Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Percentage Yield of EOs by Steam Distillation
2.2. Physiochemical Analysis of Essential Oils
Physiochemical Property | E. citriodora | E. camaldulensis | E. crebra | E. tereticornis | E. globules | E. melanophloia | E. microtheca |
---|---|---|---|---|---|---|---|
Percentage yield | 1.82 | 1.90 | 1.84 | 1.83 | 1.89 | 1.73 | 1.84 |
Color | Pale yellow | Slightly yellowish | Light yellow | Yellow to orange | Colorless to pale yellow | Yellow to brown | Yellow reddish, |
Odor | Citronellal odor | 1,8 Cineole odor | Camphor odor | Cineole-pinene odor | Herbal odor | Pinene odor | Cymene odor |
Solubility | Insoluble in water, soluble in alcohol | Insoluble in water, soluble in alcohol | Insoluble in water, soluble in alcohol | Insoluble in water, soluble in alcohol | Insoluble in water, soluble in alcohol | Insoluble in water, soluble in alcohol | Insoluble in water, soluble in alcohol |
Boiling point (°C) | 177 °C | 178 °C | 165 °C | 173 °C | 161 °C | 174 °C | 166 °C |
Specific gravity | 0.85 | 0.92 | 0.90 | 0.84 | 0.89 | 0.94 | 0.86 |
Refractive index | 1.49 | 1.45 | 1.42 | 1.44 | 1.38 | 1.41 | 1.47 |
2.3. Chemical Nature of Essential Oils
Serial No. | Components | E. citriodora | E. camaldulensis | E. crebra | E. tereticornis | E. globules | E. melanophloia | E. microtheca |
---|---|---|---|---|---|---|---|---|
1. | 1,8-Cineole | 16.1 | 4.9 | 15.2 | 56.5 | 3.1 | 2.0 | |
2. | cis-β-Ocimene | 0.1 | 2.1 | |||||
3. | 4-Methylene-1-(1-methylethyl)-3-Cyclo-hexene-1-ol | 5.7 | ||||||
4. | 3-Carene | 1.7 | ||||||
5. | α-Cubebene | 2.2 | 2.2 | 0.2 | ||||
6. | α-Elemene | 1.3 | ||||||
7. | α-Humelene | 2.4 | ||||||
8. | α-Terpinol | 6.3 | 4 | |||||
9. | α-Phellandrene | 8.1 | ||||||
10. | α-Pinene | 3.6 | 0.9 | 2.5 | 12.1 | 4.2 | 16 | 31.4 |
11. | β-Caryophyllene | 1.2 | ||||||
12. | β-Citronellal | 3.2 | ||||||
13. | β-Farnesol | 11.1 | 2.8 | 10 | ||||
14. | β-Phellandrene | 0.9 | 14.3 | |||||
15. | β-Pinene | 2.6 | 0.2 | 1.5 | 2.5 | |||
16. | Amorphane | 0.3 | ||||||
17. | Benzaldehyde | 0.8 | ||||||
18. | Camphene | 1.1 | 0.1 | 0.9 | ||||
19. | Camphor | 1.3 | ||||||
20. | Citrinyl acetate | 2.8 | 9.1 | 2.8 | 13.2 | |||
21. | Citral | 0.1 | ||||||
22. | Citronellal | 22.3 | ||||||
23. | Citronellol | 20 | ||||||
24. | Citronellal oxime | 1.4 | 1.0 | 3.6 | 1.4 | |||
25. | Cymene-8-ol | 0.3 | 1.6 | |||||
26. | Cyclopentanone | |||||||
27. | Eugenol | 3.9 | 0.6 | 0.7 | 1.8 | 1.7 | 11.8 | |
28. | Eucalyptol | 0.1 | 3.3 | 0.2 | 1.1 | 8.1 | ||
29. | Digitoxigenine | 1.8 | 1.7 | 0.4 | ||||
30. | Geranial | 0.1 | 4.1 | 2.7 | ||||
31. | Germacrene-D | 7.5 | 2.5 | |||||
32. | Geranial oxime | 1.9 | 4.2 | |||||
33. | Geranial | 0.1 | 6.6 | 3.6 | 0.1 | 1.4 | ||
34. | Geranial nitrile | 0.7 | 1.1 | 3.6 | ||||
35. | Geranyl acetate | 2.7 | ||||||
36. | Globulol | 2.4 | 0.6 | |||||
37. | Isopulegol | 0.1 | 2.3 | 0.1 | 0.6 | |||
38. | Isosativene | 3.7 | 4.5 | |||||
39. | Limonene | 0.1 | 14.3 | 0.7 | 28 | 1.2 | 1.5 | |
40. | Linalool | 0.5 | 17 | 1.1 | 7.4 | 0.3 | 0.6 | |
41. | 2-Methylprop-1-enyl-cyclohexa-1,5-diene | 0.9 | ||||||
42. | Myrtenal | 0.6 | 8.1 | 9.2 | ||||
43. | Neriine | 2.3 | 0.4 | 0.8 | ||||
44. | Neral | 1.7 | 5.4 | 2.7 | 1.7 | |||
45. | Neral oxime | 1,4 | ||||||
46. | Paraldehyde | 5.3 | 6.0 | 1.4 | ||||
47. | Paraldehyde nitrile | 1.9 | 5.9 | 7.1 | 0.7 | |||
48. | Patchoulene | 9.4 | 3.0 | |||||
49. | p-Cymene | 12.2 | 0.2 | 12.4 | ||||
50. | Phenythyl acetate | 7.1 | 0.2 | 1.8 | 1.3 | |||
51. | Pinocarveol | |||||||
52. | p-Ment-1-en-3,8-diol | 5.1 | ||||||
53. | Sabinene | 4.2 | 1.4 | |||||
54. | Spathulenol | 0.4 | ||||||
55. | Solanone | 0.3 | ||||||
56. | Terpinene-4-ol | 0.3 | 5.3 | 10.2 | 1.2 | |||
57. | Verbenol | 9.2 | ||||||
58. | γ -Terpinene | 0.7 | 10.7 | |||||
59. | γ-Terpinene | 1 | 1.8 | 0.4 | ||||
60. | Trance-pinocarveol | 1.1 | 6.8 | |||||
61. | γ-phellandrene | 3.2 | ||||||
62. | Ylangene | 0.9 |
2.4. Antimicrobial Activity
2.4.1. Antibacterial Activity
Microbial Species | Zones of Growth Inhibition ( in mm) by Eucalyptus Species | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
E. citriodora | E. camaldulensis | E. crebra | E. tereticornis | E. globules | E. melanophloia | E. microtheca | Amoxil | Nizoral | ||
Bacterial species | S. aureus | 31 ± 0.83 Aa | 21 ± 0.851 Ade | 23 ± 0.836 Acd | 22 ± 0.853 Ade | 28 ± 0.835 Acd | 26 ± 0.836 Abc | 16 ± 0.831 Ae | 22 ± 0.833 Aab | - |
B. subtilis | 28 ± 0.833 Aa | 24 ± 0.835 Ade | 21 ± 0.848 Acd | 18 ± 0.835 Ade | 17 ± 0.833 Acd | 22 ± 0.836 Abc | 20 ± 0.838 Ae | 28 ± 0.833 Aab | - | |
E. coli | 15 ± 0.835 Ba | 10 ± 0.835 Bde | 12 ± 0.835 Bcd | 14 ± 0.836 Bde | 13 ± 0.83 Bcd | 16 ± 0.833 Bbc | 11 ± 0.835 Be | 20 ± 0.831 Bab | - | |
Fungal species | A. niger | 29 ± 0.831 Aa | 28 ± 0.835 Aab | 25 ± 0.836 Abc | 26 ± 0.833 Ab | 24 ± 0.835 Abc | 27 ± 0.835 Ac | 21 ± 0.835 Ac | - | 17 ± 0.835 Ac |
R. solani | 26 ± 0.836 Bb | 22 ± 0.829 Bab | 19 ± 0.835 Bbc | 21 ± 0.836 Bb | 20 ± 0.835 Bbc | 12 ± 0.835 Bc | 17 ± 0.838 Bc | - | 20 ± 0.835 Bc |
2.4.2. Antifungal Activity
2.5. Antioxidant Activity
3. Experimental Section
3.1. Chemicals and Microbial Strains
3.2. Collection of Samples
3.3. Procedure to Extract EOs
3.4. Physiochemical Properties
3.5. Chemical Composition through GC-Mass Spectroscopy
3.6. Antimicrobial Activity
3.7. Antioxidant Activity of EOs
3.7.1. DPPH Scavenging Activity
3.7.2. Antioxidant Activity in Linoleic Acid System
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, W.; Wu, N.; Zu, Y.G.; Fu, Y.J. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 2008, 108, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Reische, D.W.; Lillard, D.A.; Eitenmiller, R.R. Antioxidants in food lipids. In Chemistry Nutrition and Biotechnology; Ahoh, C.C., Min, D.B., Eds.; Marcel Dekker: New York, NY, USA, 1998; Volume 1, pp. 423–448. [Google Scholar]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Svoboda, K.P.; Deans, S.G. Biological activities of essential oils from selected aromatic plants. Acta Hortic. 1998, 39, 203–209. [Google Scholar] [CrossRef]
- Husnu, K.; Baser, C.; Demirci, F. Chemistry of essential oils. Flavour Fragr. J. 2007, 5, 43–86. [Google Scholar]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Evaluation of antioxidant activity total phenols and phenolic compounds in thyme (Thymus vulgaris L.) sage (Salvia oficinalis L.) and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2002, 43, 827–831. [Google Scholar] [CrossRef]
- Quinn, P.J.; Carter, M.E.; Markey, B.; Carter, G.R. Antimicrobial activity of plant extracts. Clin. Vet. Microb. 2004, 7, 543–549. [Google Scholar]
- Hur, J.S.; Ahn, S.Y.; Koh, Y.J.; Lee, C. Antimicrobial properties of cold-tolerant Eucalyptus species against phytopathogenic fungi and food-borne bacterial pathogens. Plant Pathol. J. 2000, 16, 286–289. [Google Scholar]
- Batish, D.R.; Singh, H.P.; Setia, N.; Kaur, S.; Kohli, R.K. Chemical composition and phytotoxicity of volatile essential oil from fresh and fallen leaves of Eucalyptus citriodora. Phytotoxicity 2006, 61, 465–470. [Google Scholar]
- Pino, J.A.; Marbot, R.; Quert, R.; Garcia, H. Study of essential oils of Eucalyptus resinifera, E. tereticornis and Corymbia maculata (Hook.) grown in Cuba. Flavour Frag. J. 2002, 17, 1–14. [Google Scholar] [CrossRef]
- Wood, I.; Chudleigh, P.; Bond, K. Developing New Agricultural Industries—Lessons from the Past. Rural Ind. Res. Dev. Corp. Aust. Res Pap. Ser. 1994, 1, 86–92. [Google Scholar]
- Neelam, A.; Hany, O.; Sherwani, S.K.; Jabeen, S.; Nangyal, H. Phytochemical and Bioactivity of Commercially Available Eucalyptus Oil against Human Pathogens. South Asian J. Life Sci. 2014, 2, 8–11. [Google Scholar] [CrossRef]
- Duke, J.A. The Green Pharmacy; Rodale Press: Emmaus, PA, USA, 1997; pp. 140–255. [Google Scholar]
- Nawall, C.A.; Anderson, L.A.; Phillipson, J.D. Herbal Medicines: A Guide for Health-Care Professional; The Pharmaceut Press: London, UK, 1996; pp. 88–148. [Google Scholar]
- Pollack, H.A.; Sheldon, D.S.; Kristin, S.; Jayakody, R. Substance use among welfare recipients: Trends and policy responses. Chemotherapy 2002, 76, 256–274. [Google Scholar] [CrossRef]
- Guimaraes, R.; Sousa, J.M.; Ferreira, I.C.F. Contribution of essential oils and phenolics to the antioxidant properties of aromatic plants. Ind. Crops Prod. 2010, 32, 152–156. [Google Scholar] [CrossRef]
- Sartorelli, P.; Marquioreto, A.D.; Amaral-Baroli, A.; Lima, M.E.; Moreno, P.R. Chemical composition and antimicrobial activity of essential oil from two species of Eucalyptus. Phytother. Res. 2007, 21, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Elaissi, A.; Rouis, Z.; Salem, N.A.; Mabrouk, S.; Salem, Y.; Salah, K.B.H.; Aouni, M.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F.; et al. Chemical composition of 8 Eucalyptus species’ essential oils and the evaluation of their antibacterial antifungal and antiviral activities. BMC Complement. Altern. Med. 2012, 8, 12–81. [Google Scholar] [CrossRef] [PubMed]
- Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res. 2015, 48, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Qadri, S.M.A. Selection of Eucalyptus species for afforestation in West Pakistan. In Proceedings of the Second Pakistan Silvicultural Conference, Peshawar, Pakistan, 1–5 October 1966; pp. 145–148.
- Jaimand, K.; Assareh, M.H.; Rezaee, M.B. Volatile oil constituents of leaves of the Eucalyptus gillii maiden and Eucalyptus microcarpa subsp. Macrocarpa: Hook from Iran. Iran. J. Pharm. Res. 2006, 1, 73–75. [Google Scholar]
- Hassine, D.B.; Abderrabba, M.; Yvon, Y.; Lebrihi, A.; Mathieu, F. Chemical composition and in vitro evaluation of the antioxidant and antimicrobial activities of Eucalyptus gillii essential oil and extracts. Molecules 2012, 17, 9540–9558. [Google Scholar] [CrossRef] [PubMed]
- Marzoug, B.H.N.; Bouajila, J.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Romdhane, M. Eucalyptus (gracilis, oleosa, salubris, and salmonophloia) essential oils: their chemical composition and antioxidant and antimicrobial activities. J. Med. Food 2010, 13, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Brophy, J.J.; Froster, P.I.; Goldsack, R.J.; Hibbert, D.B.; Punruckvong, A. Essential oil variation in E. cerebra E. melanopholia (Myrtaceae) and their hybrids. Aust. J. Bot. 2009, 57, 425–431. [Google Scholar] [CrossRef]
- Marzoug, B.H.N.; Romdhane, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Khouja, M.L.; Bouajila, J. Eucalyptus oleosa essential oils: Chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules 2011, 16, 1695–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grbovic, S.; Orcic, D.; Couladis, M.; Jovin, E.; Bugarin, D.; Balog, D.; Dukic, M.N. Variation of essential oil composition of Eucalyptus camaldulensis (mytraceae) from the Montinegro coastline. APTF 2010, 41, 151–158. [Google Scholar]
- Salem, M.Z.; Ashmawy, N.A.; Elansary, H.O.; El-Settawy, A.A. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils. Nat. Prod. Res. 2015, 29, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Herzi, N.; Bouajila, J.; Camy, S.; Cazaux, S.; Romdhane, M.; Condoret, J.S. Comparison between supercritical CO2 extraction and hydrodistillation for two species of Eucalyptus: Yield, chemical composition, and antioxidant activity. J. Food Sci. 2013, 78, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Isiaka, A.O.; Nureni, O.; Kasali, A.; Wilfried, A. Chemical composition of essential oil from the leaves of three Eucalyptus species growing in Nigeria. Essent. Oils 2003, 4, 234–235. [Google Scholar]
- Iqbal, Z.; Imtiaz, H.; Yasin, M. Genetic variability to essential oil contents and composition in the five species of Eucalyptus. Pak. J. Bot. 2003, 35, 843–852. [Google Scholar]
- Sefidkon, F.; Assareh, M.H.; Abravesh, Z.; Barazandeh, H. Chemical composition of the essential oils of four cultivated Eucalyptus species in Iran as medicinal plants (E. microtheca, E. spathulata, E. largiflorens and E. torquata). Int. J. Pharm. Res. 2007, 6, 135–140. [Google Scholar]
- Oyedeji, A.O.; Ekundayo, O.; Olawore, O.N.; Adeniyi, B.A.; Koenig, W.A. Antimicrobial activity of the essential oils of five Eucalyptus species growing in Nigeria. Fitoterapia 1999, 70, 526–528. [Google Scholar] [CrossRef]
- Karaman, I.; Sahin, F.; Gulluce, M.; Qgutcu, H.; Sengul, M.; Adiguzel, A. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J. Ethnopharmacol. 2003, 85, 231–235. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Ghadamib, M.; Batooli, H. Bioactivity of methanol extracts of Eucalyptus sargentii maiden cultivated in Iran. Dig. Nanomat. Biostruct. 2010, 5, 859–863. [Google Scholar]
- Guenther, E. The production of essential oils and methods of distillation. Essent. Oils 1972, 1, 85–188. [Google Scholar]
- Rajeswara, R.B.R.; Kaul, P.N.; Syamasundar, K.V.; Ramesh, S. Comparative composition of decanted and recovered essential oils of Eucalyptus citriodora Hook. Flavour Fragr. J. 2003, 18, 133–135. [Google Scholar] [CrossRef]
- Elliot, W.R.; Jones, D.L. Encyclopaedia of Australian Plants Suitable for Cultivation; Lothian Publishing Company Pty Ltd.: Melbourne, Australia, 2010; pp. 372–375. [Google Scholar]
- Doran, J.C.; Brophy, J.J.; Lassak, E.V.; House, A.P.N. Backhousia citriodora F. Muell—Rediscovery and chemical characterization of the l-citronellal form and aspects of its breeding system. Flavour Fragr. J. 2001, 16, 325–328. [Google Scholar] [CrossRef]
- Kim, J.K.; Kang, C.S.; Lee, J.K.; Kim, Y.R.; Han, H.Y.; Yun, H.K. Evaluation of repellency effect of two natural aroma mosquito repellent compounds, citronella and citronellal. Entomol. Res. 2005, 35, 117–120. [Google Scholar] [CrossRef]
- Ates, A.D.; Frdogrul, O.T. Antimicrobial activities of various medicinal and commercial plant extracts. Turk. J. Biol. 2003, 5, 157–162. [Google Scholar]
- Cruickshank, R.; Dugieurb, J.P.; Marmion, B.P.; Swaim, R.N.A. Antimicrobial activity of essential oils. Med. Microb. 1975, 11, 605–840. [Google Scholar]
- Moreira, M.R.; Ponce, A.G.; del-Valle, C.E.; Roura, S.I. Inhibitory parameters of essential oils to reduce a food borne pathogen LWT. Food Sci. Technol. 2005, 38, 565–570. [Google Scholar]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of the essential oils of some Lamiaceae species and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Mittal, S.; Kaur, S.; Batish, D.R.; Kohli, R.K. Characterization and antioxidant activity of essential oil from fresh and decaying leaves of Eucalyptus tereticornis. J. Agric. Food Chem. 2009, 57, 6962–6966. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Duh, P.D.; Chuang, D.Y. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000, 70, 307–315. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds and EOs are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaffar, A.; Yameen, M.; Kiran, S.; Kamal, S.; Jalal, F.; Munir, B.; Saleem, S.; Rafiq, N.; Ahmad, A.; Saba, I.; et al. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species. Molecules 2015, 20, 20487-20498. https://doi.org/10.3390/molecules201119706
Ghaffar A, Yameen M, Kiran S, Kamal S, Jalal F, Munir B, Saleem S, Rafiq N, Ahmad A, Saba I, et al. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species. Molecules. 2015; 20(11):20487-20498. https://doi.org/10.3390/molecules201119706
Chicago/Turabian StyleGhaffar, Abdul, Muhammad Yameen, Shumaila Kiran, Shagufta Kamal, Fatima Jalal, Bushra Munir, Sadaf Saleem, Naila Rafiq, Aftab Ahmad, Iram Saba, and et al. 2015. "Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species" Molecules 20, no. 11: 20487-20498. https://doi.org/10.3390/molecules201119706
APA StyleGhaffar, A., Yameen, M., Kiran, S., Kamal, S., Jalal, F., Munir, B., Saleem, S., Rafiq, N., Ahmad, A., Saba, I., & Jabbar, A. (2015). Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species. Molecules, 20(11), 20487-20498. https://doi.org/10.3390/molecules201119706