Uses. Molecules, 20(10), 18095-18106. https://doi.org/10.3390/molecules201018095