Secondary Metabolites from Rubiaceae Species
Abstract
:1. Introduction
2. Taxonomic Classification of Rubiaceae
3. Chemical and Biological Aspects of Rubiaceae
4. Chemotaxonomic Considerations
Genera | Class | Substance | Structure * |
---|---|---|---|
Cephaelis | Alkaloid | Emetine | I |
Lactone | Chelidonic acid | II | |
Alkaloid | Cephalin | III | |
Alkaloid | Psycotrin | IV | |
Cinchona | Alkaloid | Quinine | V |
Triterpene | Cincholic acid | VI | |
Triterpene | Quinovic acid | VII | |
Alkaloid | Quinidine | VIII | |
Alkaloid | Cinchonine | IX | |
Alkaloid | Cinchonidine | X | |
Coffea | Methyl xantine | Caffeine | XI |
Diterpene | Cafestol | XII | |
Anthraquinone | Galiosin | XIII | |
Anthraquinone | Copareolatin | XIV | |
Anthraquinone | Munjistin | XV | |
Corynanthe | Alkaloid | Yohimbine | XVI |
Galium | Iridoide | Macedonine | XVII |
Genipa | Monoterpene | Genipin | XVIII |
Hedyotis | Anthraquinone | Alizarin | XIX |
Landerbergia | Alkaloid | Quinidine | VIII |
Alkaloid | Cinchonine | IX | |
Alkaloid | Cinchonidine | X | |
Morinda | Anthraquinone | Alizarin | XIX |
Mussaenda | Triterpene | Arjunolic acid | XX |
Oldenlandia | Anthraquinone | Alizarin | XIX |
Psychotria | Alkaloid | Psycotrin | IV |
Alkaloid | Cephalin | III | |
Relbunium | Anthraquinone | Purpurin | XXI |
Remijia | Alkaloid | Quinidine | VIII |
Alkaloid | Cinchonine | IX | |
Alkaloid | Cinchonidine | X | |
Rubia | Anthraquinone | Purpurin | XXI |
Anthraquinone | Alizarin | XIX |
5. Data Obtained Through the Bibliographic Survey
Subfamily | Tribe | Species | Compound (s) | References |
---|---|---|---|---|
Cinchonoideae | CHI | Chiococca alba | Triterpene glycosides: chiococcasaponins I–V | [65] |
Cetoalcohols: 4-hydroxy-heptadecan-7-one; 5-hydroxy-octadecan-11-one Phenylcoumarines: 5,7,4′-trimethoxy-4-phenylcoumarine Lignans: exostemin; matairesinol; d-mannitol | [66] | |||
Seco-iridoids: albosides I–III | [67] | |||
Nor-seco-pimarane: merilactone | [68] | |||
Triterpene: 3-β-hydroxyolean-12,15-dien-28-oic acid | [69] | |||
Triterpene glycosides: O-α-d-apiofuranosyl (1→3)-[α-d-apiofuranosyl (1→4)]-α-l-rhamnopyranosyl (1→2)-α-l-arabinopyranosyl 3-O-β-d-glucopyranosyl-3-β-hydroxyolean-12,15-dien-28-oate; 28-O-α-d-apiofuranosyl (1→3)-α-l-rhamnopyranosyl (1→2)-α-l-arabinopyranosyl 3-O-β-d-glucopyranosyl-3-β-hydroxyolean-12,15-dien-28-oate | [70] | |||
Ent-kaurane diterpenes: 1-hydroxy-18-nor-kaur-4,16-dien-3-one; 15-hydroxy-kaur-16-en-3-one; kaur-16-en-19-ol; kaurenoic acid; merilactone; ribenone | [71] | |||
Ent-kaurane: ent-17-hydroxy-16α-kauran-3-one | [72] | |||
Chiococca braquiata | Flavonoids: 4′-methoxykaempferol-7-(acetyloxy)-3,5-O-α-l-rhamnoside; apigenin; 7-O-methoxyquercetrin; quercetrin Triterpenes: α-amirin; β-amirin; ursolic acid; oleanolic acid | [73] | ||
Coutarea hexandra | Coumarins: 5-O-β-d-glucopyranosyl-4-(4-hydroxyphenyl)-7-methoxy-2H-chromen-2-one; 5-O-β-d-galactopyranosyl-4-(4-hydroxyphenyl)-7-methoxy-2H-chromen-2-one Cucurbitacins: 23,24-dihydrocucurbitacin F; 23,24-dihydro-25-acetylcucurbitacin F; 2-O-β-d-glucopyranosyl-23,24-dihydrocucurbitacin F | [74] | ||
Exostema acuminatum | Nor-diterpenes: ent-16,17-diidroxicauran-19-nor-4-en-3-one; ent-16,17-dihydroxy-kauran-19-nor-4-en-3-one Phenylcoumarins: 5,7,4′-trimethoxy-4-phenylcoumarin; 7,4′-dimethoxy-5-hydroxy-4-phenylcoumarin; 5,7,4′-trimethoxy-3′-hydroxy-4- phenylcoumarin; 5,7,4′-trimethoxy-8-hydroxy-4-phenylcoumarin (exostemin I); 5,7,4′-trimethoxy-8,3′-dihydroxy-4′-phenylcoumarin; | [75] | ||
7,4′-dimethoxy-5,3′-hydroxy-4′-phenylcoumarin | [75] | |||
Exostema caribaeum | Phenylcoumarin: 5-O-β-d-galactopyranosyl-7-methoxy-3′, 4′-dihydroxy-4-phenylcoumarin | [76] | ||
Hintonia latiflora | Phenylcoumarin: 5-O-(6′′acetyl-β-d-glucopyranosyl)-7,3′,4′-trihydroxy-4-phenylcoumarin Phenylstyrene: 6-O-β-d-glucopyranosyl-2,3′,4β-trihydroxy-4-methoxy-β-phenylstyrene | [77] | ||
Hintonia standleyana | Phenylcoumarin: 3-O-β-d-glucopyranosyl-23,24-dihydrocucurbitacin F; 5-O-[β-d-apiofuranosyl-(1→6)-β-d-glucopyranosyl]-7-methoxy-3′,4′-dihydroxy-4-phenyl-coumarin; desoxycordifolinic acid | [78] | ||
CIN | Cinchona ledgeriana | Quinolinic alkaloids: quinine; quinidine; cinchonidine and cinchonine | [79,80] | |
Cinchona robusta | Anthraquinones: robustaquinones A–H; 1,3,8-trihydroxy-2-methoxyanthraquinone; copareolatin 6-methyl ether | [81] | ||
Ladenbergia oblongifolia | Alkaloids: epicinchonicinol; cinchonidicinol; mixture of dihydrocinchonicinol and dihydrocinchonidicinol | [82] | ||
Remijia peruviana | Quinolinic alkaloids: quinine; cuprein; cinchonine; acetylcupreine; N-ethylquinine | [83] | ||
Alkaloids: remijinine; epiremijinine; 5-acetylapocinchonamine; N-acetyldeoxy-cinchonicinol; N-acetylcinchonicinol | [84] | |||
Sickingia tinctoria | Indole alkaloids: sickingin; 5-carboxystrictosidine; ophiorines A–B; lyalosidic acid | [85] | ||
Sickingia williamsii | Indole alkaloids: sickingin; 5α-carboxystrictosidine; ophiorines A–B; lyalosidic acid | [85] | ||
GUE | Antirhea acutata | Triterpene-methyl ester: nor-seco-cycloartane | [86] | |
Antirhea lucida | Indole alkaloids: N,N-methyl-3′-indolylmethyl-5-methoxytryptamine; N,N-dimethyltryptamine; 6-methoxy-2-methyl-1,2,3,4-tetrahydro-13-carboline | [87] | ||
Antirhea portoricensis | Indole alkaloids: 20-epiantirhine; isoantirhine; antirhine; yohimbol; epi-yohimbol; 19(S)-hydroxydihydrocorinanteol | [88] | ||
Chomelia obtusa | Triterpenes: 3-O-β-d-quinovopyranosyl-28-O-β-d-glycopyranosyl quinovic acid; 3-O-β-d-quinovopyranosyl-28-O-β-d-glycopyranosyl cincholic acid; ursolic acid; oleanolic acid Flavonoids: (3-O-β-d-glycopyranosyl quercetin; 3-O-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] quercetin; 3,5-O-dicaffeoyl quinic acid; 4,5-O-dicaffeoyl quinic acid | [89] | ||
Guettarda grazielae | Triterpenes: α-amyrin acetate; cycloartenone; 3β,19α,23-trihydroxyurs-12-ene; 3-β-O-β-d-glucopyranosylquinovic acid; 3β,6β,19α,23-tetrahydroxyurs-12-en-28-oic; acid ursolic acid | [90] | ||
Iridoid: guettardodiol Seco-iridoid: sarracenin; 7α-morroniside; 7β-morroniside | [91] | |||
Guettarda noumeana | Quinolinic alkaloids: cupreine; dihydrocupreine; N-methyldihydroquinicinol; N-methylquinicinol | [92] | ||
Guettarda pohliana | Triterpenes: ursolic acid; oleanolic acid; pomolic acid; rotundic acid; 3β,6β,19α,23-tetra-hydroxyurs-12-en-28-oic acid; clethric acid Monoterpene: 5-O-caffeoylquinic acid; loliolide Seco-iridoid: secoxiloganin | [93] | ||
Triterpenes glycosides: 28-O-β-d-glycopyranosyl-3-O-β-d-quinovopyranosyl quinovic acid; 28-O-β-d-glycopyranosyl-3-O-β-d-glycopyranosyl quinovic acid; 3-O-β-d-glycopyranosyl quinovic acid; 28-O-β-d-glycopyranosyl-3-O-β-d-glycopyranosyl cincholic acid; quinovic acid; daucosterol Phenolic compound: 4,5-O-dicaffeoylquinic acid | [94] | |||
Guettarda speciosa | Phenolic compounds: 1-O-α-d-glucuronide 3-O-benzoyl ester; guettardionoside Indole alkaloid: cadambine Iridoid glycoside: sweroside; morroniside Steroids: ecdysone; icariside D1 Triterpene: quinovic glycoside C | [95] | ||
Machaonia brasiliensis | Steroids: 3β-O-β-glucopyranosyl stigmasterol; 3β-O-β-glucopyranosyl sitosterol Seco-iridoid: secologanoside Flavonoid: 7-O-β-glucopyranosyl quercetagetin Clorogenic acids: 4,5-O-dicaffeoylquinic acid; 5-O-caffeoylquinic acid. | [96] | ||
Neolamarckia cadamba | Indole alkaloids: neolamarckines A–B | [97] | ||
Neolaugeria resinosa | Oxindole alkaloids: neolaugerine; isoneolaugerine; 15-hydroxyneolaugerine | [98] | ||
Timonius timon | Triterpenes: 3β,6β,23-trihydroxy-olean-12-en-28-oic acid; 3β,6β,19α,23-tetrahydroxy-olean-12-en-28α-oic acid | [99] | ||
HAM/HIL | Chione venosa var. venosa | Acetophenone derivatives: ortho-hydroxy-acetophenone-azine; acetophenone-2-O-β-d-glucopyranoside; acetophenone-2-O-[β-d-apiofuranosyl-(1→6′)-O-β-d-glucopyranosyl] Iridoid glycosides: 4α-morroniside; sweroside; diderroside Triterpene: daucosterol | [100] | |
HAM | Deppea blumenaviensis | β-carboline alkaloids: deppeaninol | [101] | |
Hamelia magniflora | Indole alkaloids: magniflorine; ajmalicine | [102] | ||
Hamelia patens | Indole alkaloids: (−)-hamelin; tetrahydroalstonin; aricine; pteropodine; isopteropodine; uncarine F; speciophylline; palmirine; mitraphylline; rumberine | [103] | ||
HYM | Hymenodictyon excelsum | Triterpenes: 3β-hydroxy-11-oxours-12-en-28-oic acid; 3β-hydroxy-27-p-(Z)-coumaroyloxyolean-12-en-28-oic acid; 3-oxo-11α,12α-epoxyurs-13β,28-olide; 3β-hydroxy-11α,12α-epoxyurs-13β,28-olide; 3β-hydroxyurs-11-en-13(28)-lactone; oleanolic acid; uncarinic acid E (3β-hydroxy-27-(E)-p-coumaroyloxyolean-12-en-28-oic acid; ursolic acid; ursonic acid; 3β-(formyloxy)-urs-12-en-28-oic acid | [104] | |
Hymenodictyon floribundum | Glycosides: scopolin; himexelsin or xeroboside; scopoletin | [105] | ||
Iridoids: floribundane A–B | [106] | |||
ISE | Isertia haenkeana | Indole alkaloids: dihydroquinamine; epidihydroquinamine; apodihydrocinchonamine; 3-carbomethoxy-5-(l′-hydroxyethyl) pyridine | [107] | |
Isertia pittieri | Triterpene glycosides: pyrocincholic acid 3β-O-α-d-quinovopyranosyl-28-[β-d-glucopyranosyl(1→6)-β-d-glucopyranosyl] ester; pyrocincholic acid 3β-O-β-d-quinovopyranosyl(1→6)-α-d-glucopyranosyl-28-[-β-d-glucopyranosyl(1→2)-β-d-glucopyranosyl] ester; quinovic acid 3α-O-R-l-rhamnopyranosyl(28→1)-β-d-glucopyranosyl ester; quinovic acid 3β-O-β-d-glucopyranosyl(1→4)-R-l-rhamnopyranosyl-(28→1)-β-d-glucopyranosyl ester | [108] | ||
NAU | Adina cordifolia | Coumarins: umbelliferone; skimmin; 7-methoxycoumarin and 7-hydroxy-8-acetyl coumarin | [109] | |
Adina racemosa | Flavonoid glycosides: quercetin 3-O-R-l-rhamnopyranosyl(16)-(3-O-trans-p-coumaroyl)-α-d-galactopyranoside; quercetin 3-O-R-l-rhamnopyranosyl(1→6)-[(4-O-trans-p-coumaroyl)-R-l-rhamnopyranosyl(1→2)]-(4-O-trans-p-coumaroyl)-α-d-galactopyranoside; kaempferol 3-O-R-l-rhamnopyranosyl(1→6)-[(4-O-trans-p-coumaroyl)-R-l-rhamno-pyranosyl(1→2)]-(4-O-trans-p-coumaroyl)-β-d-galactopyranoside; quercetin 3-O-R-l-rhamnopyranosyl(1→6)-[(4-O-trans-p-coumaroyl)-R-l-rhamnopyranosyl(1→2)]-(3-O-trans-p-coumaroyl)-β-d-galactopyranoside; quercetin 3-O-R-l-rhamnopyranosyl(1→6)-[(4-O-trans-caffeoyl)-R-l-hamnopyranosyl-(1→2)]-(3-O-trans-p-coumaroyl)-β-d-galactopyranoside | [110] | ||
Secoiridoid glucosides: adinosides A–E; grandifloroside 11-methyl ester | [111] | |||
Adina rubella | Triterpenes glycosides: quinovic acid 3-O-β-d-glucopyranosyl (l→4)-β-d-fucopyranoside; quinovic acid 3-O-β-d-glucopyranosyl (1→4)-β-d-fucopyranoside (28→1)-β-d-glucopyranosyl ester; quinovic acid 3-O-β-d-glucopyranosyl (1→4)-α-l-rhamnopyranosyl-(28→1)-β-d-glucopyranosyl ester; quinovic acid 3-O-β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl-(28→1)-β-d-glucopyranosyl ester | [112] | ||
27-Nor-triterpene glycosides: rubellosides C–D | [113] | |||
Adina polycephala | Iridoids: genipin-1-O-α-l-rhamnopyranosyl (1→6)-α-d-glucopyranoside | [114] | ||
Cephalanthus glabratus | Oxindole alkaloids: tetrahydroalstonine; mitraphylline; uncarine E | [115] | ||
Cephalanthus occidentalis | Triterpenes glycosides: 3-O-α-glucopyranosylcincholic acid; cincholic acid 28-O-α-glucopyranosyl ester; 3-O-β-glucopyranosyl-(1→4)-β-fucopyranosylcincholic acid; 3-O-β-glucopyranosyl-(1→4)-β-fucopyranosylcincholic acid 28-O-β-glucopyranosyl ester; 3-O-β-glucopyranosylcincholic acid 28-O-α-arabinopyranosyl-(1→2)-β-glucopyranosyl ester; 3-O-β-glucopyranosylquinovic acid 28-O-α-arabinopyranosyl-(1→2)-β-glucopyranosyl ester | [116] | ||
Corynanthe pachyceras | Indole alkaloids: corynanthine; α-yohimbine; dihydrocorynanthine; corynantheine; corynantheidine | [117] | ||
Mitragyna diversifolia | Monoterpe indole alkaloids: mitradiversifoline; specionoxeine-N(4)-oxide; 7-hydroxyisopaynantheine; 3-dehydropaynantheine; 3-isopaynantheine-N(4)-oxide | [118] | ||
Mitragyna inermis | 27-Nor-glycosides triterpene: inermisides I–II Triterpenes: quinovic acid; 3-O-[β-d-glucopyranosyl-(1→4)-α-l-rhamnopyranosyl]; β-d-glucopyranosyl-[3-O-(β-d-glucopyranosyl)]-quinovic acid; 3-O-(β-d-6-deoxy-glucopyranosyl) quinovic acid | [119] | ||
Indole alkaloids: naucleactonin D; nauclefilline; angustoline; angustine; naucleficine; nauclefidine Triterpenes: barbinervic acid; quinovic acid; 3-O-α-l-rhamnopyranoside acid; betulinic acid; oleanolic acid; ursolic acid; strictosamide | [120] | |||
Oxindole alkaloids: mitraphylline; isomitraphylline; speciophylline; pteropodine | [121] | |||
Mitragyna parvifolia | Oxindole alkaloids: 16,17-dihydro-17β-hydroxyisomitraphylline; 16,17-dihydro-17β-hydroxymitraphylline; 2-isomitraphylline; mitraphylline | [122] | ||
Mitragyna rotundifolia | Triterpene glycosides: quinovic acid 3-O-β-d-6-deoxy-glucopyranoside 28-O-β-d-glucopyranosyl ester; quinovic acid 27-O-α-l-rhamnopyranosyl ester; 3-O-α-l-rhamnopyranoside; quinovic acid 27-O-β-d-glucopyranosyl ester; quinovic acid 3-O-6-deoxy- glucopyranoside; quinovic acid 27-O-β-d-glucopyranosyl ester; cincholic acid 3-O-β-d-6-deoxy-glucopyranoside; cincholic acid 28-O-β-d-glucopyranosyl ester | [123] | ||
Mitragyna speciosa | Indole alkaloids: mitragynine; speciogynine; speciociliatine; 7-hydroxy-mitragynine; paynantheine | [124] | ||
Nauclea cadamba | Gluco-indole alkaloids: 3β-dihydroisocadambine; cadambine; 3α-dihydrocadambine; 16-carbomethoxynaufoline; nauclechine; 5,11,12,5α-tetrahydroindolo[3,2-g]-pyridino-[4,3-b]indolizine | [125] | ||
Nauclea diderrichii | Triterpene glycosides: quinovic acid 3-O-α-l-rhamnopyranosyl (28→1)-β-d-gluco-pyranosyl ester; quinovic acid 3-O-β-d-glucopyranosyl (1→2)-d-glucopyranoside; quinovic acid 3-O-β-l-fucopyranosyl (28→1)-β-d-glucopyranosyl ester | [126] | ||
Indole alkaloids: 3α-5α-tetrahydrodeoxycordifoline; cadambine acid | [127] | |||
Nauclea latifolia | Indole alkaloids: latifoliamides A–E; angustoline | [128] | ||
Nauclea officinalis | Indole alkaloids: naucleficines A–E; naucleidinal; angustoline | [129] | ||
Indole alkaloids: naucline; angustine; angustidine; nauclefine; naucletine | [130] | |||
Triterpenes: 3β,19α,23,24-tetrahydroxyurs-12-en-28-oic acid; 2β,3β,19α,24-tetrahydroxyurs-12-en-28-oic acid; 3-oxo-urs-12-ene-27; 28-dioic acid; quinovic acid 3-β-rhamnopyranoside | [131] | |||
Nauclea orientalis | Tetrahydro-β-carboline monoterpene alkaloid glucosides: naucleaorine; epimethoxynaucleaorine; strictosidine lactam Triterpenes: oleanolic acid; 3,4,5-trimethoxyphenol; 3-hydroxyurs-12-en-28-oic acid methyl ester; 3α,23-dihydroxyurs-12-en-28-oic acid; 3α,19α,23-trihydroxyurs-12-en-28-oic acid methyl ester | [132] | ||
Indole alkaloids: nauclealines A–B; naucleosides A–B; strictosamide; vincosamide; pumiloside | [133] | |||
Indole alkaloids: naucleaorals A–B | [134] | |||
Nauclea pobeguinii | Indole alkaloids: naucleidinal; magniflorine; naucleofficine D; diastereoisomers of 3,14-dihydroangustoline; strictosidine; desoxycordifoline; 3α,5α-tetrahydrodeoxycordifoline lactam Phenolic compound: kelampayoside A | [135] | ||
Indole alkaloid: nauclequinine; nauclefoline; nauclefidine | [136] | |||
Neonauclea purpurea | Quinolinic alkaloid: 2,6-dimethoxy-1,4-benzoquinone | [137] | ||
Indole alkaloids: cadambine; α-dihydrocadambine | ||||
Neonauclea sessilifolia | Triterpene glycosides: 3-O-β-d-glucopyranosyl quinovic acid; 3-O-β-d-glucopyranosyl-(1→2)-β-d-quinovopyranosyl quinovic acid; 3-O-β-d-quinovopyranosyl pyrocincholic acid 28-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl ester; 3-O-α-l-rhamnopyranosyl-(1→4)-β-d quinovopyranosyl pyrocincholic acid 28-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl ester | [138] | ||
Triterpene: ursolic acid | [139] | |||
Chromone-secoiridoid glycosides: sessilifoside; 7′′-O-β-d glucopyranosylsessilifoside Indole alkaloid glycosides: neonaucleosides A–C Glycosides: 5-hydroxy-2-methylchromone-7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside; sweroside; loganin; grandifloroside; quinovic acid 3β-O-β-d-quinovopyranoside-28-O-β-d-glucopyranoside | [140] | |||
Ochreinauclea maingayii | Indole alkaloids: neonaucline; cadamine; naucledine | [141] | ||
Pausinystalia johimbe | Monoterpene indole alkaloid: yohimbine | [142] | ||
Uncaria attenuata | Oxindole alkaloids: corynoxine; corynoxine B; isocorynoxeine; epi-allo-corynantheine; dihydrocorynantheine pseudoindoxyl Indole alkaloids: 19-epi-3-iso-ajmalicine Triterpene: ursolic acid | [19] | ||
Uncaria borneensis | Alkaloids: isorhynchophylline; rhynchophylline; isocorynoxeine; corynoxeine; Indole alkaloids: allo-yohimbine; pseudo-yohimbine; 3-epi-β-yohimbine | [143] | ||
Uncaria callophylla | Indole alkaloids: dihydro-corynantheine; gambirine; isogambirine; gambireine; rotundifoline; callophylline; callophyllines A–B; yohimbine; pseudoyohimbine; β-yohimbine; α-yohimbine | [144] | ||
Indole alkaloids: callophyllines A–B; 3-epi-β-yohimbine; gambirine | [144] | |||
Uncaria cordata var. cordata and Uncaria cordata var. ferruginea | Indole alkaloids: dihydrocorynantheine | [143] | ||
Uncaria elliptica | Pentacyclic oxindole alkaloids: formosanine; isomitraphylline; mitraphylline Indole alkaloids: ajmalicine | [145] | ||
Triterpenes: 3β,6β,19α-trihydroxy-23-oxo-urs-12-en-28-oic acid; 3β,6β,19α,23-trihydroxy-23-oxo-urs-en-28-oic acid; 3,6-dioxo-19α-hydroxy-urs-12-ene-28-oic acid; 3β,6β-diacetoxi-19-hydroxy-urs-12-ene-28-oic acid; quinovic acid 3β-O-β-d-quinopyranosyl-(28→1)-β-d-glucopyranosyl ester | [145] | |||
Uncaria gambir | Proanthocyanidins: gambiriins A1–A2 ; gambiriins B1–B2; (+)-catechin; (+)-epicatechin; procyanidin B1; procyanidin B3; gambiriin | [146] | ||
Uncaria glabrata | Monoterpene indole alkaloids: 14α-hydroxyrauniticine; rauniticine; uncarine C–E; glabratine; deoxycordifoline | [147] | ||
Uncaria guianensis | Indole alkaloid: 3-isoajmalicine Oxindole alkaloids: isomitraphylline; mitraphylline; isomitraphylinic acid | [38] | ||
Indole alkaloid: ajmalicine Oxindole alkaloids: formosanine or uncarine B; isomitraphylline; mitraphylline | [148] | |||
Triterpenes: quinovic acid 3β-O-β-d-quinovopyranoside; quinovic acid 3β-O-β-d-fucopyranosyl-(27→1)-β-d-quinovopyranosyl ester; quinovic acid 3β-O-[β-d-glucopyranosyl-(1→3)-β-d-fucopyranosyl]-(27→1)-β-d-glucopyranosyl ester; quinovic acid 38-O-β-d-fucopyranoside | [149] | |||
Uncaria hirsuta | Bis(monoterpenoid) indole alkaloid glucosides: hirsutaside D; bahienoside A–B; neonaucleoside B | [150] | ||
Phenolic compound: chlorogenic acid Alkaloid: uncarine B Flavonoids: quercitrin; rutin; hiperin; neohesperidin | [151] | |||
Uncaria lanosa var. glabrata and Uncaria lanosa var. ferrea | Pentacyclic oxindole alkaloids: isopteropodine; pteropodine | [143] | ||
Uncaria longiflora var. longiflora | Alkaloids: isorhynchophylline; rhynchophylline; iso-corynoxeine; corynoxeine | [143] | ||
Uncaria longiflora var. pteropoda | Pentacyclic oxindole alkaloids: pteropodine; isopteropodine | [143] | ||
Pentacyclic oxindole alkaloids: pteropodine; isopteropodine | [152] | |||
Uncaria macrophylla | Oxindole alkaloids: rhynchophylline; isorhynchophylline; corynoxine; corynoxine B | [153] | ||
Uncaria rhynchophylla | Indole alkaloids: tetrahydroalstonine; tetrahydroalstonine-N-oxide; akuamigine; (4R)-akuamigina-N-oxide; (4S)-akuamigine-N-oxide; corynantheine; dihydrocorynantheine; dihydrocorynantheine-N-oxide; hirsuteine; geissoschizine methyl ether; hirsutine N-oxide; akuamigine pseudoindoxyl; rauniticine pseudoindoxyl; 3-isorauninticine pseudoindoxyl; dihydrocorynantheine pseudoindoxyl; vallesiachotamine; vincoside lactam; strictosamide; rhynchophyne; 2′-O-β-d-glucopyranosyl-11-hydroxyvincoside lactam; angustine; angustoline; angustidine | [154] | ||
Sesquiterpene indole alkaloids: (5S)-5-carboxystrictosidine; 3,4-dehydro-(5S)-5-carboxystrictosidine Indole alkaloids: cadambine; 3α-dihydrocadambine; 3β-isodihydrocadambine Pentacyclic oxindole alkaloids: isorhynchophylline; rhynchophylline; corynoxeine; isocorynoxeine; corynoxeine; rhynchophylline N-oxide; isorhynchophylline N-oxide; macrophylline A; 18-19-dehydrocorynoxinic acid; 22-O-demethyl-22-O-β-d-glucopyranosyl isocorynoxeine | [154] | |||
Oxindole alkaloids: rhynchophylline; corynoxeine; corynanteine; hirsutine | [155] | |||
Oxindole alkaloids: isocorynoxeine; isorhynchophylline; orynoxeine; rhynchophylline Indole alkaloids: corynanteine; dihydrocorynanteine | [156] | |||
Pentacyclic oxindole alkaloids: 22-O-demethyl-22-O-β-glucopyranosyl isorhynchophylline; 22-O-demethyl-22-O-β-glucopyranosyl rhynchophylline; 22-O-demethyl-22-O-β-glucopyranosyl isocorynoxeine; isorhynchophylline acid; 9-hydroxy isocorynoxeine; 18,19-dehydrocorynoxinic acid; 18,19 dehydrocorynoxinic acid B; rhynchophyllic acid; 9-hydroxycorynoxeine; isocorynoxeine N-oxide; rhynchophylline acid N-oxide; corynoxeine N-oxide; isocorynoxeine; rhynchophylline; isorhynchophylline N-oxide; isorhynchophylline; corynoxeine Indole alkaloid: vincoside lactam Phenolic compounds: chlorogenic acid; neochlorogenic; cryptochlorogenic; quinic acid; cis-5-caffeoylquinic acid; procyanidin b1; procyanidin b2; catechin; epi-catechin; rutin | [157] | |||
Uncaria salaccensis | Oxindole alkaloids: 3-oxo-7-hydroxy-3,7-secorhynchophylline | [158] | ||
Uncaria sinensis | Alkaloids: isohynchophyllic acid; pteropodic acid; 3α-dihydrocadambine; 3β-isodihydrocadambine | [159] | ||
Proanthocyanidin: procyanidin B-1 | [160] | |||
Uncaria tomentosa | Pentacyclic alkaloids: isomitraphylline; mitraphylline; uncarine F; speciophylline; isopterophylline; pterophylline; isocorynoxeine Tetratacyclic alkaloids: corynoxeine; isorincophylline; rincophylline | [161] | ||
Alkaloids: cinchonain Ia; cinchonain Ib | [162] | |||
Oxindole alkaloids: uncarines C–E; mitraphylline; isomitraphylline Iridoid glycosides: 7-deoxyloganic acid | [163] | |||
Triterpenes glycosides: 3-oxo-6β-19α-dihydroxyurs-12-en-28-oic acid; 3β,6β,19α,23-tetrahydroxyurs-12-en-28-oic acid; 3β-methoxy-16α-hydroxyurs-12,19(29)-dien-27,28-dioic acid; 3β-hydroxyurs-12-en-27,28-dioic acid | [164] | |||
Oxindole alkaloids: pteropodine; isopteropodine; speciophylline; uncarine F; mitraphylline; isomitraphylline; rincophylline; isorincophylline | [165] | |||
Oxindole alkaloids: mitraphylline | [166,167] | |||
Indole alkaloid: 3-isoajmalicine | [168] | |||
Alkaloids: cinchonain Ia; cinchonain Ib | [162] | |||
Iridoids: tomentosides A–B Phenolic compound: (−)-epi-cathequin | [169] | |||
Triterpenes: oleanolic acid; 3β,6β,19α-trihydroxyurs-12-en-28-oic acid | [170] | |||
Triterpenes: 3β,6β,19α-trihydroxyurs-12-en-23-al-28-oic acid; 3β,19α-dihydroxy-6-oxo-urs-12-en-23-al-28-oic acid; 3β,19α-dihydroxy-6-oxo-urs-12-en-23-ol-28-oic acid | [171] | |||
Triterpene: 23-nor-24-esomethylene-3β,6β-19α-trihydroxyurs-12-en-28 oic acid; 3β,6β,19α-trihydroxyurs-12-en-28-oic acid; 3-oxo-6β,19α-dihydroxyurs-12-en-28 oic acid; oleanic acid | [169] | |||
Uncaria villosa | Indole alkaloids: villocarines A–D | [172] | ||
Ixorideae | ALB | Alberta magna | Iridoids: (+)-5-acetaldehyde-l-formyl-2-methylcyclopentan; 5-acetaldehyde-1-formyl-2- methylcyclopent-1-ene; 1,4α,5,6,7α-hexahydro-1-hydroxy-7-methylcyclopenta-pyran-4-carboxaldeyde; 4,4α,5,7α-tetrahydro-1-hydroxy-4-(hydroxymethylene)-7-methylcyclopentane-pyran-3-(1H)-one; 5-deoxystansioside; 6,10-bisdeoxyaucubin; boschnaloside | [173] |
COF | Coffea sp | Alkaloid: caffeine | [174] | |
Coffea bengalensis | Alkaloid: caffeine Diterpene: 16-epicafestol | [175] | ||
Nematostylis anthophylla | Triterpene glycosides: randianin; 2′′-O-acetylrandianin; 6′′-O-acetylrandianin | [176] | ||
Tricalysia dubia | Diterpenes: tricalysiol A–B; tricalysiolide B; tricalysioside G tricalysioside L | [177] | ||
Ent-kaurane glycosides: tricalysiosides A–G | [178] | |||
Tricalysia okelensis | Ent-kaurane glycosides: ent-kauran-3α,16α,17-triol-19-al 3-O-[5-O-vanilloyl-β-d-apiopyranosyl(1→6)]-β-d-glucopyranoside; ent-kauran-3α,16α,17-triol-19-al; 3-O-[5-O-E-sinapoyl-β-d-apiopyranosyl(1→6)]-β-d-glucopyranoside | [179] | ||
CON | Calycophyllum spruceanum | Seco-iridoids: 7-methoxydiderroside,6′-O-acetyldiderroside; 8-O-tigloyldiderroside; loganetin; loganin; secoxyloganin; kingiside; diderroside | [180] | |
Chimarrhis turbinata | Indole monoterpene alkaloids: strictosidine; strictosidine acid; 5α-arboxystrictosidine; isovallesiachotamine; vallesiachotamine; turbinatine; 3,4-dehydro-strictosidine; turbinatine β-Carboline alkaloids: cordifoline; deoxycordifoline; harman-3-carboxylic acid | [181] | ||
Crossopteryx febrifuga | Triterpene glycosides: 3β-(α-l-rhamnopyranosyloxi)-28-O-(β-d-glucopyranosyl)urs-12,20(30)-diene-27,28-dioic acid | [182] | ||
Emmenopterys henryi | Triterpenes: 3β,19α,23-trihydroxyurs-12-en-24-al-28-oic acid; 3β,19α,24-trihydroxy-23-norurs-12-en-28-oic acid; 3β,12β-dihydroxy-5α-pregnane-14,16-dien-20-one; and 12β-hydroxy-5α-pregnane-14,16-dien-3,20-dione; 3β,19α,23,24-tetrahydroxyurs-12-en-28-oic acid; pomolic acid; 3β,6β,19α,23-tetrahydroxyurs-12-en-28-oic acid; 3β,6β,23-trihydroxyolean-12-en-28-oic acid; 3β,6β,19α,23-tetrahydroxyolean-12-en-28-oic acid; 3β,23,24-trihydroxyolean-12-en-28-oic acid; 3β,12β-dihydroxy-5α-pregnane-16-en-20-one; 12β-dihydroxy-5α-pregnane-16-en-3,20-dione | [183] | ||
Pogonopus speciosus | Alkaloids: 1′,2′,3′,4′-tetradehydrotubulosine; tubulosine; psychotrine | [184] | ||
Pogonopus tubulosus | Alkaloid: tubulosine | [185] | ||
Alkaloids: tubulosine; psychotrine; cephaeline | [186] | |||
Simira glaziovii | Alkaloids: aribin; ophiorine B; lyaloside Monoterpenes: methyl 3,4-dimethoxycinamate | [187] | ||
Simira eliezeriana | Diterpenes: simirane A [(5R,6R,8R,9R,10S,11S,13S)-6 β,11β -dihydroxy-2,4(18),15-erythroxylatrien-1-one]; simirane B [(5S,8R,9R,10S,11S,13S)-11-hydroxy-2,4(18),15-erythroxylatrien-1-one] | [188] | ||
GAR | Alibertia edulis | Iridoids: 6β-hydroxy-7-epigardoside methyl ester | [189] | |
Alibertia macrophylla | Diterpene: ent-kaurane-2β,3α,16α-triol Triterpenes: lupenone; germanicone; α-amirenone; β-amirenone; lupeol; oleanolic acid; ursolic acid Glucosidic iridoids: 6α-hydroxygeniposide; 6β-hydroxygeniposide; gardenoside; shanziside methylester Phenolic acids: protocatechuic; vanilic; caffeic | [190] | ||
Alibertia myrciifolia | Coumarin: scopoletin | [64] | ||
Flavonoid: corymbosin | [191] | |||
Iridoid: 10-O-vanilloylgeniposidic acid | [192] | |||
Triterpenes: pomolic acid methyl ester; ursolic acid methyl ester; oleanolic acid methyl ester | [193] | |||
Alibertia sessilis | Phenolic compounds: 3,4,5-trimethoxyphenyl-1-O-β-d-(5-O-syringoyl)-apiofuranosyl-(1→6)-β-d-glucopyranoside Iridoids: geniposidic acid; geniposide; 6α-hydroxygeniposide; 6β-hydroxygeniposide Lignans glycosides: (+)-lyoniresinol-3α-O-β-d-glucopyranoside; (−)-lyoniresinol-3α-O-β-d-glucopyranoside | [64] | ||
Flavonoids: quercetin-3-O-β-d-(2′′-O-trans-p-coumaroyl)-rutinoside; kaempherol-3-O-β-d-(2′′-O-trans-p-coumaroyl)-rutinoside Triterpenes: oleanolic acid; ursolic acid; epi-betulinic acid Iridoids: gardenoside; deacetylasperuloside; 10-dehydrogardenoside; β-gardiol; α-gardiol | [46] | |||
Burchellia bubalina | Iridoids: β-gardiol; α-gardiol; garjasmine | [60] | ||
Canthium gilfillanii | Iridoid: geniposidic acid | [61] | ||
Catunaregam nilotica | Triterpene glycosides: 28-O-β-d-glucopyranosyl-3-O(O-α-l-rhamnopyranosyl-(1→3)-O-β-d-glucopyranosyl]-(1→3)]-β-d-glucopyranosyl) oleanolate; 3-O-[2′,3′-di-O-(β-d-glucopyranosyl)-β-d-glucopyranosyl] oleanolic acid; 3-O-(O-α-l-rhamnopyranosyl-(1→3)-O-[O-β-d-glucopyranosyl-(1→3)]-β-d-glucopyranosyl) oleanolic acid; 3-O-[O-β-d-glucopyranosyl-(1→3)-β-d-glucopyranosyl] oleanolic acid | [194] | ||
Catunaregam spinosa | Triterpene glycosides: catunarosides A–D; swartziatrioside; aralia-saponin V–IV | [195] | ||
Coptosapelta flavescens | Anthraquinones: 1,4-dimethoxy-2-methylanthraquinone; 2-amino-3-methoxycarbonyl-1,4-naphtoquinone | [196] | ||
Duroia hirsuta | Iridoid: plumericin | [197] | ||
Iridoid lactone: duroin Flavonol: ether flavonol-3-O-methyl | [198] | |||
Duroia macrophylla | Triterpenes: oleanolic acid; ursolic acid | [199] | ||
Gardenia collinsae | Triterpenes: 20R,24R-epoxy-3-oxodammarane-25ξ, 26-diol; C-24-epimer; 20R,24R-ocotilone | [200] | ||
Gardenia gummifera | Cycloartane triterpenes: dikamaliartanes A–F Flavonoid: 3′,5,5′-trihydroxy-4′,6,7,8-tetramethoxyflavone | [201] | ||
Gardenia jasminoides | Coumarines: ferrulic acid; skimmin; uracil; 5,8-di-(3-methyl-2,3-dihydroxy-butyloxypsoralen); 3-O-α-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxypeucedanin | [202] | ||
Iridoids: genipin 1-O-β-d-d-isomaltoside; 1,10-di-O-β-d-glucopyranoside; genipin 1-O-β-d-gentiobioside; geniposide; scandoside methyl ester; deacetylasperulosidic acid methyl ester; 6-O-methyldeacetylasperulosidic acid methyl ester; gardenoside | [59] | |||
Iridoids: 8-epi-apodantheroside; 7β,8β-epoxy-8α-dihydrogeniposide | [203] | |||
Iridoids: 6′-O-[(E)-sinapoyl] gardoside; 4′′-O-[(E)-p-coumaroyl]-gentiobiosylgenipin; 6′-O-[(E)-caffeoyl]-deacetylasperulosidic acid methyl ester | [204] | |||
Iridoid: 6-O-sinapoylgeniposide | [205] | |||
Monoterpenes: gardenone; gardendiol | [206] | |||
Carotenoids: crocetin; crocetin mono (β-d-glucosyl) ester; crocetin di-(β-d-glucosyl) ester; crocetin mono-(β-gentiobiosyl) ester; crocetin (β-d-glucosyl)-(β-gentiobiosyl) ester; crocin [crocetin-di-(β-gentiobiosyl)ester]; crocetin (β-gentiobiosyl)-(β-neapolitanosyl) ester; crocetin-di-(β-neapolitanosyl) ester | [207] | |||
Monoterpenes: jasminosides J–K; 6′-O-trans-sinapoyljasminoside B; 6′-O-trans-sinapoyljasminoside L; jasminosides M–P; jasminoside C; jasminol E; sacranoside B | [208] | |||
Flavonoid: luteolin-7-O-β-d-glucopyranoside Triterpenes: ursolic acid; oleanolic acid; methyl 3,4-di-O-caffeoylquinate; methyl 5-O-caffeoyl-3-O-sinapoylquinate; methyl 3,5-di-O-caffeoyl-4-O-(3-hydroxy-3-methyl)glutaroylquinate; methyl 5-O-caffeoyl-4-O-sinapoylquinate Glycosides: 2-methyl-l-erythritol-4-O-(6-O-trans-sinapoyl)-β-d-glucopyranoside; 2-methyl-l-erythritol-1-O-(6-O-trans-sinapoyl)-β-d-glucopyranoside | [209] | |||
Iridoids: 6′-O-trans-p-coumaroyl geniposidic acid; 11-(6-O-trans-sinapoyl glucopyranosyl)-gardendiol; 10-(6-O-trans-sinapoyl glucopyranosyl)gardendiol; 6′′-O-trans-sinapoylgenipin gentiobioside; 6′′-O-trans-cinnamoylgenipin gentiobioside; 10-O-succinoylgeniposide; 6′-O-acetylgeniposide; 6′′-O-trans-p-coumaroylgenipin gentiobioside | [210] | |||
Iridoids: gardaloside | [211] | |||
Iridoids: garjasmine; dunnisin; α-gardiol; β-gardiol; diffusoside A diffusoside B; genameside C; deacetylasperulosidic acid | [212] | |||
Gardenia jasminoides var. radicans | Iridoid glycoside: 6′′-O-trans-feruloylgenipin gentiobioside; 2′-O-trans-p-coumaroylgardoside; 2′-O-trans-feruloylgardoside | [213] | ||
Gardenia lucida | Cycloartane triterpenes: dikamaliartanes A–F Flavonoid: 3′,5,5′-trihydroxy-4′,6,7,8-tetramethoxyflavone | [201] | ||
Gardenia saxatilis | Triterpenes: lupenone; lupeol; betulinic acid; messagenic acid A; messagenic acid B; oleanolic acid; ursolic acid; acid (27-O-feruloyloxybetulinic acid; 27-O-p-(Z)- and 27-O-p-(E)-coumarate esters of betulinic acid and a mixture of uncarinic acid E (27-O-p-(E)-coumaroyloxyoleanolic acid) and 27-O-p-(E)-coumaroyloxyursolic acid | [214] | ||
Gardenia sootepensis | Sesquiterpene: sootepdienone | [215] | ||
Gardenia thailandica | Flavonoids: 5,7-dihydroxy-7,2′,3′,4′,5′,6′-hexamethoxyflavone; 5,7-dihydroxy-2′,3′,4′,5′,6′-pentamethoxyflavone; 5-hydroxy-7,2′,3′,4′,5′-pentamethoxyflavone; 5,7-dihydroxy-2′,3′,4′,5′-tetramethoxyflavone Triterpenes: thailandiol; gardenolic acid; quadrangularic E acid; 3β-hydroxy-5α-cycloart-24(31)-en-28-oic acid | [216] | ||
Gardenia fructus | Iridoids: genipin 1-O-β-gentiobioside; 10-O-acetylgeniposide; 6α-hydroxygeniposide; 6β-hydroxygeniposide; gardenoside; picrocrocinic acid; 6′-O-sinapoyljasminoside; 10-O-(4′′-O-methylsuccinoyl) geniposide; jasminosides Q–R; 6-O-p-coumaroylgeniposide; 6′-O-acetylgeniposide; 6′-O-sinapoylgeniposide | [217] | ||
Iridoids: geniposidic acid; genipin 1-β-gentiobioside; geniposide; genipin Flavonoids: rutin; crocin-1; crocin-2 Phenolic compound: chlorogenic acid | [218] | |||
Iridoid glycosides: gardenoside; genipin 1-O-β-d-isomaltoside; genipin 1,10-di-O-β-d-glucopyranoside; genipin 1-O-β-d-gentiobioside; geniposide; scandoside methyl ester; deacetylasperulosidic acid methyl ester | [59] | |||
Genipa americana | Iridoids: genipaol; genipin; tarenoside; geniposidic acid; geniposide; genamesides A–D; genipin-gentiobioside; gardenoside; gardendiol; shanzhiside | [219] | ||
Monoterpenes: genipacetal; genipic acid; genipinic acid | ||||
Genipa spruceana | Cycloartane triterpene: genipatriol | [220] | ||
Lamprothamnus zanguebaricus | Phenolic acids: 1-(3-hydroxy-4-methoxy-5-methylphenyl)-ethanone; 1-(3-hydroxy-4-methoxyphenyl)-ethanone | [221] | ||
Oxyanthus pallidus | Cycloartane glycosides: pallidiosides A–C Triterpenes: oleanolic acid; 3-O-β-d-glucopyranosyl-β-sitosterol | [222] | ||
Oxyanthus pyriformis | Cyanogenic glycosides: prunasin; amygdalin | [223] | ||
Oxyanthus speciosus | Phenolic compounds: 2-(2-hydroxy)-ethanol-β-d-glucopyranoside | [61] | ||
Cyanogenic glycosides: holocalin | [223] | |||
Pavetta owariensis | Proanthocyanidins: pavetannin A1; pavetannin A2; cinnamtannin B1; pavetanninB1; pavetannin B3; pavetannin B5; pavetannin B6 | [224] | ||
Psydrax livida | Phenolic compounds: psydroside Monoterpene: psydrin | [61] | ||
Randia dumetorum | Iridoid: 11-methylixoside | [225] | ||
Triterpenes: α-l-arabinosyl(1→3)-β-galactopyranosyl(1→3)-3-β-hydroxyolean-12-en-28-methyloate | [226] | |||
Randia Formosa | Triterpenes glycosides: randiasaponins I–VII; ilexoside XXVII; ilexoside XXXVII | [227] | ||
Randia siamensis | Triterpenes: ursolic acid; pseudoginsenoside-RP 1; pseudoginsenoside-RT 1 | [228] | ||
Randia spinosa | Iridoid glycosides: randinoside; galioside; deacetylasperulosidic acid methyl ester; scandoside methyl ester; geniposide; gardenoside | [229] | ||
Rothmannia macrophylla | Iridoids: macrophylloside | [230] | ||
Rothmannia urcelliformis | Iridoid: genipin Iridoid alcaloidal: gardenamide A; 4-oxonicotinamide-1-(1′-β-d-ribofuranoside) | [231] | ||
Schumanniophyton problematicum | Alkaloids: rohitukine; rohitukine N-oxide; flavopiridol | [232] | ||
Scyphiphora hydrophyllacea | Iridoid: scyphiphorin A1–A2; scyphiphorin B1–B2 | [233,234] | ||
Tocoyena brasiliensis | Triterpene glycosides: 3-O-β-d-quinovopyranosyl quinovic acid; 3-O-β-d-glucopyranosyl quinovic acid; 28-O-β-glucopyranosyl ester derivative of quinovic acid Flavonoid: ramnazin-3-O-rutinoside | [235] | ||
Tocoyena bullata | Iridoid glycoside: gardenoside | [236] | ||
Tocoyena formosa | Iridoids: α-gardiol; β-gardiol; gardenoside | [237] | ||
IXO | Enterospermum madagascariensis | Sesquiterpenes: 2-hydroxy-10-epi-zonarene; 2,15-dihydroxycalamenene; guaia-4,6-dien-3-one | [238] | |
Enterospermum pruinosum | Triterpenes glycosides: longispinogenin; 3,16-di-O-β-d-glucopyranoside; triacetyllongispinogenin; diglucoside | [239] | ||
Ixora coccinea | Triterpene: ursolic acid | [240] | ||
Proanthocyanidins: ixoratannin A-2; epicatechin; procyanidin A2; cinnamtannin B-1 Flavonoids: kaempferol-7-O-α-l-rhamnoside; kaempferol-3-O-α-l-rhamnoside; quercetin-3-O-α-l-rhamnopyranoside; kaempferol-3,7-O-α-l-dirhamnnoside | [241] | |||
Triterpenes: lupeol; ixorene; 17β-dammara-12,20-diene-3β-ol | [242,243] | |||
Fenolic compounds: 3-O-caffeoylquinic acid; 5-O-caffeoylquinic acid; catechin; epicatechin; rutin; quercetin; kaempferol; quercetin 3-O-glucoside; quercetin 3-O-galactoside; kaempferol 7-O-glucoside | [244] | |||
MUS | Heinsia crinata | Triterpene glycosides: heinsiagenin A-3β-O-(β-glucopyranosyl-(1→2)-β-d-glucopyranosyl-(1→6)-[α-l-rhamnpyranosyl-(1→2)]-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside); heinsiagenin A-3β-O-(α-l-rhamnopynosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside) | [245] | |
Mussaenda dona aurora | Iridoid glycoside: shanshiside D | [246] | ||
Mussaenda erythrophylla | Flavonoid: 5-hydroxy-7,4′-dimethoxyflavones; Phenolic compounds: 3-iso-cumaryloxycyclopropane-1-oic acid; 4-hydroxy-3-methoxy cinnamic acid | [247] | ||
Mussaenda incana | Iridolactona: shanzhilactone Iridoid glycosides: barlerin; mussaenoside Triterpene: lupeol | [248] | ||
Mussaenda macrophylla | Iridoid: 6-epi-barlerin | [249] | ||
Mussaenda roxburghii | Iridoid: shanzhiol | [250] | ||
Mussaenda pubescens | Monoterpenes: mussaenins A–C | [251] | ||
Triterpene glycosides: mussaendosides R-S; 6 α-hydroxygeniposide; 3β-O-β-d-glucopyranosyl quinovic acid 28-O-β-d-glucopyranosyl ester | [252] | |||
OCT | Villaria odorata | Alkenoyloxy alkenol: villarinol | [253] | |
Iridoids: morindolide; hydrophylin A; hydrophylin B Sesquiterpene: vomifoliol | [254] | |||
PAV | Pavetta owariensis | Proanthocyanidins: proanthocyanidin A-2; proanthocyanidin A-4; pavetannin A Flavonoids: (+)-catechin; (−)-epicatechin; (+)-epicatechin | [224] | |
Tarenna attenuata | Iridoids: tarenninosides A–G | [255] | ||
Tarenna gracilipes | Cycloartane glycosides: tareciliosides H–M | [256] | ||
Cycloartane glycosides: tareciliosides A–G | [257] | |||
Tarenna madagascariensis | Iridoids: tarennin; gardenoside; geniposidic acid Phenolic compounds: p-cumaric acid; cafeic acid; chlorogenic acid Flavonoids: kaempferol 3-O-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside; kaempferol 3-O-α-l-rhamnopyranoside-7-O-α-l-rhamnopyranoside; quercetin 3-O-α-l-rhamnopyranoside-7-O-α-l-rhamnopyranoside; kaempferol 3-O-α-l-(3′′-O-acetyl)-rhamnopyranoside-7-O-α-l-rhamnopyranoside; kaempferol 3-O-α-l-(4′′-O-acetyl) rhamnopyranoside-7-O-α-l-rhamnopyranoside | [258] | ||
POS | Molopanthera paniculata | Iridoid glycosides: barlerin; shanzhiside methyl ester | [259] | |
SAB | Sabicea brasiliensis | Phenolic compounds: 5-O-caffeoylquinic acid; 3,5-O-dicaffeoylquinic acid; 4,5-O-dicaffeoylquinic acid Coumarine: scopoletin Triterpene: ursolic acid | [260] | |
Sabicea grisea var. grisea | Steroid: octacosanol | [261] | ||
Coumarine: scopoletin Phenolic compounds: ethyl caffeate; salicylic acid Steroid: 3-O-β-d-glucopyranosylsitosterol Triterpene: vanillic acid | [262] | |||
VAN | Canthium berberidifolium | Iridoid glycosides: 6-O-β-d-apiofuranosyl-mussaenosidic acid Phenolic diglycosides: canthosides A–D | [263] | |
Canthium multiflorum | Iridoid: 6-oxo-genipin; macrophylloside; garjasmine; gardenine; gardenamide; deacetylasperulosidic acid; 6α-hydroxygeniposide; galioside; aitchisonide B Triterpenes: vanillic acid 4-O-β-d-(6-O-benzoylglucopyranoside); oleanolic acid; quinovic acid | [264] | ||
Canthium schimperianum | Cyanogenic glycoside esterified with an iridoid glycoside: 2R-[(2-methoxybenzoyl-genoposidyl)-5-O-β-d-apiofuranosyl-(1→6)-β-glucopyranosyl-oxy]-2-phenyl acetonitrile; oxyanthin | [265] | ||
Fadogia agrestis | Monoterpene glycosides: (2E,6Z)-2,6-dimethyl-8-[(O-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl)-oxy]-octadien-1-yl-α-l-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl)-oxy]-octadien-1-yl-O-β-d-glucopyranosyl-(1→2)-α-l-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-β-d-glucopyranosyl-(12)-α-l-rhamnopyranosyl)-oxy]-octadien-1-yl-O-β-d-glucopyranosyl-(1→2)-α-l-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-l-rhamnopyranosyl-(1→3)-(2-O-((2E,6Z)-8-hydroxy-2,6-dimethyloctadienoyl)-α-l-rhamnopyranosyl)-(1→3)-α-l-rhamnopyranosyl) oxy]-octadien-1-yl α-l-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-l-rhamnopyranosyl-(1→3)-(2-O-((2E,6Z)-8-hydroxy-2,6-dimethyloctadienoyl)-α-l-rhamnopyranosyl)-(1→3)-4-O-acetyl-α-l-rhamnopyranosyl) oxy]-octadien-1-yl α-l-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-l-rhamnopyranosyl-(1→3)-(2-O-((2E,6Z)-8-hydroxy-2,6-dimethyloctadienoyl)-α-l-rhamnopyranosyl)-(1→3)-α-l-rhamnopyranosyl)-oxy]-octadien-1-yl-O-β-d-glucopyranosyl-(1→2)-α-l-rhamnopyranoside | [266] | ||
Fadogia ancylantha | Triterpene glycosides: 3-O-β-d-glucopyranosyl-3-β-hydroxyolean-12-en-28-oic acid 28-O-[R-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl] ester; 3-O-β-d-glucopyranosyl-3-β-hydroxyolean-12-en-28-oic acid 28-O-[-d-apiofuranosyl-(1→2)-β-d-glucopyranosyl] ester | [267] | ||
Fadogia homblei | Coumarine: scopoletin Flavones: luteolin; quercetin-3-O-β-d-galactoside Triterpenes: lupeol; betulinic acid; 3β-dodecanoyllup-20(29)-en-28-al; lup-20(29)-en-3β-ylhexadecanoate; oleanolic acid; ursolic acid Lignan: 4,4′-dihydroxy-3,3′-dimethoxy-7,9′; 7′,9-diepoxylignan-((−)-pinoresinol) | [268] | ||
Vangueria spinosa | Proanthocyanidin: (−)-epicatechin-3-O-β-glucopyranoside | [269] | ||
* | Augusta longifolia | Triterpenes: ursolic acid; acyl lupeol Coumarin: scopoletin Flavonoids: naringenin; kaempferol; quercetin; myricitrin; rutin | [270] | |
Myrioneuron nutans | Alkaloid: myrobotinol | [271] | ||
Wendlandia formosana | Iridoid glycosides: 10-O-caffeoyl scandoside methyl ester; 6-methoxy scandoside methyl ester; scandoside methyl ester; methyl deacetyl asperulosidate; 10-O-caffeoyl daphylloside Triterpene: ursolic acid | [272] | ||
Wendlandia tinctoria | Iridoid glycosides: 5-dehydro-8-epi-adoxosidic acid; 5-dehydro-8-epi-mussaenoside; 10-O-dihydroferuloyldeacetyldaphylloside; wendoside; 8-epi-mussaenoside | [273,274] | ||
Iridoids: 5-dehydro-8-epi-adoxosidic acid; wendoside | [273] | |||
Rubioideae | ARG | Argostemma yappii | Pyrrolidinoindole alkaloid: (+)-isochimonanthine | [275] |
COU | Anthocephalus chinensis | Seco-iridoid glycoside: 3′-O-caffeoylsweroside; loganine; 8-epikingiside; loganic acid; sweroside Phenolic apiglycosides: kelampayosides A–B Indole alkaloids: cadambine; strictosidine lactam; 5α-carboxystrictosidine; desoxycordifoline | [276] | |
Coussarea brevicaulis | Triterpenes: 3-epi-spathodic acid; coussaric acid; barbinervic acid; scutellaric acid | [277] | ||
Coussarea hydrangeifolia | Phenylpropanoid glycosides: 1′-O-benzyl-α-l-rhamnopyranosyl-(1′′→6′)-β-d-glucopyranoside; α-l-xylopyranosyl-(4′′→2′)-(3-O-β-d-glucopyranosyl)-10-O-(E)-caffeoyl-β-d-glucopyranoside; 1,6-di-O-caffeoyl-β-d-glucopyranoside; 1-O-(E)-caffeoyl-β-d-glucopyranoside 1-O-(E)-feruloyl-β-d-glucopyranoside | [278] | ||
Coussarea paniculata | Triterpenes: lupeol; lupeyl acetate; botulin; betulinic acid; 3-epi-betulinic acid; 3-epi-betulinaldehyde; oleanolic acid; ursolic acid; lup-20(29)-en-3β,25-diol; lup-20(29)-en-11R-ol-25,3β-lactone; 3-deoxybetulonic acid | [279] | ||
Coussarea platyphylla | Triterpenes: betulonic acid; betulinic acid Iridoid: monotropein Diterpene: trans-phytol | [280] | ||
Cruckshanksia pumila | Iridoids: asperuloside; 7-α-methoxysweroside; swertiamarine | [246,281] | ||
Heterophyllaea pustulata | Anthraquinones: soranjidiol; soranjidiol-1-methyl ether; rubiadin; rubiadin-1-methyl ether; damnacanthal; damnacanthol | [282] | ||
Anthraquinones: soranjidiol; rubiadin; rubiadin-1-methyl ether | [283] | |||
KNO | Knoxia corymbosa | Chromone glycosides: corymbosins K1–K4; noreugenin; undulatoside A | [284] | |
Knoxia valerianoides | Anthraquinones: 2-hydroxymethylknoxiavaledin; 2-ethoxymethylknoxiavaledin; 2-formylknoxiavaledin | [285] | ||
Anthraquinones: lucidin; lucidin-ω-methyl ether; rubiadin; damnacanthol; 1,3,6-trihydroxy-2-methoxymethylanthraquinone; 3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone; 1,3,6-trihydroxy-2-hydroxymethyl-9,10-anthraquinone 3-O-β-primeveroside; vanillic acid | [286] | |||
Pentas bussei | Pentacyclic cyclol-type naphthohydroquinone: eriobrucinol; methyl 5,10-dihydroxy-7-methoxy-1,1,3α-trimethyl-1a,2,3,3a,10c,10d-hexahydro-1H-4-oxacyclobuta[cd]-indeno[5,6-a]naphthalene-9-carboxylate | [287] | ||
Benzochromene: methyl-5,10-dihydroxy-7-methoxy-3-methyl-3-[4-methyl-3-pentenyl]-3H-benzo[f]chromene-9-carboxylate | [288] | |||
Pentas lanceolata | Anthraquinones: 5,6-dihydroxydamnacanthol; nordamnacanthal ; lucidin-ω-methyl ether; damnacanthol | [289] | ||
Iridoid: tudoside; 13(R)-epi-gaertneroside; 13(R)-epi-epoxygaertneroside; (E)-uenfoside; (Z)-uenfoside | [290] | |||
Pentas longiflora | Quinones: pentalongin; mollugin | [291] | ||
Quinones: pentalongin; mollugin; trans-3,4-dihydroxy-3,4-dihydromollugin; methyl-2,3-epoxy-3-prenyl-1,4-naphthoquinone-2-carboxylate; tectoquinone; 3-hydroxymollugin | [289] | |||
Pentas micrantha | Anthraquinones: tectoquinone; lucidin-ω-methyl ether; damnacanthol; rubiadin-1-methyl ether; rubiadin; damnacanthal; 5,6-dihydroxydamnacanthol; munjistin methyl ester | [292] | ||
Pentas schimperi | Anthraquinones: schimperiquinones A–B; cleomiscosin A; 2-hydroxymethylanthraquinone Triterpene: oleanolic acid | [293] | ||
Triterpenes: oleanolic acid; ursolic acid | [294] | |||
LAS | Lasianthus fordii | Iridoid glycosides: asperuloside; deacetylasperuloside; methyl deacetyl-asperuloside; megastigmane glucoside; lasianthionoside A–C | [295] | |
Lasianthus gardneri | Triterpenes: lupenone; lupeol; ursolic acid; canaric acid; 3,4-seco-lupane | [296] | ||
Lasianthus wallichii | Iridoids: iridolactone; iridoid dimer of asperuloside; asperulosidic acid | [297] | ||
Ronabea emetic | Iridoid glycosides: asperuloside; 6-hydroxygeniposide; deacetylasperulosidic acid; asperulosidic acid | [298] | ||
MOR | Coelospermum billardieri | Iridoids: coelobillardin | [299] | |
Morinda citrifolia | Anthraquinone glycosides: digiferruginol-1-methylether-11-O-β-gentiobioside; digiferruginol-11-O-β-primeveroside; damnacanthol-11-O-β-primeveroside; 1-methoxy-2-primeverosyloxymethyl-anthraquinone-3-olate; 1-hydroxy-2-primeverosyloxymethyl-anthraquinone-3-olate; 1-hydroxy-5,6-dimethoxy-2-methyl-7-primeverosyloxyanthraquinone | [300] | ||
Anthraquinones: alizarin or 1,2-dihydroxyanthraquinone | [301] | |||
Anthraquinones: 5,15-dimethylmorindol; alizarin 1-methyl ether; anthragallol 1,3-dimethyl ether; anthragallol 2-dimethyl ether; 6-hydroxy-anthragallol-1,3-dimethyl ether; demorindone-5-dimethylether Iridoids: morindacin; asuperlosidic acid; deacetylasperulosidic acid | [302] | |||
Fatty acid glucosides: 1,6-di-O-octanoyl-β-d-glicopiranose; 6-O-(-β-d-glucopyranosyl)-1-O-decanoyl-β-d-glicopyranose | [303] | |||
Iridoid glycosides: 6R-hydroxyadoxoside; 6β,7β-epoxy-8-epi-splendoside; americanin A; narcissoside; asperuloside; asperulosidic acid; borreriagenin; citrifolinin B epimer a; citrifolinin B epimer b; cytidine; deacetylasperuloside; dehydromethoxygaertneroside; epi-dihydrocornin; methylR-d-fructofuranoside; methyl-β-d-fructofuranoside; nicotifloroside Fatty acid glycoside : β-sitosterol 3-O-β-d-glucopyranoside | [304] | |||
Iridoid glycosides: 9-epi-6α-methoxy geniposidic acid | [305] | |||
Iridoids: morindacin | [302] | |||
Triterpenes: 1-O-(3′-methylbut-3′-enyl)-β-d-glucopyranose; 1-n-butyl-4-(5′-formyl-2′-furanyl)methylsuccinate; 4-epi-borreriagenin Iridoid glycosides: asperulosidic acid; deacetylasperulosidic acid; 1-n-butyl-4-methyl-2-hydroxysuccinate; 1-n-butyl-4-methyl-3-hydroxysuccinate | [306] | |||
Iridoid glycoside: citrifoside | [307] | |||
Morinda coreia | Iridoid glycosides: yopaaosides A–C; 10-O-acetylmonotropein; 6-O-acetylscandoside Phenolic glycosides: 3,4,5-trimethoxyphenyl 1-O-β-apiofuranosyl (1′→6′′)-β-glucopyranoside | [308] | ||
Morinda elliptica | Anthraquinones: 2-formyl-1-hydroxyanthraquinone; 1-hydroxy-2-methylanthraquinone; nordamnacanthal; damnacanthal; lucidin-ω-methyl ether; rubiadin; soranjidiol; morindone; rubiadin-l-methyl ether; alizarin-l-methyl ether; morindone-5-methyl ether | [309,310,311] | ||
Morinda longissima | Coumarine: scopoletin | [312] | ||
Morinda lucida | Anthraquinones: oruwal; oruwalol; damnacanthal; nor-damnacanthal; soranjidiol; alizarin-l-methyl ether; rubiadin; rubiadin-l-methyl ether; 2-methylanthraquinone; anthraquinone-2-aldehyde; l-hydroxy-2-methylanthraquinone; l-methoxy-2-methyl-anthraquinone; hexacosanoic acid | [313] | ||
Morinda morindoides | Flavonoids: quercetin; quercetin 7,4'-dimethylether; luteolin 7-glucoside; apigenin 7-glucoside; quercetin 3-rhamnoside; kaempferol 3-rhamnoside; quercetin 3-rutinoside; kaempferol 3-rutinoside; chrysoeriol 7-neohesperidoside | [314] | ||
Flavonoids: quercetin; quercetin-3-O-rutinoside; kaempferol-7-O-rhamnosylsophoroside; chrysoeriol-7-O-neohesperidoside; quercetin-7,4′-dimethylether; quercetin-3-O-rhamnoside; kaempferol-3-O-rhamnoside; kaempferol-3-O-rutinoside; apigenin-7-O-glucoside; luteolin-7-O-glucoside; kaempferol; apigenin; luteolin Iridoids: epoxygaertneroside; methoxygaertneroside; gaertneroside; gaertneric acid | [315] | |||
Iridoid: 6′-O-acetyl-3′′-methoxygaertneroside | [316] | |||
Morinda officinalis | Monoterpene: monotropein | [317] | ||
Anthraquinones: 1,3,8-trihydroxy-2-methoxy anthraquinone; 2-hydroxy-1-methoxy-anthraquinone; rubiadin | [318] | |||
Morinda pandurifolia | Anthraquinones: soranjidiol; lucidin-ω-methyl ether; damnacanthal; 1-methoxy-2-methyl anthraquinone; 3-hydroxy-1-methoxy-2-methoxymethyl anthraquinone; anthragallol; nordamnacanthal; flavopurpurin; damnacanthal; lucidin; soranjidiol Iridoid glycoside: asperulosidic acid | [319] | ||
Morinda royoc | Anthraquinones: nordamnacanthal; damnacanthal; lucidin; soranjidiol; rubiadin 1-methylether | [320] | ||
Morinda umbellata | nor-Iridoids: umbellatolides A–B | [321] | ||
OPH | Lerchea bracteata | Alkaloids: dihydrocorynantheol; dihydrositsirikine; β-hunterburnin methoclhoride; α-hunterburnine methoclhoride; dihydrocorynantheol; melinonine B; methobromide; yombine methobromide; 4-methylanthirine; diploceline; malindine; iso-malindine; dihydro-3-epi-corynantheol methoclhoride (lercheine) | [322] | |
Myrioneuron faberi | Alkaloid: myriberine A | [323] | ||
Ophiorrhiza blumeana | Indole alkaloids: bracteatine; ophiorrhizine; ophiorrhizine-12-carboxylate; cinchonamine | [324] | ||
Ophiorrhiza bracteata | Indole alkaloids: bracteatine | [325] | ||
Ophiorrhiza communis | Indole alkaloids: harman; strictosidinic acid | [326] | ||
Ophiorrhiza hayatana | Anthraquinones: ophiohayatones A–C | [327] | ||
Ophiorrhiza kunstleri | Indole alkaloids: ophiorrhines A–B | [328] | ||
Ophiorrhiza liukiuensis | Monoterpene glycosides: demethylsecologanol; 3-O-glucosylsenburiside II Indole alkaloids: camptothecin; 9-methoxycamptothecin; pumiloside; (3R)-deoxypumiloside; 10-methoxycamptothecin; estrictosamide; lyalosidic acid; ophiorrhines A–B; harman Iridoids: loganic acid; loganin; swertiaside A Triterpene: ursolic acid; epi-vogeloside Monoterpene: sweroside Flavonoid: hyperin Coumarin: scopoletin | [329] | ||
β-Carbolinic alkaloids: lyalosidic acid; lyaloside; 10-hydroxylyalosidic acid; ophiorrhines A–B; ophiorrhines methyl ester A–B | [330] | |||
Ophiorrhiza japonica | β-Carbolinic alkaloids: lyaloside; lyalosidic acid; 10-hydroxylyalosidic acid; ophiorrhines A–B; ophiorrhines methyl ester A–B | |||
Ophiorrhiza pumila | Pentacyclic alkaloid: camptothecin | [331] | ||
Anthraquinones:1-hydroxy-2-methylanthraquinone; 3-hydroxy-2-methylanthraquinone; 3-hydroxyanthraquinone-2-carbaldehyde; 1-hydroxy-2-hydroxymethylanthraquinone; 3-hydroxy-2-hydroxymethylanthraquinone; 1,3-dihydroxy-2-methylanthraquinone | [332] | |||
Alkaloids: camptothecin; 9-methoxycamptothecin; pumiloside; (3R)-deoxypumiloside | [329] | |||
Alkaloids: camptothecin; (3S)-pumiloside; (3S)-deoxypumiloside; (3R)-deoxy-pumiloside; strictosamide | [333] | |||
Alkaloids: camptothecin; pumiloside; (3S)-deoxypumiloside; (3R)-deoxypumiloside; strictosamide 9-methoxycamptothecin | [330] | |||
Ophiorrhiza rosacea | Indole alkaloids: ophiorrhines A and B | [328] | ||
Ophiorrhiza rugosa var decumbens | Anthraquinones: 1-hydroxy-2-hydroxymethyl-3-methoxyanthraquinone; 2-n-butoxy-methyl-1,3-dihydroxyanthraquinone | [334] | ||
Ophiorrhiza trichocarpon | Indole alkaloids: ophiorrhisides A–F; 3,4,5,6-tetradehydrodolichantoside; lyaloside; dolichantoside; 5-oxostrictosidine | [335] | ||
Ophiorrhiza tomentosa | Indole alkaloids: harman; strictosidinic acid | [326] | ||
PAE | Paederia foetidae | Phenolic acid: ethyl p-methoxy-trans-cinnamate | [336] | |
Paederia scandens | Iridoid glycosides: paederoside; paederoside B; asperuloside; paederosidic acid; methylpaederosidate; saprosmoside E | [337] | ||
Iridoid glycosides: paederoside; asperuloside; paederosidic acid; asperulosidic acid; paederosidic acid methyl ester; geniposide | [338] | |||
Iridoid glycosides: paederosidic acid; paederoside; asperulosidic acid; asperuloside; geniposidic acid; deacetylasperulosidic acid; decatilasperuloside methyl ester | [339] | |||
Iridoid: 6β-O-β-d glucosylparderosic acid | [340] | |||
Iridoid glycosides: asperuloside; paederoside; scanderoside | [341,342] | |||
Iridoid glycosides: 6′-O-E-feruloyl monotropein; 10-O-E-feruloyl monotropein | [343] | |||
Iridoid glycoside: paederoside B | [344] | |||
PRI | Rennellia elliptica | Anthraquinone: 1,2-dimethoxy-6-methyl-9,10-anthraquinone; 1-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone; nordamnacanthal; 2-formyl-3-hydroxy-9,10-anthraquinone; damnacanthal; lucidin-ω-methyl ether; 3-hydroxy-2-methyl-9,10-anthraquinone; rubiadin; 3-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone; rubiadin-1-methyl ether; 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone | [345] | |
PSY | Camptotheca acuminata | Alkaloids: camptothecin; 10-hydroxycamptothecin | [346] | |
Carapichea affinis | Alkaloids: cephaeline; emetine; ipecoside; 6-O-methylipecoside; 6-O-methyl-trans-cephaeloside; borucoside | [347] | ||
Cephaelis acuminata | Alkaloids: 2-O-β-d-glucopyranosyldemethylalangiside; demethylalangiside; 6′′-O-β-d-glucopyranosylipecoside; 6′′-O-α-d-glucopyranosylipecoside; ipecoside; (4R)-4-hydroxy-6,7-di-O-methyl ipecoside; (4S)-4-hydroxy-6,7-di-O-methylipecoside; 6,7-di-O-methylipecoside tetraacetate | [348] | ||
Alkaloids: emetine; cephaeline; neocephaeline 7-O-demethylcephaeline; 10-O-demethylcephaeline; 2′-n-(1′′-deoxy-1′′-β-d-buctopyranosyl) cephaeline; 2′′-n-(1′′-deoxy-1′′-β-d-fructopyranosyl) pyranosyl | [349] | |||
Cephaelis acuminata | Alkaloids: neocephaeline; 7′-O-demethylcephaeline; 10-O-demethylcephaeline; 2′-n-(10-deoxy-10-β-d-fructopyranosyl) cephaeline; 2′-n-(10-deoxy-10′′-β-d-fructopyranosyl) neocephaeline; emetine; cephaeline; psychotrine; protoemetine; 9-demethylprotoemetinol; isocephaeline | [349] | ||
Cephaelis dichroa | Indole alkaloids: vallesiachotamine lactone; vallesiachotamine; strictosamide; strictosidine; angustine | [350] | ||
Cephaelis ipecacuanha | Tetrahydroisoquinoline-monoterpene glucosides: 3-O-demethyl-2-O-methylalangiside; alangiside or ipecoside; 6-O-methylipecoside; 7-O-methylipecoside; 3-O-demethyl-2-O-methylalangiside; 2-O-methylalangiside | [351] | ||
Alkaloids: emetine; cephaeline; psychotrine; emetamine; O-methylpsycotrine | [352] | |||
Chassalia curviflora var. ophioxyloides | Indole alkaloids: alstrostine A; rudgeifoline | [353] | ||
Margaritopsis cymuligera | Pyrrolidinoindoline alkaloids: hodgkinsine; quadrigemine C | [354] | ||
Palicourea acuminata | Indole alkaloid: strictosidinic acid; methylester strictosidine; palicoside; bahienoside B; 5α-carboxystrictosidine; desoxycordifoline; lagamboside; vallesiachotamine | [355] | ||
Palicourea adusta | Monoterpenoid glucoindole alkaloids: lyaloside; tetra-(O-acetyl)-lyaloside; (E)-O-(6′)-cinnamoyl-4′′-hydroxy-3′′-methoxylyaloside; (E)-tetra-(O-acetyl)-O-(6′)-cinnamoyl-4′-hydroxy-3′-methoxylyaloside; (E)-tetra-(O-acetyl)-O-(6′)-cinnamoyl-4′′-hydroxy-3′′,5′′-dimethoxylyaloside | [356] | ||
Palicourea crocea | Monoterpenoid indole alkaloids: 3,4-dihydro-1-(1-β-d-glucopyranosyloxy-1,4α,5,7-tetrahydro-4-methoxycarbonylcyclopenta[c]pyran-7-yl)-β-carboline-N2-oxide; croceaine A; psychollatine | [357] | ||
Palicourea coriacea | Glucoindole alkaloids: 3-epi-strictosidinic acid; strictosidinic acid; strictosidinic ketone Alkaloid: calycanthine Triterpene: ursolic acid | [358] | ||
Palicourea crocea | Monoterpene Indole Alkaloids: croceaines A–B | [359] | ||
Palicourea rigida | Indole alkaloid: vallesiachotamine | [360] | ||
Prismatomeris connata | Anthraquinone glycosides: 1-O-methylrubiadin 3-O-β-primeveroside; damnacanthol 3-O-β-primeveroside; rubiadin 3-O-β-primerveroside; lucidin 3-O-β-primeverosideo; 1,3-dihydroxy-2-(methoxymethyl) anthraquinone 3-O-β-primerveroside; digiferruginol ω-gentiobiose | [361] | ||
Phenolic compound glycoside: prismaconnatoside | [362] | |||
Prismatomeris malayana | Anthraquinone: 1,3-dihydroxy-5,6-dimethoxy-2-methoxymethyl-9,10-anthraquinone; 2-hydroxymethyl-1-methoxy-9,10-anthraquinone; tectoquinone; 1-hydroxy-2-methyl-9,10-anthraquinone; rubiadin; rubiadin-1-methyl ether; 1,3-dihydroxy-5,6-dimethoxy-2-methyl-9,10-anthraquinone; nordamnacanthal; damnacanthal | [363] | ||
Prismatomeris tetrandra | Iridoids: prismatomerin | [364,365] | ||
Psychotria bahiensis | Bis(monoterpenoid) indole alkaloid glucosides: bahienoside A; bahienoside B; 5R-carboxystrictosidine; angustine; strictosamide; (E)- and (Z)-vallesiachotamine | [366] | ||
Psychotria barbiflora | β-Carbolinic alkaloids: harman; strictosidinic acid | [367] | ||
Psychotria brachyceras | Monoterpene indole alkaloids: brachycerine | [368] | ||
Psychotria camponutans | Pyranonaphthoquinones: pentalongin; psychorubrin; 1-hydroxy-3,4-dihydro-1H-benz[g]isochromene-5,10-dione | [369] | ||
Psychotria colorata | Alkaloids: (−)-calycanthine; isocalycanthine; (+)-chimonanthine; hodgkinsine; quadrigemine C; (8-8a),(8′-8′a)-tetradehydroisocalycanthine 3a(R),3′a(R) | [370] | ||
Psychotria calocarpa | Alkaloids: psychotriasine | [371] | ||
Psychotria correae | Indole alkaloids: isodolichantoside; correantoside; 10-hydroxycorreantoside; correantines A–C e 20-epi-correantine B C13-Norisoprenoids: megastigm-5-ene-3,9-diol; S(+)-dehydrovomifoliol Carotenoids: lutein | [372] | ||
Psychotria glomerulata | Quinoline alkaloids: glomerulatines A−C; calycanthine; iso-calycanthine | [373] | ||
Psychotria ipecacuanha | Alkaloids: emetine; cephaeline | [374] | ||
Psychotria leiocarpa | Indole alkaloids: umbellatine; brachicerine; lyaloside; strictosamide; myrianthosines A–B; n,β-D-glucopyranosyl vincosamide quadrigemine A Iridoid glucosides: asperuloside; deacetylasperuloside; loganin | [375] | ||
Psychotria myriantha | Indole alkaloids: strictosidinic acid | [376] | ||
Indole alkaloids: strictosidinic acid | [377] | |||
Psychotria nuda | Alkaloid: strictosamide | [378] | ||
Psychotria lyciiflora | Alkaloids: meso-chimonanthine; hodgkinsine; N-demethyl-meso- chimonanthine; quadrigemine C; isopsycotridine B; psychotridine; quadrigemine I; oleoidine; caledonine | [379] | ||
Psychotria oleoides | ||||
Psychotria prunifolia | Alkaloids: strictosamide; 10-hydroxyiso-deppeaninol; N-oxide-10-hydroxy-antirhine | [380] | ||
Indole-β-carboline alkaloids: 10-hydroxyisodeppeaninol; N-oxide-10-hydroxy-antirhine; 14-oxoprunifoleine; strictosamide | [381] | |||
Indole-β-carboline alkaloids: 14-oxoprunifoleine; strictosamide; 10-hydroxyantirhine N-oxide; 10-hydroxyisodeppeaninol | [382] | |||
Psychotria suterella | Indole alkaloids: lyaloside; naucletine; strictosamide | [383] | ||
Psychotria umbellata | Indole alkaloids: psycollatine | [384] | ||
Psychotria vellosiana | Triterpenes: squalene; lupeolids Coumarin: scopoletin | [385] | ||
Psychotria viridis | Alkaloid: dimethyltryptamine | [386] | ||
Rudgea jasminoides | Anthraquinone: 1,4-naphthohydroquinone | [387] | ||
PUT | Plocama pendula | Naphthohydroquinones: mollugin 6-methyl ether; plocanaphthin Lignans: syringaresinol; pinoresinol; lariciresinol Coumarin: scopoletin | [388] | |
Anthraquinones: balonone; balonone; methyl ether; plocamanones A–C; knoxiadin; 5,6-dimethyl ether; plocamanone D; chionone; isozyganein dimethyl ether; lucidin 1,3-dimethyl ether; lucidin; 1-hydroxy-2-methyl-9,10-anthraquinone; tectoquinone; rubiadin 3-methyl ether; rubiadin 1-methyl ether; rubiadin dimethyl ether; rubiadin; lucidin 3-methyl ether; munjistin ethyl ester; ibericin; damnacanthol ω-ethyl ether; alizarin dimethyl ether; alizarin 1-methyl ether; anthragallol 1,2-dimethyl ether; 3-hydroxy-2-(hydroxymethyl)-9,10-anthraquinone | [389] | |||
Triterpenes: 3-epi-pomolic acid 3α-acetate; baloic acid; meth; 19α-hydroxyoleanonic acid; 3β-hydroxyolean-11,13(18)-dien-28-oic acid; 3α-acetoxy-19α-hydroxyursa-12-en-28-oic acid; baloic acid;19α-hydroxyoleanonic acid | [390] | |||
Putoria calabrica | Flavonoids: calabricosides A–B Iridoid: asperuloside; paederosidic acid; paederoside Lignan glycosides: liriodendrin; dihydrodehydrodiconiferyl alcohol-4-O-β-d-glucopyranoside; 7S,8R,8′R-(–)-lariciresinol-4,4′-bis-O-β-d-glucopyranoside. | [391] | ||
SPE | Borreria verticillata | Indole alkaloids: spermacoceine; borrerine; borreverine; isoborreverine | [392] | |
Indole alkaloids: verticillatines A–B Iridoids: scandoside methyl ester; 6′-O-(2-glyceryl) scandoside methyl ester; asperuloside acid | [393] | |||
Dunnia sinensis | Iridoid: dunnisinine Iridoid glycoside: dunnisinoside | [394] | ||
Galianthe brasiliensis | Iridoid glycosides: asperuloside; deacetylasperuloside; mixture of Z- and E-6-O-p-coumaroylscandoside methyl ester | [395] | ||
Galianthe ramosa | Phenolic compound: epicatechin Triterpene: ursolic acid β-carboline indole alkaloid: 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl) cyclopentanol | [396] | ||
β-carboline alkaloid: 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl) cyclopentanol; 9-methoxyindole alkaloid | [396] | |||
Galianthe thalictroides | β-carboline indole alkaloid: 1-methyl-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl)-cyclopentanol; 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl)-cyclopentanol Anthraquinones: 1-methylalizarin; morindaparvin-A Coumarin: scopoletin | [397] | ||
Hedyotis auricularia | β-Carboline alkaloid: auricularine | [398] | ||
Hedyotis capitellata | β-Carboline alkaloids: capitelline; cyclocapitelline; isocyclocapitelline; hedyocapitelline; hedyocapitine | |||
Hedyotis chrysotricha | β-Carboline alkaloid: chrysotricine | |||
Hedyotis capitellata | Anthraquinones: capitellataquinone A–D; rubiadin; anthragallol; 2-methyl ether; alizarin-1-methyl eter; digiferruginol; lucidin-3-O-β-glucoside | [399] | ||
β-Carboline alkaloids: capitelline; (−)-isocyclocapitelline; (+)-cyclocapitelline; isochrysotricine; chrysotricine | [400] | |||
β -Carboline alkaloids: capitelline; (+)-isocyclocapitelline; (+)-cyclocapitelline; isochrysotricine; chrysotricine | [401] | |||
Hedyotis chrysotricha | β-Carboline alkaloid: chrysotricine | [402] | ||
Hedyotis corymbosa | Iridoid glucosides: asperuloside; scandoside methyl ester | [403] | ||
Iridoids: hedycoryside A–C | [404] | |||
Hedyotis crassifolia | Triterpenes: ursolic acid; 3β-hydroxyurs-11-ene-23(13)-lactone; 3α,13β-dihydroxyurs-11-ene-28-oic acid; oleanolic acid; 3-β-d-glucopyranosyl-β-sitosterol and 3β,6β-dihydroxyolean-12-ene-28-oic acid | [405] | ||
Hedyotis diffusa | Iridoid glycosides: dunnisinoside; E-6-O-p-methoxycinnamoyl scandoside methyl ester; Z-6-O-p-methoxycinnamoyl scandoside methyl ester; E-6-O-p-feruloyl scandoside methyl ester; E-6-O-p-coumaroyl scandoside methyl ester; Z-6-O-p-coumaroyl scandoside methyl ester | [406] | ||
Iridoid glucosides: diffusosides A–B | [407] | |||
Anthraquinones: 2-methyl-3-methoxyanthraquinone; 2-methyl-3-hydroxyanthraquinone; 2-methyl-3-hydroxy-4-methoxyanthraquinone; 2,3-dimethoxy-6-methylanthraquinone | [398] | |||
Flavonoids: quercetin; quercetin 3-O-glucopyranoside; quercetin 3-O-sambubioside; quercetin 3-O-sophoroside; quercetin 3-O-rutinoside | ||||
Hedyotis dichotoma | Anthraquinones:1,4-dihydroxy-2,3-dimethoxyanthraquinone; 1,4-dihydroxy-2-hydroxy-methylanthraquinone; 2,3-dimethoxy-9-hydroxy-1,4-anthraquinone; 2-hydroxymethyl-10-hydroxy-1,4-anthraquinone Flavonoids: isovitexin | [398] | ||
Hedyotis intricata | Triterpene: lupeol; oleanolic acid Iridoid: asperuloside | [408] | ||
Hedyotis hedyotidea | Iridoids: deacetylasperulosidic acid ethyl ester; hedyotoside; asperulosidic acid; asperuloside; deacetylasperuloside | [409] | ||
Hedyotis herbacea | Flavonoids: kaempferol 3-O-rutinoside; rutin; kaempferol 3-O-glucoside; kaempferol 3-O-arabinopyranoside; kaempferol-3-O-arabino pyranoside; quercetin 3-O-galactoside | [398,410] [410] | ||
Hedyotis nudicaulis | Triterpene glycosides: nudicaucins A–C; guaiacin D | [411] | ||
Hedyotis pinifolia | Anthraquinones:1,6-dihydroxy-7-methoxy-2-methylanthraquinone; 1,6-dihydroxy-2-methylanthraquinone; 3,6-dihydroxy-2-methylanthraquinon; 1,3,6-trihydroxy-2-methylanthraquinone | [412] | ||
Hedyotis tenelliflora | Iridoids: teneoside B | [413] | ||
Hedyotis verticillata | Flavonoids: kaempferitrin | [398] | ||
Hedyotis vestita | Stereoid: phytol Flavonoids: rutine; isohrametin 3-O-rutinoside; vomifoliol 9-O-β-d-glucopyranoside; auricularin Iridoid: 6α-methoxygenyposide; Phenolic compound: sodium (1S,4aR,5R,7aR)-7-hydroxymethyl-5-methoxy-1-β-d-glucopyranosyloxy-1,4α,5,7α-tetrahydrocyclopenta[c]pyran-4-carboxylate | [414] | ||
Mitracarpus frigidus | Pyranonaphthoquinone: psychorubrin | [415] | ||
Mitracarpus scaber | Pentalongin hydroquinone diglycoside: harounoside | [416] | ||
Phenolic compounds: pentadecanoic; (Z)-octadec-9-enoic; tetradecanoic; (Z,Z)-octadeca-9,12-dienoic; (Z)-hexadec-9-enoic; octadecanoic; dodecanoic acid | [417] | |||
Mitracarpus villosus | Triterpenes: methyl ursalate; ursolic acid | [418] | ||
Oldenlandia corymbosa | Iridoid glycosides: geniposidic acid; scandoside; feretoside; 10-O-benzoylscandoside methyl ester; odenlandoside III; asperulosidic acid; deacetylasperulosidic acid | [419] | ||
Oldenlandia difusa | Triterpenes: ursolic acid | [420] | ||
Triterpenes: 2,6-dihydroxy-1-methoxy-3-methylanthraquinone; 2-hydroxy-1-methoxy-3-methylanthraquinone; 2-hydroxy-3-methylanthraquinone; quercetin-3-O-[2-O-(6-O-E-sinapoyl)-β-d-glucopyranosyl]-β-glucopyranoside; quercetina-3-O-[2-O-(6-O-E-feruloyl)-β-d-glucopyranosyl]-β-glucopyranoside; kaempferol-3-O-[2-O-(6-O-E-feruloyl)-β-d-glucopyranosyl]-β-galactopyranoside; quercetin-3-O-(2-O-β-d-glucopyranosyl)-β-d-glucopyranoside; rutin; quercertin | [421] | |||
Oldenlandia umbellata | Anthraquinones: 1,2,3-trimethoxyanthraquinone; 1,3-dimethoxy-2-hydroxy-anthraquinone; 1,2-dimethoxyanthraquinone; 1-methoxy-2-hydroxyanthraquinone; 1,2-dihydroxyanthraquinone | [422] | ||
Richardia grandiflora | Phenolic compounds: o-hydroxybenzoic acid; m-methoxy-p-hydroxybenzoic acid | [423] | ||
Saprosma fragrans | Anthraquinones: 4-dihydroxy-1-methoxyanthraquinone-2-corboxaldehyde; damnacanthal | [424] | ||
Saprosma hainanense | Alkaloids: saprosmine A; saprosmine B; marcanine A; quinolone; cleistopholine; 4-methoxycarbonyl-5; 10-benzogquinolinequinone; liriodenine | [425] | ||
Saprosma scortechinii | Iridoid: 6-O-epi-acetylscandoside | [426] | ||
Iridoids: 10-O-benzoyl deacetylasperulosidic acid; 3,4-dihydro-3α-methoxy-paederoside; saprosmosides A–H | [426] | |||
Bis-iridoid glucosides: saprosmosides A–F Iridoid glucosides: 3,4-dihydro-3-methoxypaederoside; 10-O-benzoyldeacetylasperulosidic acid; deacetylasperuloside; asperuloside; paederoside; deacetylasperulosidic acid; scandoside; asperulosidic acid; 10-acetylscandoside; paederosidic acid; 6-epi-paederosidic acid; methylpaederosidate; monotropein | [427] | |||
Saprosma ternatum | Alkaloid: vittadinoside Coumarins: scopoletin Iridoid glycosides: epiasperuloside; epipaederosidic acid; epipaederosi Triterpenes: betulinic acid; betulinaldehyde | [428] | ||
Spermacoce verticillata | Triterpenes: morolic acid; oleanolic acid; ursolic acid; 3,5-dioxofriedelane Flavonoids: 3-O-α-l-rhamnopyranosyl quercetin; quercetin Anthraquinones: 2-hydroxy-3-methylanthraquinone | [429] | ||
RUB | Asperula maximowiczii | Iridoids: asperuloides A–C | [430] | |
Crucianella graeca | Coumarins: daphnin; daphnetin; daphnetin glucoside Iridoids: deacetylasperulosidic acid; scandoside; asperuloside; asperulosidic acid; methyl ester of deacetylasperulosidic acid; dafiloside; geniposidic acid; 10-hydroxyloganin; deacetylasperuloside | [431] | ||
Crucianella maritima | Iridoid: deacetylasperulosidic acid 6'-glucoside sodium salt; Anthraquinones: 1-hydroxy-2-carbomethoxyanthraquinone; 6-methylanthragallol-2-methyl ether; 6-methylanthragallol-2,3-dimethyl ether; 6-methoxy-2-methylquinizarin; 1-hydroxy-2-methyl-6-methoxyanthraquinone | [432] | ||
Iridoids: asperuloside; asperulosidic acid; deacetylasperulosidic acid | [433] | |||
Cruciata glabra | Coumarins: daphnin; daphnetin; daphnetin glucoside Iridoids: scandoside | [431] | ||
Cruciata laevipes | Coumarins: daphnin; daphnetin glucoside Iridoids: scandoside; asperuloside; asperulosidic acid; methyl ester of deacetylasperulosidic acid; daphylloside | |||
Cruciata pedemontana | Coumarins: daphnin; daphnetin glucoside Iridoids: scandoside; asperuloside; asperulosidic acid; methyl ester of deacetylasperulosidic acid; daphylloside | |||
Cruciata taurica | Monoterpenoid glycosides: cruciaside A (2,5-O-β-d-diglucopyranosyl-3-hydroxy-p-cymene); cruciaside B (5-O-β-d-glucopyranosyl-2,3-dihydroxy-p-cymene) | [434] | ||
Coumarin glucosides: daphnin; daphnetin glucoside; 7-O-(6′-acetoxy-β-d-glucopyranosyl)-8-hydroxycoumarin; 7-O-[6′-O-(3′′,4′′-dihydroxycinnamoyl)-β-d-glucopyranosyl]-8-hydroxycoumarin | [435] | |||
Crucianella graeca | Iridoids: deacetylasperulosidic acid; scandoside; asperuloside; asperulosidic acid; geniposidic acid; 10-hydroxyloganin; deacetylasperuloside; iridoid V3 | [431] | ||
Galium album | Iridoid glycosides: secogalioside; asperuloside; deacetyl asperulosidic acid; scandoside; monotropein; asperulosidic acid; geniposidic acid; 10-hydroxyloganin; 10-hydroxymorroniside (isomers 7α e7β); daphylloside | [436] | ||
Galium aparine | Anthraquinone aldehyde: nordamnacanthal | [437] | ||
Galium lovcense | Iridoid glycosides: secogalioside; asperuloside; deacetyl asperulosidic acid; scandoside; monotropein; asperulosidic acid; geniposidic acid; 10-hydroxyloganin; 10-hydroxymorroniside (isomers 7α e7β); daphylloside; 7-β-hydroxy-11-methyl forsythide; 7-O-acetyl-10-acetoxyloganin | [436] | ||
Galium rivale | Iridoid glycosides: monotropein; scandoside; eacetylasperulosidic acid; geniposidic acid; asperulosidic acid Triterpene glycosides: rivalosides A–E e momordin II | [438] | ||
Galium macedonicum | Iridoid: macedonine | [439] | ||
Galium sinaicum | Anthraquinones: 6,7-dimethoxyxanthopurpurin; 6-hydroxy-7-methoxyrubiadin; 5-hydroxy-6-hydroxymethyl anthragallol 1,3-dimethyl ether; 7-carboxyanthragallol 1,3-dimethyl ether; anthragallol l-methyl ether 3-O-β-d-glucopyranoside; anthragallol l-methyl ether 3-O-rutinoside; anthragallol 3-O-rutinoside; alizarin 1-methyl ether 2-O-primeveroside | [440] | ||
Galium spurium | Flavonoids: asperulosidic acid ester ; asperuloside; caffeic acid; kaempferol-3-O-l-rhamnopyranoside; quercetin-3-O-[α-l-rhamnopyranosyl(1→6)-β-d-glucopyranoside]; isorhamnetin-3-O-glucopyranoside; quercetin-3-O-α-l-rhamnopyranoside; kaempferol-3-O-[α-l-rhamnopyranosyl(1→6)-β-d-glucopyranoside]; quercetin | [441] | ||
Galium verum | Anthraquinones: 1,3-dihydroxy-2 methoxy methyl; 1,3-dimethoxy-2-hydroxy; 1,3-dihydroxy-2-acetoxy; 1-hydroxy-2-hydroxy-methyl; 1,3-dihydroxy-2-methyl; 1-methoxy-2-hydroxy; 1,3-dihydroxy-2-hydroxy-methyl-6-methoxy; 1,6-dihydroxy-2-methyl anthraquinones | [442] | ||
Galium verum var. asiaticum | Iridoid glycoside: 10-p-dihydrocoumaroyl-6-α-hydroxygeniposide; 10-p-dihydrocoumaroyl deacetylasperuloside; asperulosidic acid methyl ester; asperuloside; asperulosidic acid; deacetylasperuloside; scandoside | [443] | ||
Rubia akane | Anthraquinones: 1,3-dihydroxyanthraquinone-2-al; lucidin-3-O-primeveroside | [437] | ||
Rubia cordifolia | Naphtoquinones: dihydromollugin; 2-carbomethoxy-3-(3'-hydroxy)-isopentyl-1,4-naphthohydroquinone 1,4-O-di-β-glucoside; 2-carbomethoxy-3-(3'-hydroxy) isopentyl-1,4-naphthohydroquinona 4-O-β-glucoside Anthraquinones: xanthopurpurin; 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone 3-O-β-glucoside; 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone; 2-methyl-1-hydroxy-9,10-anthraquinone; 3-O-α-rhamnosyl(1→2)-β-glucoside; 3-O-(6'-O-acetyl)-α-rhamnosyl (1→2)-β-glucoside; 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone 3-O-(4′,6′-O-diacetyl)-α-rhamnosyl (1→2)-β-glucoside; 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone 3-O-(3′,6′-O-diacetyl)-α-rhamnosyl (1→2)-β-glucoside | [444] | ||
Iridoids glycoside: 6-methoxygeniposidic acid; 6-methoxygeniposidic acid methyl ester Triterpene: oleanolic aldehyde acetate Fenolic compound: furomollugin | [445] | |||
Rubia peregrina | Anthocyanins: cyanidin 3-O-glucoside; delphinidin 3-O-glucoside; cyanidin 3-O-arabinoside | [446] | ||
Rubia schumanniana | Anthraquinones glycosides: 1,3,6-trihydroxy-2-methyl anthraquinone; (2-methyl-1,3,6-trihydroxy-9,10-anthraquinone-3-O-α-L-rhamnopyranosyl (1→2)-β-d-glucopyranoside); 1-hydroxy-2-hydroxy-methylene-9,10-anthraquinone-11-O-β-d-glucopyranosyl (1→6)-β-d-glucopyranoside; digiferruginol glycoside | [447] | ||
Triterpenes: 3β-hydroxy-urs-30-p-Z-hydroxycinnamoyl-12-en-28-oic-acid; 3β-hydroxy-olean-30-p-E-hydroxycinnamoyl-12-en-28-oic-acid; 3β,6α-dihydroxy-urs-14-en-12-one | [448] | |||
Cyclopeptides: rubischumanins A–C; C-6β-oxy-RA IV; RA-IV; O-seco-RA-V | [448] | |||
Rubia yunnanensis | Triterpene: rubiarbonol K | [449] | ||
Rubia tinctorum | Anthraquinones: alizarin; lucidin; mollugin; xanthopurpurin; rubiadin | [450] | ||
Anthraquinones: 1-hydroxy-2-hydroxymethylanthraquinone 3-glucoside 2-hydroxymethyl-anthraquinone 3-glucoside; 3,8-dihydroxymethylanthraquinone 3-glucoside Anthraquinone glycosides: alizarin; lucidian-ω-ethyl ether; lucidin primeveroside Iridoid: asperuloside | [451] | |||
Anthraquinones: pseudopurpurin; lucidin; alizarin; purpurin; alizarin-2-methylether; lucidin-ω-ethylether; nordamnacanthal; munjistin ethyl ester; lucidin primeveroside; ruberithric acid | [452,453] | |||
Rubia yunnanensis | Cyclic hexapeptides: rubiyunnanins A–B | [454] | ||
Triterpenes: rubiarbonones D–F; rubiarbosides F–G; rubiarbonone A; rubiarbonol A–B; rubiarbonone B; rubiarbonol A; rubiarbonol B; rubiarbonol F; rubiarbonol G; rubiarboside A | [455] | |||
** | * | Luculia pinciana | Triterpene: luculiaoic acid A | [456] |
Triterpenes: vogeloside; epi-vogeloside; loganoside; loganin; cincholic acid 28-O-β-d-glucopyranosyl ester; cincholic acid-3-O-β-d-glucopyranoside, 28-O-β-d-glucopyranosyl ester; cincholic acid-3-O-β-d-glucopyranoside | [457] |
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Barreiro, E.J. Produtos naturais bioativos de origem vegetal e o desenvolvimento de fármacos. Quím. Nova 1990, 13, 29–39. [Google Scholar]
- Farias, F.M. Psychotria myriantha müll arg. (rubiaceae): Caracterização dos alcalóides e avaliação das atividades antiquimiotáxica e sobre o sistema nervoso central. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2006. [Google Scholar]
- Fairbrothers, D.E. Chemosystematics with emphasis on systematic serology. In Modern Methods in Plant Taxonomy; Heywood, V.H., Ed.; International Association for Plant Taxonomy: Stockholm, Sweden, 1968; Volume 18, pp. 141–174. [Google Scholar]
- Mabberley, D.J. The Plant-book: A Portable Dictionary of the Vascular Plants Utilizing Kubitzki's The Families and Genera of Vascular Plants (1990-), Cronquist’s An Integrated System of Classification of Flowering Plants (1981), and Current Botanical Literature, Arranged Largely on the Principles of Editions 1–6 (1896/97–1931) of Willis’s A Dictionary of the Flowering Plants and Ferns, 2nd ed.; Cambridge university press: Cambridge, UK, 1997. [Google Scholar]
- Pereira, C.G.; Meireles, M.A.A. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Tech. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Mongrand, S.; Badoc, A.; Patouille, B.; Lacomblez, C.; Chavent, M.; Bessoule, J.J. Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition. Phytochemistry 2005, 66, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.C.; Lorenzi, H. Botânica sistemática: Guia ilustrado para identificação de Fanerógamas nativas e exóticas no Brasil, baseado em APG II; Instituto Plantarum: Nova Odessa, Brazil, 2008. [Google Scholar]
- Robbrecht, E. Tropical woody Rubiaceae. Oper. Bot. Belg. 1988, 1, 599–602. [Google Scholar]
- Verdcourt, B. Remarks on the classification of the Rubiaceae. Bull. Jard. Bot. l'Etat Brux./Bull. Rijksplant. Bruss. 1958, 28, 209–290. [Google Scholar] [CrossRef]
- Bremekamp, C.E.B. Remarks on the position, the delimitation and the subdivision of the Rubiaceae. Acta Bot. Neerl. 1966, 15, 1–33. [Google Scholar] [CrossRef]
- Andersson, L. Circumscription of the tribe Isertieae (Rubiaceae). In Proceedings of the Second International Rubiaceae Conference, Meise, Belgium, 13–15 September, 1995; Volume 7, pp. 139–164.
- Bremer, B.; Andreasen, K.; Olsson, D. Subfamilial and tribal relationships in the Rubiaceae based on rbcL sequence data. Ann. Mo. Bot. Gard. 1995, 82, 383–397. [Google Scholar] [CrossRef]
- Andersson, L.; Rova, J.H.; Guarin, F.A. Relationships, circumscription, and biogeography of Arcytophyllum (Rubiaceae) based on evidence from cpDNA. Brittonia 2002, 54, 40–49. [Google Scholar] [CrossRef]
- Rova, J.H.; Delprete, P.G.; Andersson, L.; Albert, V.A. A trnL-F cpDNA sequence study of the Condamineeae-Rondeletieae-Sipaneeae complex with implications on the phylogeny of the Rubiaceae. Am. J. Bot. 2002, 89, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Bolzani, V.D.S.; Young, M.C.M.; Furlan, M.; Cavalheiro, A.J.; Araújo, A.R.; Silva, D.H.S.; Loped, M.N. Secondary metabolites from Brazilian Rubiaceae plant species: Chemotaxonomical and biological significance. Rec. Res. Dev. Phytochem. 2001, 5, 19–31. [Google Scholar]
- Bremer, B. A review of molecular phylogenetic studies of rubiaceae 1. Ann. Mo. Bot. Gard. 2009, 96, 4–26. [Google Scholar] [CrossRef]
- Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 2003, 64, 3–19. [Google Scholar] [CrossRef]
- Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: Da planta ao medicamento, 6th ed; UFSC University Press: Florianópolis, Brazil, 2004; p. 1104. [Google Scholar]
- Heitzman, M.E.; Neto, C.C.; Winiarz, E.; Vaisberg, A.J.; Hammond, G.B. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry 2005, 66, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Almog, J.; Cohen, Y.; Azoury, M.; Hahn, T.R. Genipin—A novel fingerprint reagent with colorimetric and fluorogenic activity. J. Forensic Sci. 2004, 49, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 2004, 495, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.C.; Kim, H.G.; Lee, S.A.; Lim, S.; Park, E.H.; Kim, S.J.; Lim, C.J. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH 2-terminal kinase-dependent activation of mitochondrial pathway. Biochem. pharmacol. 2005, 70, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.C. O Brasil dos viajantes e dos exploradores e a química de produtos naturais brasileira. Quim. Nova 1995, 18, 608–615. [Google Scholar]
- Pelletier, P.J.; Caventou, J.B. Recherches chimiques sur les quinquinas. In Annales de Chimie et de Physique, 1st ed.; Gay-Lussac, J.L., Arago, F. Eds., Eds.; Chez Crochard: Paris, France, 1820; Volume 3. [Google Scholar]
- Viegas, C.; Bolzani, V.S.; Barreiro, E.J. Os produtos naturais e a química medicinal moderna. Quim. Nova 2006, 29, 326–337. [Google Scholar] [CrossRef]
- Lemaire, I.; Assinewe, V.; Cano, P.; Awang, D.V.; Arnason, J.T. Stimulation of interleukin-1 and-6 production in alveolar macrophages by the neotropical liana, Uncaria tomentosa (una de gato). J. Ethnopharmacol. 1999, 64, 109–115. [Google Scholar] [CrossRef]
- Gonçalves, C.; Dinis, T.; Batista, M.T. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: A mechanism for anti-inflammatory activity. Phytochemistry 2005, 66, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C.; Raymon, L.P.; Hearn, W.L.; McKenna, D.J.; Grob, C.S.; Brito, G.S.; Mash, D.C. Quantitation of N,N-dimethyltryptamine and harmala alkaloids in human plasma after oral dosing with ayahuasca. J. Anal. Toxicol. 1996, 20, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Grob, C.S.; Mckenna, D.J.; Callaway, J.C.; Brito, G.S.; Neves, E.S.; Oberlaender, G.; Saide, O.L.; Labigalini, E.; Tacla, C.; Miranda, C.T. Human psychopharmacology of hoasca, a plant hallucinogen used in ritual context in Brazil. J. Nerv. Ment. Dis. 1996, 184, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Deulofeu, V. Chemical compounds isolated from Banisteriopsis and related species. In Ethnopharmacological Search for Psychoactive Drugs; Efron, D., Ed.; U.S. Govt. Printing Office: Washington, WA, USA, 1967; Volume 18, pp. 393–402. [Google Scholar]
- Freedland, C.S.; Mansbach, R.S. Behavioral profile of constituents in ayahuasca, an Amazonian psychoactive plant mixture. Drug Alcohol. Depend. 1999, 54, 183–194. [Google Scholar] [CrossRef]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109 (Suppl S1), 69. [Google Scholar] [CrossRef] [PubMed]
- De-Moraes-Moreau, R.L.; Haraguchi, M.; Morita, H.; Palermo-Neto, J. Chemical and biological demonstration of the presence of monofluoroacetate in the leaves of Palicourea marcgravii St. Hil. Braz. J. Med. Biol. Res. 1995, 28, 685–692. [Google Scholar] [PubMed]
- Di Stasi, L.C.; Hiruma-Lima, C.A. Plantas medicinais na Amazônia e na Mata Atlântica, 2nd ed.; UNESP University Press: São Paulo, Brazil, 2008; Volume 1, p. 604. [Google Scholar]
- Domínguez, X.A. Métodos de investigación fitoquímica; Limusa: Mexico City, Mexico, 1973; Volume 1, p. 281. [Google Scholar]
- Bremer, B. Combined and separate analyses of morphological and molecular data in the plant family Rubiaceae. Cladistics 1996, 12, 21–40. [Google Scholar] [CrossRef]
- Otto, A.; Wilde, V. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—A review. Bot. Rev. 2001, 67, 141–238. [Google Scholar] [CrossRef]
- Carbonezi, C.A.; Hamerski, L.; Flausino, O.A., Jr.; Furlan, M.; Bolzani, V.D.S.; Young, M.C.M. Determinação por RMN das configurações relativas e conformações de alcalóides oxindólicos isolados de Uncaria guianensis. Quim. Nova 2004, 27, 878–881. [Google Scholar] [CrossRef]
- Dahlgren, R. A revised system of classification of the angiosperms. Bot. J. Linn. Soc. 1980, 80, 91–124. [Google Scholar] [CrossRef]
- Gottlieb, O.R. The role of oxygen in phytochemical evolution towards diversity. Phytochemistry 1989, 28, 2545–2558. [Google Scholar] [CrossRef]
- Gottlieb, O.R. Phytochemicals: Differentiation and function. Phytochemistry 1990, 29, 1715–1724. [Google Scholar] [CrossRef]
- Young, M.C.M.; Araújo, A.R.; da Silva, C.A.; Lopes, M.N.; Trevisan, L.M.; Bolzani, V.D.S. Triterpenes and saponins from Rudgea viburnioides. J. Nat. Prod. 1998, 61, 936–938. [Google Scholar] [CrossRef] [PubMed]
- Young, M.C.M.; Braga, M.R.; Dietrich, S.M.; Gottlieb, H.E.; Trevisan, L.M.; Bolzani, V.D.S. Fungitoxic non-glycosidic iridoids from Alibertia macrophylla. Phytochemistry 1992, 31, 3433–3435. [Google Scholar] [CrossRef]
- Bolzani, V.D.S.; Trevisan, L.M.; Young, M.C.M. Caffeic acid esters and triterpenes of Alibertia macrophylla. Phytochemistry 1991, 30, 2089–2091. [Google Scholar] [CrossRef]
- Koike, K.; Cordell, G.A.; Farnsworth, N.R.; Freer, A.A.; Gilmore, C.J.; Sim, G.A. New cytotoxic diterpenes from Rondeletia panamensis (Rubiaceae). Tetrahedron 1980, 36, 1167–1172. [Google Scholar] [CrossRef]
- Olea, R.S.G.; Roque, N.F.; Bolzani, V.D.S. Acylated flavonol glycosides and terpenoids from the leaves of Alibertia sessilis. J. Braz. Chem. Soc. 1997, 8, 257–259. [Google Scholar] [CrossRef]
- Schripsema, J.; Dagnina, D.; Grosman, G. Alcalóides indólicos. In Farmacognosia da planta ao medicamento; Simões, C.M.O., Ed.; Editora da UFSC. 2004: Florianópolis, Brazil, 2004; Volume 5, pp. 819–846. [Google Scholar]
- Young, M.; Braga, M.; Dietrich, S.; Bolzani, V.; Trevisan, L.; Gottlieb, O. Chemosystematic Markers of Rubiaceae, Proceedings of the Second International Rubiaceae Conference, Meise, Belgium, 13–15 September, 1995; pp. 205–212.
- Inouye, H.; Takeda, Y.; Nishimura, H.; Kanomi, A.; Okuda, T.; Puff, C. Chemotaxonomic studies of rubiaceous plants containing iridoid glycosides. Phytochemistry 1988, 27, 2591–2598. [Google Scholar] [CrossRef]
- Valant-Vetschera, K.M.; Wollenweber, E. Exudate flavonoid aglycones in the alpine species of Achillea sect. Ptarmica: Chemosystematics of A. moschata and related species (Compositae–Anthemideae). Biochem. Syst. Ecol. 2001, 29, 149–159. [Google Scholar] [CrossRef]
- Zidorn, C.; Stuppner, H. Chemosystematics of taxa from the Leontodon section Oporinia. Biochem. Syst. Ecol. 2001, 29, 827–837. [Google Scholar] [CrossRef]
- Rycroft, D.S. Chemosystematics and the liverwort genus Plagiochila. J. Hattori Bot. Lab. 2003, 93, 331–342. [Google Scholar]
- Gottlieb, O.R. Micromolecular Evolution, Systematics and Ecology: An Essay into a Novel Botanical Discipline, 1st ed.; Springer Science & Business Media: Berlin, Germany, 1982; Volume 19, p. 94. [Google Scholar]
- Dahlgren, G. The last Dahlgrenogram. System of classification of the dicotyledons. In Plant Taxonomy Phytogeography and Related Subjects: The Davis and Hedge Festschrift; Tan, K., Mill, R.R., Elias, T.S., Davis, P.H., Hedge, I.C., Davis, P.H., Hedge, I.C., Eds.; University Press: Edinburgh, UK, 1989; pp. 249–260. [Google Scholar]
- Santos, A.R.D.; Barros, M.P.D.; Santin, S.M.D.O.; Sarragiotto, M.H.; Souza, M.C.D.; Eberlin, M.N.; Meurer, E.C. Polar constituents of the leaves of Machaonia brasiliensis (Rubiaceae). Quim. Nova 2004, 27, 525–527. [Google Scholar] [CrossRef]
- Wijnsma, R.; Verpoorte, R. Anthraquinones in the Rubiaceae. In Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Springer-Verlag Wien: Viena, Austria, 1986; pp. 79–149. [Google Scholar]
- Nagakura, N.; Ruffer, M.; Zenk, M.H. The biosynthesis of monoterpenoid indole alkaloids from strictosidine. J. Chem. Soc. Perkin. 1979. [Google Scholar] [CrossRef]
- Poser, G.V.; Mentz, L.; Simões, C.; Schenkel, E.; Gosmann, G.; Mello, J.D.; Mentz, L.; Petrovick, P. Diversidade biológica e sistemas de classificação. In Farmacognosia: da planta ao medicamento; Simões, C.M.O., Ed.; University Press: Florianópolis, Brazil, 2004; Volume 5, p. 82. [Google Scholar]
- Chen, Q.C.; Zhang, W.Y.; Youn, U.J.; Kim, H.J.; Lee, I.S.; Jung, H.J.; Na, M.K.; Min, B.S.; Bae, K.H. Iridoid glycosides from Gardeniae Fructus for treatment of ankle sprain. Phytochemistry 2009, 70, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Drewes, S.E.; Horn, M.M.; Munro, O.Q.; Ramesar, N.; Ochse, M.; Bringmann, G.; Peters, K.; Peters, E.M. Stereostructure, conformation and reactivity of P-and a-gardiol from Burchellia bubalina. Phytochemistry 1999, 50, 387–394. [Google Scholar] [CrossRef]
- Nahrstedt, A.; Rockenbach, J.; Wray, V. Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the rubiaceae. Phytochemistry 1995, 39, 375–378. [Google Scholar] [CrossRef]
- Bailleul, F.; Delaveau, P.; Koch, M. Apodantheroside, an iridoid glucoside from Feretia apodanthera. Phytochemistry 1980, 19, 2763–2764. [Google Scholar] [CrossRef]
- Bringmann, G.; Ochse, M.; Wolf, K.; Kraus, J.; Peters, K.; Peters, E.M.; Herderich, M.; Aké Assi, L.; Tayman, F.S.K. 4-Oxonicotinamide-1-(1′-β-ribofuranoside) from Rothmannia longiflora Salisb. (Rubiaceae). Phytochemistry 1999, 51, 271–276. [Google Scholar]
- Luciano, J.H.S.; Lima, M.A.S.; Souza, E.B.; Silveira, E.R. Chemical constituents of Alibertia myrciifolia Spruce ex K. Schum. Biochem. Syst. Ecol. 2004, 32, 1227–1229. [Google Scholar] [CrossRef]
- Borges, R.M.; Valença, S.S.; Lopes, A.A.; Barbi, N.S.; Silva, A.J.R. Saponins from the roots of Chiococca alba and their in vitro anti-inflammatory activity. Phytochem. Lett. 2013, 6, 96–100. [Google Scholar] [CrossRef]
- Abd El-Hafiz, M.A.; Weniger, B.; Quirion, J.C.; Anton, R. Ketoalcohols, lignans and coumarins from Chiococca alba. Phytochemistry 1991, 30, 2029–2031. [Google Scholar] [CrossRef]
- Carbonezi, C.A.; Martins, D.; Young, M.C.M.; Lopes, M.N.; Furlan, M.; Bolzani, V.S. Iridoid and seco-iridoid glucosides from Chiococca alba (Rubiaceae). Phytochemistry 1999, 51, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Argáez, R.B.; Medina, L.B.; Pat, F.M.; Rodrigues, L.M.P. Merilactone, an Unusual C19 Metabolite From the Root Extract of Chiocacca alba. J. Nat. Prod. 2001, 64, 228–231. [Google Scholar] [CrossRef]
- Bhattacharyya, J.; Cunha, E.V.L. A triterpenoid from the root-bark of Chiococca alba. Phytochemistry 1992, 31, 2546–2547. [Google Scholar] [CrossRef]
- Borges, R.M.; Tinoco, L.W.; Souza Filho, J.D.D.; Barbi, N.D.S.; Silva, A.J.R.D. Two new oleanane saponins from Chiococca alba (L.) Hitch. J. Braz. Chem. Soc. 2009, 20, 1738–1741. [Google Scholar] [CrossRef]
- Dzib-Reyes, E.V.; García-Sosa, K.; Simá-Polanco, P.; Peña-Rodríguez, L.M. Diterpenoids from the root extract of Chiococca alba. Rev. Latinoam. Quím. 2012, 40, 123–129. [Google Scholar]
- Borges-Argáez, R.; Medina-Baizabál, L.; May-Pat, F.; Peña-Rodríguez, L.M. A new ent-kaurane from the root extract of Chiococca alba. Can. J. Chem. 1997, 75, 801–804. [Google Scholar] [CrossRef]
- Lopes, M.N.; Oliveira, A.C.D.; Young, M.C.M.; Bolzani, V.D.S. Flavonoids from Chiococca braquiata (Rubiaceae). J. Braz. Chem. Soc. 2004, 15, 468–471. [Google Scholar] [CrossRef]
- Olmedo, D.; Rodríguez, N.; Vásquez, Y.; Solís, P.; López-Pérez, J.; Feliciano, A.S.; Gupta, M. A new coumarin from the fruits of Coutarea hexandra. Nat. Prod. Res. 2007, 21, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Chai, H.B.; Shin, Y.G.; García, R.; Mejía, M.; Gao, Q.; Fairchild, C.R.; Lane, K.E.; Menendez, A.T.; Farnsworth, N.R. Cytotoxic Constituents of the Roots of Exostema acuminatum. Tetrahedron 2000, 56, 6401–6405. [Google Scholar] [CrossRef]
- Calera, M.R.; Mata, R.; Anaya, A.L.; Lotina-Hennsen, B. 5-O-β-d-Galactopyranosyl-7-methoxy-3′,4′-dihydroxy-4-phenylcoumarin, an inhibitor of photophosphorylation in spinach chloroplasts. Photosynth. Res. 1995, 45, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Mata, R.; Camacho, M.D.R.; Mendoza, S.; Cruz, M.D.C. A phenylstyrene from Hintonia latiflora. Phytochemistry 1992, 31, 3199–3201. [Google Scholar] [CrossRef]
- Déciga-Campos, M.; Guerrero-Analco, J.A.; Quijano, L.; Mata, R. Antinociceptive activity of 3-O-β-d-glucopyranosyl-23,24-dihydrocucurbitacin F from Hintonia standleyana (Rubiaceae). Pharmacol. Biochem. Behav. 2006, 83, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Maehara, S.; Simanjuntak, P.; Kitamura, C.; Ohashi, K.; Shibuya, H. Bioproduction of Cinchona Alkaloids by the Endophytic Fungus Diaporthe sp. Associated with Cinchona ledgeriana. Chem. Pharm. Bull. 2012, 60, 1301–1304. [Google Scholar] [CrossRef] [PubMed]
- Maehara, S.; Simanjuntak, P.; Maetani, Y.; Kitamura, C.; Ohashi, K.; Shibuya, H. Ability of endophytic filamentous fungi associated with Cinchona ledgeriana to produce Cinchona alkaloids. J. Nat. Med. 2013, 67, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Schripsema, J.; Ramos-Valdivia, A.; Verpoorte, R. Robustaquinones, novel anthraquinones from an elicited Cinchona robusta suspension culture. Phytochemistry 1999, 51, 55–60. [Google Scholar] [CrossRef]
- Okunade, A.L.; Lewis, W.H.; Elvin-Lewis, M.P.; Casper, S.J.; Goldberg, D.E. Cinchonicine-derived alkaloids from the bark of the Peruvian Ladenbergia oblongifolia. Fitoterapia 2001, 72, 717–719. [Google Scholar] [CrossRef]
- Ruiz-Mesia, L.; Ruiz-Mesía, W.; Reina, M.; Martínez-Diaz, R.; de Inés, C.; Guadaño, A.; González-Coloma, A. Bioactive cinchona alkaloids from Remijia peruviana. J. Agric. Food Chem. 2005, 53, 1921–1926. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.G.; Sazatornil, J.G.; Rodríguez, M.L.; Mesía, L.R.; Arana, G.V. Five New Alkaloids from the Leaves of Remijia peruviana. J. Nat. Prod. 2004, 67, 1667–1671. [Google Scholar] [CrossRef] [PubMed]
- Aquino, R.; Garofalo, L.; Tommasi, N.; Ugaz, O.L.; Pizza, C. Glucoindole alkaloids from bark of two Sickingia species. Phytochemistry 1994, 37, 1471–1475. [Google Scholar] [CrossRef]
- Lee, D.; Cuendet, M.; Axelrod, F.; Chavez, P.I.; Fong, H.H.S.; Pezzuto, J.M.; Douglas Kinghorn, A. Novel 29-nor-3,4-seco-cycloartane triterpene methyl esters from the aerial parts of Antirhea acutata. Tetrahedron 2001, 57, 7107–7112. [Google Scholar] [CrossRef]
- Weniger, B.; Rafik, W.; Bastida, J.; Quirion, J.C.; Anton, R. Indole alkaloids from Antirhea lucida. Planta Med. 1995, 61, 569–569. [Google Scholar] [CrossRef] [PubMed]
- Weniger, B.; Anton, R.; Varea, T.; Quirion, J.C.; Bastida, J.; Garcia, R. Indole alkaloids from Antirhea portoricensis. J. Nat. Prod. 1994, 57, 287–290. [Google Scholar] [CrossRef]
- Barros, M.P.D.; Santin, S.M.D.O.; Costa, W.F.D.; Vidotti, G.J.; Sarragiotto, M.H.; Souza, M.C.D.; Bersani-Amado, C.A. Chemical constituents and anti-inflammatory and antioxidant activities evaluation of the leaves extracts of Chomelia obtusa Cham. & Schltdl.(Rubiaceae). Quim. Nova 2008, 31, 1987–1989. [Google Scholar]
- Lima, G.S.; Moura, F.S.; Lemos, R.P.L.; Conserva, L.M. Triterpenes from Guettarda grazielae M: RV Barbosa (Rubiaceae). Rev. Bras. Farmacogn. 2009, 19, 284–289. [Google Scholar] [CrossRef]
- Moura, F.S.; Lima, G.S.; Meneghetti, M.R.; Lyra Lemos, R.P.; Conserva, L.M. A new iridoid from Guettarda grazielae MRV Barbosa (Rubiaceae). Nat. Prod. Res. 2011, 25, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Montagnac, A.; Litaudon, M.; País, M. Quinine-and quinicine-derived alkaloids from Guettarda noumeana. Phytochemistry 1997, 46, 973–975. [Google Scholar] [CrossRef]
- Testa, G.; Oliveira, P.R.N.; Silva, C.C.; Schuquel, I.T.A.; Oliveira Santin, S.M.; Kato, L.; Oliveira, C.M.A.; Arruda, L.L.M.; Bersani-Amado, C.A. Constituintes químicos das folhas e avaliação da atividade anti-inflamatória de extratos das raízes e folhas de Guettarda pohliana Müll. Arg.(Rubiaceae). Quim. Nova 2012, 35, 527–529. [Google Scholar] [CrossRef]
- De Oliveira, P.R.N.; Testa, G.; de Sena, S.B.; da Costa, W.F.; Helena, M.; de Souza, M.C. Saponinas triterpênicas das raízes de Guettarda pohliana Müll. Arg.(Rubiaceae). Quim. Nova 2008, 31, 755–758. [Google Scholar] [CrossRef]
- Cai, W.H.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. A glycerol α-d-glucuronide and a megastigmane glycoside from the leaves of Guettarda speciosa L. J. Nat. Med. 2011, 65, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.R.; de Barros, M.P.; de OSantin, S.; Sarragiotto, M.H.; de Souza, M.C.; Eberlin, M.N.; Meurer, E.C. Constituintes polares das folhas de Machaonia brasiliensis (Rubiaceae). Quim. Nova 2004, 27, 525–527. [Google Scholar] [CrossRef]
- Qureshi, A.K.; Mukhtar, M.R.; Hirasawa, Y.; Hosoya, T.; Nugroho, A.E.; Morita, H.; Shirota, O.; Mohamad, K.; Hadi, A.H.A.; Litaudon, M. Neolamarckines A and B, new indole alkaloids from Neolamarckia cadamba. Chem. Pharm. Bull. 2011, 59, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Weniger, B.; Jiang, Y.; Anton, R.; Bastida, J.; Varea, T.; Quirion, J.C. Oxindole alkaloids from Neolaugeria resinosa. Phytochemistry 1993, 32, 1587–1590. [Google Scholar] [CrossRef]
- Khan, I.A.; Sticher, O.; Rali, T. New triterpenes from the leaves of Timonius timon. J. Nat. Prod. 1993, 56, 2163–2165. [Google Scholar] [CrossRef]
- Lendl, A.; Werner, I.; Glasl, S.; Kletter, C.; Mucaji, P.; Presser, A.; Reznicek, G.; Jurenitsch, J.; Taylor, D.W. Phenolic and terpenoid compounds from Chione venosa (sw.) urban var. venosa (Bois Bandé). Phytochemistry 2005, 66, 2381–2387. [Google Scholar] [CrossRef] [PubMed]
- Kan-Fan, C.; Zuanazzi, J.A.; Quirion, J.C.; Husson, H.P.; Henriques, A. Deppeaninol, A New β-Carboline Alkaloid from Deppea blumenaviensis (Rubiaceae). Nat. Prod. Lett. 1995, 7, 317–321. [Google Scholar] [CrossRef]
- Rumbero, A.; Vásquez, P. Structure and stereochemistry of magniflorine, a new indole alkaloid from Hamelia magniflora Wernha. Tetrahedron Lett. 1991, 32, 5153–5154. [Google Scholar] [CrossRef]
- Paniagua-Vega, D.; Cerda-Garcia-Rojas, C.M.; Ponce-Noyola, T.; Ramos-Valdivia, A.C. A new monoterpenoid oxindole alkaloid from Hamelia patens micropropagated plantlets. Nat. Prod. Commun. 2012, 7, 1441–1444. [Google Scholar] [PubMed]
- Nareeboon, P.; Komkhunthot, W.; Lekcharoen, D.; Wetprasit, N.; Piriyapolsart, C.; Sutthivaiyakit, S. Acetylenic fatty acids, triglyceride and triterpenes from the leaves of Hymenodictyon excelsum. Chem. Pharm. Bull. 2009, 57, 860–862. [Google Scholar] [CrossRef] [PubMed]
- Mitaine-Offer, A.C.; Tapondjou, L.; Djoukeng, J.; Bouda, H.; Lacaille-Dubois, M.A. Glycoside derivatives of scopoletin and β-sitosterol from Hymenodictyon floribundum. Biochem. Syst. Ecol. 2003, 31, 227–228. [Google Scholar] [CrossRef]
- Borges, C.M.; Diakanawma, C.; de Mendonça, D.I. Iridoids from Hymenodictyon floribundum. J. Braz. Chem. Soc. 2010, 21, 1121–1125. [Google Scholar] [CrossRef]
- Bruix, M.; Rumbero, A.; Vázquez, P. Apodihydrocinchonamine, an indole alkaloid from Isertia haenkeana. Phytochemistry 1993, 33, 1257–1261. [Google Scholar] [CrossRef]
- Um, B.-H.; Weniger, B.; Lobstein, A.; Pouplin, T.; Polat, M.; Aragón, R.; Anton, R. Triterpenoid Saponins from Isertia pittieri. J. Nat. Prod. 2001, 64, 1588–1589. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, P.F.; Bhat, A.R.; Azam, A. Antiamoebic coumarins from the root bark of Adina cordifolia and their new thiosemicarbazone derivatives. Eur. J. Med. Chem. 2009, 44, 2252–2259. [Google Scholar] [CrossRef] [PubMed]
- Itoh, A.; Tanahashi, T.; Nagakura, N.; Takenaka, Y.; Chen, C.C.; Pelletier, J. Flavonoid glycosides from Adina racemosa and their inhibitory activities on eukaryotic protein synthesis. J. Nat. Prod. 2004, 67, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Itoh, A.; Fujii, K.; Tomatsu, S.; Takao, C.; Tanahashi, T.; Nagakura, N.; Chen, C.C. Six Secoiridoid Glucosides from Adina racemosa. J. Nat. Prod. 2003, 66, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.J.; He, Z.S. Triterpenoid glycosides from Adina rubella. Phytochemistry 1997, 44, 1139–1143. [Google Scholar] [PubMed]
- He, Z.; Fang, S.Y.; Wang, P.; Gao, J.H. 27-nor-triterpenoid glycosides from Adina rubella. Phytochemistry 1996, 42, 1391–1393. [Google Scholar]
- Zhang, Y.; Gan, M.; Lin, S.; Liu, M.; Song, W.; Zi, J.; Wang, S.; Li, S.; Yang, Y.; Shi, J. Glycosides from the bark of Adina polycephala. J. Nat. Prod. 2008, 71, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Jorge, T.C.M.; Ozima, A.P.; Düsman, L.T.; Souza, M.C.; Pereira, G.F.; Vidotti, G.J.; Sarragiotto, M.H. Alkaloids from Cephalanthus glabratus (Rubiaceae). Biochem. Syst. Ecol. 2006, 34, 436–437. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Zhang, S. Six new triterpenoid saponins from the root and stem bark of Cephalanthus occidentalis. Planta Med. 2005, 71, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Staerk, D.; Lemmich, E.; Christensen, J.; Kharazmi, A.; Olsen, C.E.; Jaroszewski, J.W. Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras. Planta Med. 2000, 66, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.F.; Wang, J.S.; Wang, X.B.; Luo, J.; Wang, H.Y.; Kong, L.Y. Monoterpene indole alkaloids from the stem bark of Mitragyna diversifolia and their acetylcholine esterase inhibitory effects. Phytochemistry 2013, 96, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.H.; Yu, B.Y.; Yang, X.W. 27-Nor-triterpenoid glycosides from Mitragyna inermis. Phytochemistry 2002, 61, 379–382. [Google Scholar] [CrossRef]
- Donfack, E.V.; Lenta, B.N.; Kongue, M.D.T.; Fongang, Y.F.; Ngouela, S.; Tsamo, E.; Dittrich, B.; Laatsch, H. Naucleactonin D, an Indole Alkaloid and other Chemical Constituents from Roots and Fruits of Mitragyna inermis. Z. Naturforsch. B 2012, 67, 1159–1165. [Google Scholar] [CrossRef]
- Toure, H.; Babadjamian, A.; Balansard, G.; Faure, R.; Houghton, P. Complete 1H and 13C NMR chemical shift assignments for some pentacyclic oxindole alkaloids. Spectroscopy Lett. 1992, 25, 293–300. [Google Scholar] [CrossRef]
- Pandey, R.; Singh, S.C.; Gupta, M.M. Heteroyohimbinoid type oxindole alkaloids from Mitragyna parvifolia. Phytochemistry 2006, 67, 2164–2169. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Hao, X. Triterpenoid saponins from Mitragyna rotundifolia. Biochem. Syst. Ecol. 2006, 34, 585–587. [Google Scholar] [CrossRef]
- Takayama, H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem. Pharm. Bull. 2004, 52, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Takayama, H.; Tsutsumi, S.I.; Kitajima, M.; Santiarworn, D.; Liawruangrath, B.; Aimi, N. Gluco-indole Alkaloids from Nauclea cadamba in Thailand and Transformation of 3a-Dihydrocadambine into the Indolopyridine Alkaloid, 16-Carbomethoxynaufoline. Medica 1983, 49, 188–190. [Google Scholar]
- Lamidi, M.; Ollivier, E.; Faure, R.; Debrauwer, L.; Nze-Ekekang, L.; Balansard, G. Quinovic acid glycosides from Nauclea diderrichii. Planta Med. 1995, 61, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Lamidi, M.; Ollivier, E.; Mahiou, V.; Faure, R.; Debrauwer, L.; Nze Ekekang, L.; Balansard, G. Gluco-indole alkaloids from the bark of Nauclea diderrichii. 1H and 13C NMR assignments of 3–5 tetrahydrodeoxycordifoline lactam and cadambine acid. Magn. Reson. Chem. 2005, 43, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Agomuoh, A.A.; Ata, A.; Udenigwe, C.C.; Aluko, R.E.; Irenus, I. Novel Indole Alkaloids from Nauclea latifolia and Their Renin-Inhibitory Activities. Chem. Biodivers. 2013, 10, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lou, H.; Dai, S.; Xu, H.; Zhao, F.; Liu, K. Indole alkoloids from Nauclea officinalis with weak antimalarial activity. Phytochemistry 2008, 69, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.Y.; Mukhtar, M.R.; Hadi, A.H.A.; Awang, K.; Mustafa, M.R.; Zaima, K.; Morita, H.; Litaudon, M. Naucline, a new indole alkaloid from the bark of Nauclea officinalis. Molecules 2012, 17, 4028–4036. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.Y.; Dai, S.J.; Zhao, F.; Liu, J.F.; Fang, W.S.; Liu, K. New ursane-type triterpene with NO production suppressing activity from Nauclea officinalis. J. Asian Nat. Prod. Res. 2012, 14, 97–104. [Google Scholar] [CrossRef] [PubMed]
- He, Z.D.; Ma, C.Y.; Zhang, H.J.; Tan, G.T.; Tamez, P.; Sydara, K.; Bouamanivong, S.; Southavong, B.; Soejarto, D.D.; Pezzuto, J.M. Antimalarial constituents from Nauclea orientalis (L.) L. Chem. Biodivers. 2005, 2, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; ElSohly, H.N.; Jacob, M.R.; Pasco, D.S.; Walker, L.A.; Clark, A.M. New Indole Alkaloids from the Bark of Nauclea o rientalis. J. Nat. Prod. 2001, 64, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Sichaem, J.; Surapinit, S.; Siripong, P.; Khumkratok, S.; Jong-aramruang, J.; Tip-pyang, S. Two new cytotoxic isomeric indole alkaloids from the roots of Nauclea orientalis. Fitoterapia 2010, 81, 830–833. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Foubert, K.; Dhooghe, L.; Lemière, F.; Cimanga, K.; Mesia, K.; Apers, S.; Pieters, L. Chromatographic profiling and identification of two new iridoid-indole alkaloids by UPLC–MS and HPLC-SPE-NMR analysis of an antimalarial extract from Nauclea pobeguinii. Phytochem. Lett. 2012, 5, 316–319. [Google Scholar] [CrossRef]
- Anam, E.M. Novel Nauclequiniine from the Root Extract of Nauclea pobequinii (Pob. & Pellegr.) Petit (Rubiaceae). J. Chem. B Organ. Chem. Med. Chem. 1997, 36, 54–56. [Google Scholar]
- Karaket, N.; Supaibulwatana, K.; Ounsuk, S.; Bultel-Ponce, V.; Pham, V.C.; Bodo, B. Chemical and bioactivity evaluation of the bark of Neonauclea purpurea. Nat. Prod. Commun. 2012, 7, 169–170. [Google Scholar] [PubMed]
- Itoh, A.; Tanahashi, T.; Nagakura, N.; Nishi, T. Two triterpenoid saponins from Neonauclea sessilifolia. Chem. Pharm. Bull. 2003, 51, 1335–1337. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.Y.; Li, G.H.; Hao, X.J. Two New Triterpenes from Neonauclea sessilifolia. Acta Bot. Sin. 2003, 45, 1003–1007. [Google Scholar]
- Itoh, A.; Tanahashi, T.; Nagakura, N.; Nishi, T. Two chromone-secoiridoid glycosides and three indole alkaloid glycosides from Neonauclea sessilifolia. Phytochemistry 2003, 62, 359–369. [Google Scholar] [CrossRef]
- Mukhtar, M.R.; Osman, N.; Awang, K.; Hazni, H.; Qureshi, A.K.; Hadi, A.H.A.; Zaima, K.; Morita, H.; Litaudon, M. Neonaucline, a new indole alkaloid from the leaves of Ochreinauclea maingayii (Hook. f.) Ridsd.(Rubiaceae). Molecules 2011, 17, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Raman, V.; Avula, B.; Galal, A.M.; Wang, Y.H.; Khan, I.A. Microscopic and UPLC–UV–MS analyses of authentic and commercial yohimbe (Pausinystalia johimbe) bark samples. J. Nat. Med. 2013, 67, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Kam, T.S.; Lee, K.H.; Goh, S.H. Alkaloid distribution in Malaysian Uncaria. Phytochemistry 1992, 31, 2031–2034. [Google Scholar] [CrossRef]
- Kam, T.S.; Lee, K.H.; Goh, S.H. Dimeric indole alkaloids from Uncaria callophylla. Phytochemistry 1991, 30, 3441–3444. [Google Scholar] [CrossRef]
- Diyabalanage, T.K.K.; Kumarihamy, B.M.M.; Wannigama, G.P.; Jayasinghe, L.; Merlini, L.; Scaglioni, L. Alkaloids of Uncaria elliptica. Phytochemistry 1997, 45, 1731–1732. [Google Scholar] [CrossRef]
- Taniguchi, S.; Kuroda, K.; Doi, K.I.; Tanabe, M.; Shibata, T.; Yoshida, T.; Hatano, T. Revised structures of gambiriins A1, A2, B1, and B2, chalcane-flavan dimers from gambir (Uncaria gambir extract). Chem. Pharm. Bull. 2007, 55, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Arbain, D.; Ibrahim, S.; Sargent, M.V.; Skelton, B.W.; White, A.H. The alkaloids of Uncaria cf. glabrata. Aust. J. Chem. 1998, 51, 961–964. [Google Scholar] [CrossRef]
- Laus, G.; Keplinger, K. Alkaloids of peruvian Uncaria guianensis (Rubiaceae). Phyton 2003, 43, 1–8. [Google Scholar]
- Yépez, A.M.P.; de Ugaz, O.L.; Alvarez, C.M.P.; de Feo, V.; Aquino, R.; de Simone, F.; Pizza, C. Quinovic acid glycosides from Uncaria guianensis. Phytochemistry 1991, 30, 1635–1637. [Google Scholar] [CrossRef]
- Xin, W.B.; Chou, G.X.; Wang, Z.T. Bis (monoterpenoid) indole alkaloid glucosides from Uncaria hirsuta. Phytochem. Lett. 2011, 4, 380–382. [Google Scholar] [CrossRef]
- Wu, T.S.; Chan, Y.Y. Constituents of leaves of Uncaria hirsuta Haviland. J. Chin. Chem. Soc. 1994, 41, 209–212. [Google Scholar] [CrossRef]
- Salim, F.; Ahmad, R. Alkaloids from Malaysian Uncaria longiflora var. pteropoda. Biochem. Syst. Ecol. 2011, 39, 151–152. [Google Scholar] [CrossRef]
- Sakakibara, I.; Takahashi, H.; Terabayashi, S.; Yuzurihara, M.; Kubo, M.; Ishige, A.; Higuchi, M.; Komatsu, Y.; Okada, M.; Maruno, M. Effect of oxindole alkaloids from the hooks of Uncaria macrophylla on thiopental-induced hypnosis. Phytomedicine 1998, 5, 83–86. [Google Scholar] [CrossRef]
- Ndagijimana, A.; Wang, X.; Pan, G.; Zhang, F.; Feng, H.; Olaleye, O. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies. Fitoterapia 2013, 86, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.C.; Lin, R.D.; Chen, C.T.; Lee, M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol. 2005, 100, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Laus, G.; Teppner, H. The alkaloids of an Uncaria rhynchophylla (Rubiaceae-Coptosapelteae). Phyton 1996, 36, 185–196. [Google Scholar]
- Xie, S.; Shi, Y.; Wang, Y.; Wu, C.; Liu, W.; Feng, F.; Xie, N. Systematic identification and quantification of tetracyclic monoterpenoid oxindole alkaloids in Uncaria rhynchophylla and their fragmentations in Q-TOF-MS spectra. J. Pharm. Biomed. Anal. 2013, 81, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Ponglux, D.; Wongseripipatana, S.; Aimi, N.; Nishimura, M.; Ishikawa, M.; Sada, H.; Haginiwa, J.; Sakai, S.I. Structure and synthesis of two new types of oxindole alkaloids found from Uncaria salaccensis. Chem. Pharm. Bull. 1990, 38, 573–575. [Google Scholar] [CrossRef]
- Liu, H.; Feng, X.; Lu, Y.; Zheng, Q. Isorhynchophyllic acid, a new alkaloid from Uncaria sinensis. Chin. Chem. Lett. 1992, 3, 425–426. [Google Scholar]
- Sekiya, N.; Shimada, Y.; Shibahara, N.; Takagi, S.; Yokoyama, K.; Kasahara, Y.; Sakakibara, I.; Terasawa, K. Inhibitory effects of Choto-san (Diao-teng-san), and hooks and stems of Uncaria sinensis on free radical-induced lysis of rat red blood cells. Phytomedicine 2002, 9, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Montoro, P.; Carbone, V.; de Dioz Zuniga Quiroz, J.; De Simone, F.; Pizza, C. Identification and quantification of components in extracts of Uncaria tomentosa by HPLC-ES/MS. Phytochem. Anal. 2004, 15, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Wirth, C.; Wagner, H. Pharmacologically active procyanidines from the bark of Uncaria tomentosa. Phytomedicine 1997, 4, 265–266. [Google Scholar] [CrossRef]
- Muhammad, I.; Dunbar, D.C.; Khan, R.A.; Ganzera, M.; Khan, I.A. Investigation of Una De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa. Phytochemistry 2001, 57, 781–785. [Google Scholar] [CrossRef]
- Aquino, R.; Tommasi, N.; Simone, F.; Pizza, C. Triterpenes and quinovic acid glycosides from Uncaria tomentosa. Phytochemistry 1997, 45, 1035–1040. [Google Scholar] [CrossRef]
- Laus, G.; Keplinger, D. Separation of stereoisomeric oxindole alkaloids from Uncaria tomentosa by high performance liquid chromatography. J. Chromatogr. A 1994, 662, 243–249. [Google Scholar] [CrossRef]
- García Prado, E.; Gimenez, G.; de la Puerta Vázquez, R.; Espartero Sánchez, J.L.; Sáenz Rodríguez, M.T. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines. Phytomedicine 2007, 14, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Duran, R.; González-Aspajo, G.; Ruiz-Martel, C.; Bourdy, G.; Doroteo-Ortega, V.H.; Alban-Castillo, J.; Robert, G.; Auberger, P.; Deharo, E. Anti-inflammatory activity of Mitraphylline isolated from Uncaria tomentosa bark. J. Ethnopharmacol. 2012, 143, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Wurm, M.; Kacani, L.; Laus, G.; Keplinger, K.; Dierich, M.P. Pentacyclic oxindole alkaloids from Uncaria tomentosa induce human endothelial cells to release a lymphocyte-proliferation-regulating factor. Planta Med. 1998, 64, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Hashimoto, K.I.; Yokoya, M.; Takayama, H.; Sandoval, M.; Aimi, N. Two new nor-triterpene glycosides from peruvian “Uña de Gato”(Uncaria tomentosa). J. Nat. Prod. 2003, 66, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Aquino, R.; de Feo, V.; de Simone, F.; Pizza, C.; Cirino, G. Plant metabolites. New compounds and anti-inflammatory activity of Uncaria tomentosa. J. Nat. Prod. 1991, 54, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Hashimoto, K.I.; Yokoya, M.; Takayama, H.; Aimi, N. Two New 19-Hydroxyursolic Acid-type Triterpenes from Peruvian “Uña de Gato” (Uncaria tomentosa). Tetrahedron 2000, 56, 547–552. [Google Scholar] [CrossRef]
- Matsuo, H.; Okamoto, R.; Zaima, K.; Hirasawa, Y.; Ismail, I.S.; Lajis, N.H.; Morita, H. New Vasorelaxant Indole Alkaloids, Villocarines A–D from Uncaria villosa. Bioorg. Med. Chem. 2011, 19, 4075–4079. [Google Scholar] [CrossRef] [PubMed]
- Drewes, S.E.; Horn, M.M.; Connolly, J.D.; Bredenkamp, B. Enolic iridolactone and other iridoids from Alberta magna. Phytochemistry 1998, 47, 991–996. [Google Scholar] [CrossRef]
- Ashihara, H.; Sano, H.; Crozier, A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry 2008, 69, 841–856. [Google Scholar] [CrossRef] [PubMed]
- Begum, B.; Hasan, C.M.; Rashid, M.A. Caffeine from the Mature Leaves of Coffea bengalensis. Biochem. Syst. Ecol. 2003, 31, 1219–1220. [Google Scholar] [CrossRef]
- Dai, Y.; Harinantenaina, L.; Brodie, P.J.; Birkinshaw, C.; Randrianaivo, R.; Applequist, W.; Ratsimbason, M.; Rasamison, V.E.; Shen, Y.; TenDyke, K. Two antiproliferative triterpene saponins from Nematostylis anthophylla from the highlands of Central Madagascar. Chem. Biodivers. 2013, 10, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Hitotsuyanagi, Y.; Sugeta, N.; Sakakura, K.; Fujita, K.; Fukaya, H.; Aoyagi, Y.; Hasuda, T.; Kinoshita, T.; He, D.H. Tricalysiolides AF, new rearranged ent-kaurane diterpenes from Tricalysia dubia. Tetrahedron 2006, 62, 1512–1519. [Google Scholar] [CrossRef]
- He, D.H.; Otsuka, H.; Hirata, E.; Shinzato, T.; Bando, M.; Takeda, Y. Tricalysiosides AG: Rearranged ent-kauranoid glycosides from the leaves of Tricalysia dubia. J. Nat. Prod. 2002, 65, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.H.; Jacob, M.R.; Agarwal, A.K.; Clark, A.M.; Liang, Z.S.; Li, X.C. Ent-Kaurane Glycosides from Tricalysia okelensis. Chem. Pharm. Bull. 2010, 58, 261. [Google Scholar] [CrossRef] [PubMed]
- Zuleta, L.M.C.; Cavalheiro, A.J.; Silva, D.H.S.; Furlan, M.; Young, M.C.M.; Albuquerque, S.; Castro-Gamboa, I.; Bolzani, V.S. Seco-Iridoids from Calycophyllum spruceanum (Rubiaceae). Phytochemistry 2003, 64, 549–553. [Google Scholar] [CrossRef]
- Cardoso, C.L.; Silva, D.H.S.; Young, M.C.M.; Castro-Gamboa, I.; Bolzani, V.D.S. Indole monoterpene alkaloids from Chimarrhis turbinata DC Prodr.: A contribution to the chemotaxonomic studies of the Rubiaceae family. Rev. Bras. Farmacogn. 2008, 18, 26–29. [Google Scholar] [CrossRef]
- Ngalamulume, T.; Kilonda, A.; Toppet, S.; Compernolle, F.; Hoornaert, G. An ursadienedioic acid glycoside from Crossopteryx febrifuga. Phytochemistry 1991, 30, 3069–3072. [Google Scholar]
- Wu, X.D.; He, J.; Li, X.Y.; Dong, L.B.; Gong, X.; Gao, X.; Song, L.D.; Li, Y.; Peng, L.Y.; Zhao, Q.S. Triterpenoids and Steroids with Cytotoxic Activity. Planta Med. 2013, 79, 1356–1361. [Google Scholar] [PubMed]
- Ito, A.; Lee, Y.H.; Chai, H.B.; Gupta, M.P.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Kinghorn, A.D. 1′,2′,3′,4′-tetradehydrotubulosine, a cytotoxic alkaloid from Pogonopus speciosus. J. Nat. Prod. 1999, 62, 1346–1348. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.W.; Anderson, J.; McKenzie, A.; Byrn, S.; McLaughlin, J.; Hudson, M. Tubulosine: An antitumor constituent of Pogonopus speciosus. J. Nat. Prod. 1990, 53, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Sauvain, M.; Moretti, C.; Bravo, J.A.; Callapa, J.; Munoz, V.; Ruiz, E.; Richard, B.; le Men-Olivier, L. Antimalarial activity of alkaloids from Pogonopus tubulosus. Phytother. Res. 1996, 10, 198–201. [Google Scholar] [CrossRef]
- Bastos, A.B.F.D.O.; Carvalho, M.G.; Velandia, J.R.; Braz-Filho, R. Chemical constituents from Simira glaziovii (K. schum) steyerm. and ¹H and 13C NMR assignments of ophiorine and its derivatives. Quim. Nova 2002, 25, 241–245. [Google Scholar] [CrossRef]
- De Araújo, M.F.; Curcino Vieira, I.J.; Braz-Filho, R.; de Carvalho, M.G. Simiranes A and B: Erythroxylanes diterpenes and other compounds from Simira eliezeriana (Rubiaceae). Nat. Prod. Res. 2011, 25, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.C.; Giannini, M.J.S.M.; Carbone, V.; Piacente, S.; Pizza, C.; Bolzani, V.S.; Lopes, M.N. New antifungal terpenoid glycosides from Alibertia edulis (Rubiaceae). Helv. Chim. Acta 2008, 91, 1355–1362. [Google Scholar] [CrossRef]
- Da Silva, V.C.; de Oliveira Faria, A.; da Silva Bolzani, V.; Nasser Lopes, M. A New ent-Kaurane Diterpene from Stems of Alibertia macrophylla K. Schum.(Rubiaceae). Helv. Chim. Acta 2007, 90, 1781–1785. [Google Scholar] [CrossRef]
- Zani, C.; Chaves, P.; Queiroz, R.; de Oliveira, A.; Cardoso, J.; Anjos, A.; Grandi, T. Brine shrimp lethality assay as a prescreening system for anti-Trypanosoma cruzi activity. Phytomedicine 1995, 2, 47–50. [Google Scholar] [CrossRef]
- Luciano, J.H.S.; Lima, M.A.S.; Souza, E.B.; Silveira, E.R.; Vasconcelos, I.M.; Fernandes, G.S.; Souza, E.B. Antifungal iridoids, triterpenes and phenol compounds from Alibertia myrciifolia Sprunge Ex. Schum. Quim. Nova 2010, 33, 292–294. [Google Scholar] [CrossRef]
- Ahmad, V.U. Handbook of Natural Products Data: Pentacyclic Triterpenoids; Elsevier Science: New York, NY, USA, 1994; Volume 2, p. 1556. [Google Scholar]
- Lemmich, E.; Cornett, C.; Furu, P.; Jorstian, C.L.; Knudsen, A.D.; Olsen, C.E.; Salih, A.; Thilborg, S.T. Molluscicidal saponins from Catunaregam nilotica. Phytochemistry 1995, 39, 63–68. [Google Scholar] [CrossRef]
- Gao, G.; Lu, Z.; Tao, S.; Zhang, S.; Wang, F. Triterpenoid saponins with antifeedant activities from stem bark of Catunaregam spinosa (Rubiaceae) against Plutella xylostella (Plutellidae). Carbohydr. Res. 2011, 346, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Kongyen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Sawangjaroen, N.; Songsing, P.; Madardam, H. Anthraquinone and naphthoquinone derivatives from the roots of Coptosapelta flavescens. Nat. Prod. Commun. 2014, 9, 219–220. [Google Scholar] [PubMed]
- Page, J.E.; Madrinan, S.; Towers, G.H.N. Identification of a plant growth inhibiting iridoid lactone from Duroia hirsuta, the allelopathic tree of the “Devil’s Garden”. Cell. Mol. Life Sci. 1994, 50, 840–842. [Google Scholar] [CrossRef]
- Aquino, R.; de Tommasi, N.; Tapia, M.; Lauro, M.R.; Rastrelli, L. New 3-methyoxyflavones, an iridoid lactone and a flavonol from Duroia hirsuta. J. Nat. Prod. 1999, 62, 560–562. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Carrion, L.L.; Ramos, D.F.; Salome, K.S.; da Silva, P.E.A.; Barison, A.; Nunez, C.V. Triterpenes and the Antimycobacterial Activity of Duroia macrophylla Huber (Rubiaceae). Biomed. Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- Nuanyai, T.; Sappapan, R.; Vilaivan, T.; Pudhom, K. Dammarane triterpenes from the apical buds of Gardenia collinsae. Phytochem. Lett. 2011, 4, 183–186. [Google Scholar] [CrossRef]
- Kunert, O.; Sreekanth, G.; Babu, G.S.; Rao, B.V.R.A.; Radhakishan, M.; Kumar, B.R.; Saf, R.; Rao, A.V.N.A.; Schühly, W. Cycloartane triterpenes from dikamali, the gum resin of Gardenia gummifera and Gardenia lucida. Chem. Biodivers. 2009, 6, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.I.; Oh, J.S.; Kim, J.S.; Chen, P.C.; Zee, O.P. Phytochemical Compounds from the Underground Parts of Gardenia jasminoides var. radicans Makino. Korean J. Pharmacogn. 2002, 33, 1–4. [Google Scholar]
- Machida, K.; Takehara, E.; Kobayashi, H.; Kikuchi, M. Studies on the constituents of Gardenia species. III. New iridoid glycosides from the leaves of Gardenia jasminoides cv. fortuneana Hara. Chem. Pharm. Bull. 2003, 51, 1417–1419. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.M.; Chou, G.X.; Wang, Z.T. Iridoid Glycosides from Gardenia jasminoides Ellis. Helv. Chim. Acta 2008, 91, 646–653. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Bi, Z.M.; Li, P.; Tang, D.; Cai, H.X. A new iridoid glycoside from Gardenia jasminoides. Chin. Chem. Lett. 2007, 18, 1221–1223. [Google Scholar] [CrossRef]
- Zhao, W.M.; Xu, J.P.; Qin, G.W.; Xu, R.S. Two monoterpenes from fruits of Gardenia jasminoides. Phytochemistry 1994, 37, 1079–1081. [Google Scholar]
- Pfister, S.; Meyer, P.; Steck, A.; Pfander, H. Isolation and structure elucidation of carotenoid-glycosyl esters in Gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). J. Agric. Food Chem. 1996, 44, 2612–2615. [Google Scholar] [CrossRef]
- Yang, L.; Peng, K.; Zhao, S.; Chen, L.; Qiu, F. Monoterpenoids from the fruit of Gardenia jasminoides Ellis (Rubiaceae). Biochem. Syst. Ecol. 2013, 50, 435–437. [Google Scholar] [CrossRef]
- Yang, L.; Peng, K.; Zhao, S.; Zhao, F.; Chen, L.; Qiu, F. 2-Methyl-l-erythritol glycosides from Gardenia jasminoides. Fitoterapia 2013, 89, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xie, Z.L.; Gao, H.; Ma, W.W.; Dai, Y.; Wang, Y.; Zhong, Y.; Yao, X.S. Bioactive iridoid glucosides from the fruit of Gardenia jasminoides. J. Nat. Prod. 2009, 72, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.L.; Wang, H.Y.; Shi, L.S.; Lai, J.H.; Lin, H.C. Immunosuppressive Iridoids from the Fruits of Gardenia jasminoides. J. Nat. Prod. 2005, 68, 1683–1685. [Google Scholar] [CrossRef] [PubMed]
- Song, J.L.; Wang, R.; Shi, Y.P.; Qi, H.Y. Iridoids from the flowers of Gardenia jasminoides Ellis and their chemotaxonomic significance. Biochem. Syst. Ecol. 2014, 56, 267–270. [Google Scholar] [CrossRef]
- Qin, F.M.; Meng, L.J.; Zou, H.L.; Zhou, G.X. Three new iridoid glycosides from the fruit of Gardenia jasminoides var. radicans. Chem. Pharm. Bull. 2013, 61, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Suksamrarn, A.; Tanachatchairatana, T.; Kanokmedhakul, S. Antiplasmodial triterpenes from twigs of Gardenia saxatilis. J. Ethnopharmacol. 2003, 88, 275–277. [Google Scholar] [CrossRef]
- Rukachaisirikul, V.; Naovanit, S.; Taylor, W.C.; Bubb, W.A.; Dampawan, P. A sesquiterpene from Gardenia sootepensis. Phytochemistry 1998, 48, 197–200. [Google Scholar] [CrossRef]
- Tuchinda, P.; Saiai, A.; Pohmakotr, M.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Reutrakul, V. Anti-HIV-1 cycloartanes from leaves and twigs of Gardenia thailandica. Planta Med. 2004, 70, 366–369. [Google Scholar] [PubMed]
- Akihisa, T.; Watanabe, K.; Yamamoto, A.; Zhang, J.; Matsumoto, M.; Fukatsu, M. Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae fructus. Chem. Biodivers. 2012, 9, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, Y.; Yin, F.; Mao, C.; Li, L.; Cai, B.; Lu, T. Quality control and producing areas differentiation of Gardeniae Fructus for eight bioactive constituents by HPLC–DAD–ESI/MS. Phytomedicine 2014, 21, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Ueno, M.; Masuoka, C.; Ikeda, T.; Nohara, T. Iridoid glucosides from the fruit of Genipa americana. ChemInform 2006, 37, 1342–1344. [Google Scholar] [CrossRef]
- Hossain, C.F.; Jacob, M.R.; Clark, A.M.; Walker, L.A.; Nagle, D.G. Genipatriol, a new cycloartane triterpene from Genipa spruceana. J. Nat. Prod. 2003, 66, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Rutaihwa, D.S.D.; Mhehe, G.L. 1-(3-Hydroxy-4-methoxy-5-methylphenyl) ethanone, a new compound from the stem bark of Lamprothamnus zanguebaricus. Fitoterapia 2003, 74, 741–742. [Google Scholar] [CrossRef]
- Tigoufack, I.B.N.; Ngnokam, D.; Tapondjou, L.A.; Harakat, D.; Voutquenne, L. Cycloartane glycosides from leaves of Oxyanthus pallidus. Phytochemistry 2010, 71, 2182–2186. [Google Scholar] [CrossRef] [PubMed]
- Rockenbach, J.; Nahrstedt, A.; Wray, V. Cyanogenic glycosides from PS Psydrax and Oxyanthus species [a/t]. Phytochemistry 1992, 31, 567–570. [Google Scholar] [CrossRef]
- Balde, A.; Pieters, L.; Gergely, A.; Kolodziej, H.; Claeys, M.; Vlietinck, A. A-type proanthocyanidins from stem-bark of Pavetta owariensis. Phytochemistry 1991, 30, 337–342. [Google Scholar] [CrossRef]
- Jangwan, J.S.; Aquino, R.P.; Mencherini, T.; Singh, R. Isolation and in vitro cytotoxic activity of 11-methylixoside isolated from bark of Randia dumetorum Lamk. Herb. Polon. 2013, 59, 44–52. [Google Scholar] [CrossRef]
- Jangwan, J.S.; Singh, R. In vitro cytotoxic activity of triterpene isolated from bark of Randia Dumetorum Lamk. J. Curr. Chem. Pharm. Sci. 2014, 4, 1–9. [Google Scholar]
- Sahpaz, S.; Gupta, M.P.; Hostettmann, K. Triterpene saponins from Randia formosa. Phytochemistry 2000, 54, 77–84. [Google Scholar] [CrossRef]
- Jansakul, C.; Intarit, K.; Itharat, A.; Phadungcharoen, T.; Ruangrungsi, N.; Merica, A.; Lange, G.L. Biological activity of crude extract and saponin pseudoginsenoside-RT1 derived from the fruit of Randia siamensis. Pharm. Biol. 1999, 37, 42–45. [Google Scholar] [CrossRef]
- Hamerski, L.; Furlan, M.; Siqueira Silva, D.H.; Cavalheiro, A.J.; Eberlin, M.N.; Tomazela, D.M.; da Silva Bolzani, V. Iridoid glucosides from Randia spinosa (Rubiaceae). Phytochemistry 2003, 63, 397–400. [Google Scholar] [CrossRef]
- Ling, S.K.; Tanaka, T.; Kouno, I. Iridoids from Rothmannia macrophylla. J. Nat. Prod. 2001, 64, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, G.; Hamm, A.; Kraus, J.; Ochse, M.; Noureldeen, A.; Jumbam, D.N. Gardenamide A from Rothmannia urcelliformis (Rubiaceae)—Isolation, Absolute Stereostructure, and Biomimetic Synthesis from Genipine. European J. Org. Chem. 2001, 2001, 1983–1987. [Google Scholar] [CrossRef]
- Kumara, P.M.; Soujanya, K.N.; Ravikanth, G.; Vasudeva, R.; Ganeshaiah, K.N.; Shaanker, R.U. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook. f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine 2014, 21, 541–546. [Google Scholar] [PubMed]
- Zeng, Y.B.; Mei, W.L.; Zhao, Y.X.; Zhuang, L.; Hong, K.; Dai, H.F. Two new epimeric pairs of iridoid from mangrove plant Scyphiphora hydrophyllacea. Chin. Chem. Lett. 2007, 18, 1509–1511. [Google Scholar] [CrossRef]
- Tao, S.H.; Wu, J.; Qi, S.H.; Zhang, S.; Li, M.Y.; Li, Q.X. Scyphiphorins A and B, two new iridoid glycosides from the stem bark of a Chinese mangrove Scyphiphora hydrophyllacea. Helv. Chim. Acta 2007, 90, 1718–1722. [Google Scholar] [CrossRef]
- Hamerski, L.; Carbonezi, C.A.; Cavalheiro, A.J.; Bolzani, V.S.; Young, M.C.M. Triterpenoid saponins from Tocoyena brasiliensis Mart.(Rubiaceae). Quim. Nova 2005, 28, 601–604. [Google Scholar] [CrossRef]
- Von Poser, G.L.; Seibt, L.T. Gardenoside from Tocoyena bullata. Biochem. Syst. Ecol. 1998, 26, 669–670. [Google Scholar] [CrossRef]
- Bolzani, V.S.; Izumisawa, C.M.; Young, M.C.M.; Trevisan, L.; Kingston, D.G.I.; Gunatilaka, A.L. Iridoids from Tocoyena formosa. Phytochemistry 1997, 46, 305–308. [Google Scholar] [CrossRef]
- Raharivelomanana, P.; Bianchini, J.P.; Ramanoelina, A.R.P.; Rasoharahona, J.R.E.; Chatel, F.; Faure, R. Structures of Cadinane- and Guaiane-type Sesquiterpenoids from Enterospermum madagascariensis (Baill.) Homolle. Magn. Reson. Chem. 2005, 43, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Rasoanaivo, P.; Multari, G.; Federici, E.; Galeffi, C. Triterpenoid diglucoside of Enterospermum pruinosum. Phytochemistry 1995, 39, 251–253. [Google Scholar] [CrossRef]
- Latha, P.G.; Nayar, M.N.S.; Sing, O.V.; George, K.R.; Panikkar, K.R.; Pushpangadan, P. Isolation of antigenotoxic ursolic acid from Ixora coccinea flowers. Actual. Biol. 2001, 23, 21–24. [Google Scholar]
- Idowu, T.O.; Ogundaini, A.O.; Salau, A.O.; Obuotor, E.M.; Bezabih, M.; Abegaz, B.M. Doubly linked, A-type proanthocyanidin trimer and other constituents of Ixora coccinea leaves and their antioxidant and antibacterial properties. Phytochemistry 2010, 71, 2092–2098. [Google Scholar] [CrossRef] [PubMed]
- Versiani, M.A.; Ikram, A.; Khalid, S.; Faizi, S.; Tahiri, I.A. Ixoroid: A new triterpenoid from the flowers of Ixora coccinea. Nat. Prod. Commun. 2012, 7, 831–834. [Google Scholar] [PubMed]
- Ikram, A.; Versiani, M.A.; Shamshad, S.; Ahmed, S.K.; Ali, S.T.; Faizi, S. Ixorene, a New Dammarane Triterpene from the Leaves of Ixora coccinea Linn. Rec. Nat. Prod. 2013, 7, 302–306. [Google Scholar]
- Jaiswal, R.; Karar, M.G.E.; Gadir, H.A.; Kuhnert, N. Identification and Characterisation of Phenolics from Ixora coccinea L.(Rubiaceae) by Liquid Chromatography Multi-stage Mass Spectrometry. Phytochem. Anal. 2014, 25, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Wynants, C.; Toppet, S.; Kilonda, A.; Hoornaert, G. Two triterpenoid saponins from Heinsia crinata. Phytochemistry 1994, 36, 1489–1492. [Google Scholar]
- Vidyalakshmi, K.; Rajamanickam, G. An iridoid with anticancer activity from the sepals of Mussaenda dona aurora. Indian J. Chem. B 2009, 48, 1019–1022. [Google Scholar]
- Eswaraiah, M.C.; Elumalai, A. Isolation of phytoconstituents from the stems of Mussaenda erythrophylla. Pharm. Sin. 2011, 2, 132–142. [Google Scholar]
- Dinda, B.; Debnath, S.; Majumder, S.; Arima, S.; Sato, N.; Harigaya, Y. Chemical constituents of Mussaenda incana. Indian J. Chem. 2005, 44, 2362–2366. [Google Scholar] [CrossRef]
- Dinda, B.; Majumder, S.; Arima, S.; Sato, N.; Harigaya, Y. Iridoid glucoside and sterol galactoside from Mussaenda macrophylla. J. Nat. Med. 2008, 62, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D.U.; Ghosh, R.; Chowdhury, S.; Dinda, B. New iridoid from aerial parts of Mussaenda roxburghii. Nat. Prod. Commun. 2012, 7, 1–2. [Google Scholar]
- Zhao, W.; Yang, G.; Xu, R.; Qin, G. Three monoterpenes from Mussaenda pubescens. Phytochemistry 1996, 41, 1553–1555. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, J.; Qin, G.; Xu, R. Saponins from Mussaenda pubescens. Phytochemistry 1995, 39, 191–193. [Google Scholar] [CrossRef]
- Macabeo, A.; Avila, J.A.; Alejandro, G.; Franzblau, S.G.; Kouam, S.F.; Hussain, H.; Krohn, K. Villarinol, a new alkenoyloxyalkenol derivative from the endemic Philippine Rubiaceae species Villaria odorata. Nat. Prod. Commun. 2012, 7, 779–780. [Google Scholar] [PubMed]
- Tan, M.A.; Villacorta, R.A.U.; Alejandro, G.J.D.; Takayama, H. Iridoids and a Norsesquiterpenoid from the Leaves of Villaria odorata. Nat. Prod. Commun. 2014, 9, 1229–1230. [Google Scholar] [PubMed]
- Yang, X.W.; Ma, Y.L.; He, H.P.; Wang, Y.H.; Di, Y.T.; Zhou, H.; Li, L.; Hao, X.J. Iridoid Constituents of Tarenna attenuata. J. Nat. Prod. 2006, 69, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. Tareciliosides HM: Further cycloartane glycosides from leaves of Tarenna gracilipes. Chem. Pharm. Bull. 2011, 59, 902–905. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. Tareciliosides AG: Cycloartane glycosides from leaves of Tarenna gracilipes (HAY.) OHWI. Chem. Pharm. Bull. 2008, 56, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Djoudi, R.; Bertrand, C.; Fiasson, K.; Fiasson, J.L.; Comte, G.; Fenet, B.; Antoine Rabesa, Z. Polyphenolics and iridoid glycosides from Tarenna madagascariensis. Biochem. Syst. Ecol. 2007, 35, 314–316. [Google Scholar] [CrossRef]
- Kato, L.; Oliveira, C.; Melo, M.P.; Freitas, C.S.; Schuquel, I.T.A.; Delprete, P.G. Glucosidic iridoids from Molopanthera paniculata Turcz.(Rubiaceae, Posoquerieae). Phytochem. Lett. 2012, 5, 155–157. [Google Scholar] [CrossRef]
- Batista, J.C.; Santin, S.M.D.O.; Schuquel, I.T.A.; Arruda, L.L.M.D.; Bersani-Amado, C.A.; Oliveira, C.M.A.D.; Kato, L.; Ferreira, H.D.; Silva, C.C.D. Chemical constituents and evaluation of antioxidant and anti-inflammatory activities of roots of Sabicea brasiliensis wernh (Rubiaceae). Quim. Nova 2014, 37, 638–642. [Google Scholar] [CrossRef]
- Oliveira, A.M.D.; Conserva, L.M.; de Souza Ferro, J.N.; Brito, F.D.A.; Lemos, R.P.L.; Barreto, E. Antinociceptive and anti-inflammatory effects of octacosanol from the leaves of Sabicea grisea var. grisea in mice. Int. J Mol. Sci. 2012, 13, 1598–1611. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.; Lima, R.; Ferro, J.; Lemos, R.; Conserva, L.; Barreto, E. Chemical Constituents from the Stems and Preliminary Antinociceptive Activity of Sabicea grisea var. grisea. Chem. Nat. Compd. 2014, 49, 1119–1120. [Google Scholar] [CrossRef]
- Kanchanapoom, T.; Kasai, R.; Yamasaki, K. Iridoid and phenolic diglycosides from Canthium berberidifolium. Phytochemistry 2002, 61, 461–464. [Google Scholar] [CrossRef]
- Kouam, S.F.; Ngouonpe, A.W.; Bullach, A.; Lamshöft, M.; Kuigoua, G.M.; Spiteller, M. Monoterpenes with antibacterial activities from a Cameroonian medicinal plant Canthium Multiflorum (Rubiaceae). Fitoterapia 2013, 91, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, B.; Wray, V.; Proksch, P. A cyanogenic glycoside from Canthium schimperianum. Phytochemistry 1996, 42, 633–636. [Google Scholar] [CrossRef]
- Anero, R.; Díaz-Lanza, A.; Ollivier, E.; Baghdikian, B.; Balansard, G.; Bernabé, M. Monoterpene glycosides isolated from Fadogia agrestis. Phytochemistry 2008, 69, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Mencherini, T.; Picerno, P.; del Gaudio, P.; Festa, M.; Capasso, A.; Aquino, R. Saponins and polyphenols from Fadogia ancylantha (Makoni tea). J. Nat. Prod. 2010, 73, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.M.A.; Coombes, P.H.; Crouch, N.R.; Mulholland, D.A. Chemical Constituents from Fadogia homblei De Wild (Rubiaceae). Int. Lett. Chem. Phys. Astron. 2013, 9, 116–124. [Google Scholar] [CrossRef]
- Chatterjee, S.K.; Bhattacharjee, I.; Chandra, G. Isolation and identification of bioactive antibacterial components in leaf extracts of Vangueria spinosa (Rubiaceae). Asian Pac. J. Trop. Med. 2011, 4, 35–40. [Google Scholar] [CrossRef]
- Choze, R.; Delprete, P.G.; Lião, L.M. Chemotaxonomic significance of flavonoids, coumarins and triterpenes of Augusta longifolia (Spreng.) Rehder, Rubiaceae-Ixoroideae, with new insights about its systematic position within the family. Rev. Bras. Farmacogn. 2010, 20, 295–299. [Google Scholar] [CrossRef]
- Pham, V.C.; Jossang, A.; Sevenet, T.; Nguyen, V.H.; Bodo, B. Absolute Configuration of Myrobotinol, New Fused-Hexacyclic Alkaloid Skeleton from Myrioneuron nutans. J. Org. Chem. 2007, 72, 9826–9829. [Google Scholar] [CrossRef] [PubMed]
- Lakshmana Raju, B.; Lin, S.J.; Hou, W.C.; Lai, Z.Y.; Liu, P.C.; Hsu, F.L. Antioxidant iridoid glucosides from Wendlandia formosana. Nat. Prod. Res. 2004, 18, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Dinda, B.; Debnath, S.; Arima, S.; Sato, N.; Harigaya, Y. Iridoid glucosides from Wendlandia tinctoria roots. Chem. Pharm. Bull. 2006, 54, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Dinda, B.; Debnath, S.; Banik, R.; Sato, N.; Harigaya, Y. Iridoid glucosides from Wendlandia tinctoria roots. Nat. Prod. Commun. 2011, 6, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Sargent, M.V.; Wahyuni, F.S. (+)-Isochimonanthine, a Pyrrolidinoindole Alkaloid from Argostemma yappii King. Aust. J. Chem. 2000, 53, 159–160. [Google Scholar]
- Kitagawa, I.; Wei, H.; Nagao, S.; Mahmud, T.; Hori, K.; Kobayashi, M.; Uji, T.; Shibuya, H. Indonesian Medicinal Plants. XIV. Characterization of 3′-O-Caffeoylsweroside, a new secoiridoid glucoside, and kelampayosides A and B. two new phenolic apioglucosides, from the bark of Anthocephalus chinensis (Rubiaceae). Chem. Pharm. Bull. 1996, 44, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Su, B.N.; Kang, Y.H.; Pinos, R.E.; Santarsiero, B.D.; Mesecar, A.D.; Soejarto, D.D.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Isolation and absolute stereochemistry of coussaric acid, a new bioactive triterpenoid from the stems of Coussarea brevicaulis. Phytochemistry 2003, 64, 293–302. [Google Scholar] [CrossRef]
- Hamerski, L.; Bomm, M.D.; Silva, D.H.S.; Young, M.C.M.; Furlan, M.; Eberlin, M.N.; Castro-Gamboa, I.; Cavalheiro, A.J.; Bolzani, S.V. Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae). Phytochemistry 2005, 66, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Prakash Chaturvedula, V.; Schilling, J.K.; Johnson, R.K.; Kingston, D.G. New cytotoxic lupane triterpenoids from the twigs of Coussarea paniculata. J. Nat. Prod. 2003, 66, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Araujo, F.C.V.D.; Marques, F.G.; Silva, C.C.D.; Santin, S.M.D.O.; Nakamura, C.V.; Zamuner, M.L.M.; Souza, M.C.D. Terpenes isolated of Coussarea platyphylla Müll. Arg. (Rubiaceae). Quim. Nova 2009, 32, 1760–1763. [Google Scholar] [CrossRef]
- Piovano, M.; Chamy, M.C.; Garbarino, J.A.; Nicoletti, M. Iridoids from Cruckshanksia pumila (Rubiaceae). Biochem. Syst. Ecol. 2003, 31, 1201–1203. [Google Scholar] [CrossRef]
- Núñez-Montoya, S.C.; Comini, L.R.; Sarmiento, M.; Becerra, C.; Albesa, I.; Argüello, G.A.; Cabrera, J.L. Natural anthraquinones probed as Type I and Type II photosensitizers: singlet oxygen and superoxide anion production. J. Photochem. Photobiol. B 2005, 78, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Vázquez, M.F.; Comini, L.R.; Martini, R.E.; Núñez-Montoya, S.C.; Bottini, S.; Cabrera, J.L. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Ultrason. Sonochem. 2014, 21, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Huang, R.; Zhang, H.B.; Li, L. Chromone glycosides from Knoxia corymbosa. J. Asian Nat. Prod. Res. 2006, 8, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Jiang, S.H.; Zhu, D.Y.; Lin, L.Z.; A Cordell, G. Anthraquinones from Knoxia valerianoides. Phytochemistry 1994, 36, 765–768. [Google Scholar] [CrossRef]
- Yoo, N.H.; Jang, D.S.; Lee, Y.M.; Jeong, I.H.; Cho, J.H.; Kim, J.H.; Kim, J.S. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharm. Res. 2010, 33, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Bukuru, J.; Nguyen Van, T.; Van Puyvelde, L.; He, W.; De Kimpe, N. New pentacyclic cyclol-type naphthohydroquinone from the roots of Pentas bussei. Tetrahedron 2003, 59, 5905–5908. [Google Scholar] [CrossRef]
- Bukuru, J.F.; Van, T.N.; van Puyvelde, L.; Mathenge, S.G.; Mudida, F.P.; De Kimpe, N. A Benzochromene from the Roots of Pentas bussei. J. Nat. Prod. 2002, 65, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Endale, M.; Patrick, A.J.; Akala-Hoseah, M.; Rono-Nelson, K.; Eyase-Fredrick, L.; Solomon, D.; Albert, N.; Njogu, M.M.; Per, S.; Mate, E. Antiplasmodial Quinonesfrom Pentas longiflora and Pentas lanceolata. Planta Med. 2012, 78, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Schripsema, J.; Caprini, G.P.; van der Heijden, R.; Bino, R.; de Vos, R.; Dagnino, D. Iridoids from Pentas lanceolata. J. Nat. Prod. 2007, 70, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Hari, L.; de Buyck, L.F.; de Pootert, H.L. Naphthoquinoid pigments from Pentas longiflora. Phytochemistry 1991, 30, 1726–1727. [Google Scholar] [CrossRef]
- Endale, M.; Ekberg, A.; Alao, J.P.; Akala, H.M.; Ndakala, A.; Sunnerhagen, P.; Erdélyi, M.; Yenesew, A. Anthraquinones of the Roots of Pentas micrantha. Molecules 2012, 18, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Donfack, A.R.N.; Tala, M.F.; Wabo, H.K.; Jerz, G.; Zeng, G.Z.; Winterhalter, P.; Tan, N.H.; Tane, P. Two new anthraquinone dimers from the stem bark of Pentas schimperi (Rubiaceae). Phytochem. Lett. 2014, 8, 55–58. [Google Scholar] [CrossRef]
- Cai, Y.F.; Huang, Q.S. Determination of oleanolic acid and ursolic acid in Damnacanthus indicus from different places by RP-hPLC]. Zhong Yao Cai 2012, 35, 694–696. [Google Scholar] [PubMed]
- Takeda, Y.; Shimizu, H.; Masuda, T.; Hirata, E.; Shinzato, T.; Bando, M.; Otsuka, H. Lasianthionosides AC, megastigmane glucosides from leaves of Lasianthus fordii. Phytochemistry 2004, 65, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Dallavalle, S.; Jayasinghe, L.; Kumarihamy, B.M.M.; Merlini, L.; Musso, L.; Scaglioni, L. A new 3, 4-seco-lupane derivative from Lasianthus gardneri. J. Nat. Prod. 2004, 67, 911–913. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Shimidzu, H.; Mizuno, K.; Inouchi, S.; Masuda, T.; Hirata, E.; Shinzato, T.; Aramoto, M.; Otsuka, H. An iridoid glucoside dimer and a non-glycosidic iridoid from the leaves of Lasianthus wallichii. Chem. Pharm. Bull. 2002, 50, 1395–1397. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Fasshuber, H.; Schinnerl, J.; Robien, W.; Brecker, L.; Valant-Vetschera, K. Iridoids as chemical markers of false ipecac (Ronabea emetica), a previously confused medicinal plant. J. Ethnopharmacol. 2011, 138, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Magiatis, P.; Skaltsounis, A.L.; Tillequin, F.; Seguin, E.; Cosson, J.P. Coelobillardin, an iridoid glucoside dimer from Coelospermum billardieri. Phytochemistry 2002, 60, 415–418. [Google Scholar] [CrossRef]
- Kamiya, K.; Hamabe, W.; Tokuyama, S.; Satake, T. New anthraquinone glycosides from the roots of Morinda citrifolia. Fitoterapia 2009, 80, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Hemwimon, S.; Pavasant, P.; Shotipruk, A. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep. Purif. Technol. 2007, 54, 44–50. [Google Scholar] [CrossRef]
- Kamiya, K.; Tanaka, Y.; Endang, H.; Umar, M.; Satake, T. New anthraquinone and iridoid from the fruits of Morinda citrifolia. Chem. Pharm. Bull. 2005, 53, 1597–1599. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kwon, M.K.; Kim, J.N.; Kim, C.K.; Lee, Y.J.; Shin, H.J.; Lee, J.; Lee, H.S. Identification of novel fatty acid glucosides from the tropical fruit Morinda citrifolia L. Phytochem. Lett. 2010, 3, 238–241. [Google Scholar] [CrossRef]
- Sang, S.; Wang, M.; He, K.; Liu, G.; Dong, Z.; Badmaev, V.; Zheng, Q.Y.; Ghai, G.; Rosen, R.T.; Ho, C.T. Chemical components in noni fruits and leaves (Morinda citrifolia L.). ACS Symp. Ser. 2002, 803, 134–150. [Google Scholar]
- Akihisa, T.; Seino, K.I.; Kaneko, E.; Watanabe, K.; Tochizawa, S.; Fukatsu, M.; Banno, N.; Metori, K.; Kimura, Y. Melanogenesis inhibitory activities of iridoid-, hemiterpene-, and fatty acid-glycosides from the fruits of Morinda citrifolia (Noni). J. Oleo. Sci. 2010, 59, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Samoylenko, V.; Zhao, J.; Dunbar, D.C.; Khan, I.A.; Rushing, J.W.; Muhammad, I. New constituents from noni (Morinda citrifolia) fruit juice. J. Agric. Food Chem. 2006, 54, 6398–6402. [Google Scholar] [CrossRef] [PubMed]
- Takashima, J.; Ikeda, Y.; Komiyama, K.; Hayashi, M.; Kishida, A.; Ohsaki, A. New constituents from the leaves of Morinda citrifolia. Chem. Pharm. Bull. 2007, 55, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Kanchanapoom, T.; Kasai, R.; Yamasaki, K. Iridoid and phenolic glycosides from Morinda coreia. Phytochemistry 2002, 59, 551–556. [Google Scholar] [CrossRef]
- Abdullah, M.A.; Ali, A.M.; Marziah, M.; Lajis, N.H.; Ariff, A.B. Establishment of cell suspension cultures of Morinda elliptica for the production of anthraquinones. Plant Cell Tissue Organ Cult. 1998, 54, 173–182. [Google Scholar] [CrossRef]
- Ismail, N.H.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H.; Lajis, N.H. Anthraquinones from Morinda elliptica. Phytochemistry 1997, 45, 1723–1725. [Google Scholar] [CrossRef]
- Chiang, L.; Abdullah, M.A. Enhanced anthraquinones production from adsorbent-treated Morinda elliptica cell suspension cultures in production medium strategy. Process Biochem. 2007, 42, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Pham, M.H.; Nguyen, D.T.; Do, T.D. Isolation and Identification of Scopoletin From Roots of Nho Dong (Morinda longissima Y.Z. Ruan, Rubiaceae). Tap. Chi. Duoc. Hoc. 2005, 45, 12–13. [Google Scholar]
- Rath, G.; Ndonzao, M.; Hostettmann, K. Antifungal anthraquinones from Morinda lucida. Pharm. Biol. 1995, 33, 107–114. [Google Scholar] [CrossRef]
- Cimanga, K.; De Bruyne, T.; Lasure, A.; Li, Q.; Pieters, L.; Claeys, M.; Berghe, D.V.; Kambu, K.; Tona, L.; Vlietinck, A. Flavonoid O-glycosides from the leaves of Morinda morindoides. Phytochemistry 1995, 38, 1301–1303. [Google Scholar] [CrossRef]
- Cimanga, R.K.; Kambu, K.; Tona, L.; Hermans, N.; Apers, S.; Totté, J.; Pieters, L.; Vlietinck, A.J. Cytotoxicity and in vitro susceptibility of Entamoeba histolytica to Morinda morindoides leaf extracts and its isolated constituents. J. Ethnopharmacol. 2006, 107, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Tamura, S.; Kubata, B.K.; Itagaki, S.; Horii, T.; Taba, M.K.; Murakami, N. New anti-malarial phenylpropanoid conjugated iridoids from Morinda morindoides. Bioorg. Med. Chem. Lett. 2010, 20, 1520–1523. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Yun, K.J.; Chung, K.S.; Seo, K.H.; Park, H.J.; Cho, Y.M.; Baek, N.I.; Jang, D.; Lee, K.T. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem. Toxicol. 2013, 53, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Qin, L.; Liu, L.; Wu, Y.; Han, T.; Xue, L.; Zhang, Q. Anthraquinone compounds from Morinda officinalis inhibit osteoclastic bone resorption in vitro. Chem. Biol. Interact. 2011, 194, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Ruksilp, T.; Sichaem, J.; Khumkratok, S.; Siripong, P.; Tip-pyang, S. Anthraquinones and an iridoid glycoside from the roots of Morinda pandurifolia. Biochem. Syst. Ecol. 2011, 39, 888–892. [Google Scholar] [CrossRef]
- Borroto, J.; Coll, J.; Rivas, M.; Blanco, M.; Concepción, O.; Tandrón, Y.A.; Hernández, M.; Trujillo, R. Anthraquinones from in vitro root culture of Morinda royoc L. Plant Cell Tissue Organ. Cult. 2008, 94, 181–187. [Google Scholar] [CrossRef]
- Ban, N.K.; Giang, V.H.; Linh, T.M.; Lien, L.Q.; Ngoc, N.T.; Thao, D.T.; Nam, N.H.; Cuong, N.X.; van Kiem, P.; van Minh, C. Two new 11-noriridoids from the aerial parts of Morinda umbellata. Phytochem. Lett. 2013, 6, 267–269. [Google Scholar] [CrossRef]
- Arbain, D.; Lajis, N.H.; Putra, D.P.; Sargent, M.V.; Skelton, B.W.; White, A.H. A New Quaternary Corynanthe Alkaloid from Lerchea bracteata. ChemInform 1993, 24. [Google Scholar] [CrossRef]
- Huang, S.D.; Zhang, Y.; Cao, M.M.; Di, Y.T.; Tang, G.H.; Peng, Z.G.; Jiang, J.D.; He, H.P.; Hao, X.J. Myriberine A, a new alkaloid with an unprecedented heteropentacyclic skeleton from Myrioneuron faberi. Org. Lett. 2013, 15, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Arbain, D.; Dachriyanus, F.; Sargent, M.V.; Skelton, B.W.; White, A.H. Unusual indole alkaloids from Ophiorrhiza blumeana Korth. J. Chem. Soc. Perkin Trans. 1 1998, 2537–2540. [Google Scholar] [CrossRef]
- Arbain, D.; Byrne, L.T.; Sargent, M.V. Isomalindine-16-carboxylate, a zwitterionic alkaloid from Ophiorrhiza cf. communis. Aust. J. Chem. 1997, 50, 1109–1110. [Google Scholar] [CrossRef]
- Hamzah, A.S.; Arbain, D.; V Sargent, M.; Lajis, M.N. The Alkaloids of Ophiorrhiza communis and O. tomentosa. Pertanika J. Sci. Technol. 1994, 2, 33–38. [Google Scholar]
- Chan, H.H.; Li, C.Y.; Damu, A.G.; Wu, T.S. Anthraquinones from Ophiorrhiza hayatana OHWI. Chem. Pharm. Bull. 2005, 53, 1232–1235. [Google Scholar] [CrossRef] [PubMed]
- Arbain, D.; Putra, D.P.; Sargent, M.V.; Susila, R.; Wahyuni, F.S. Indole alkaloids from two species of Ophiorrhiza. Aust. J. Chem. 2000, 53, 221–224. [Google Scholar]
- Kitajima, M.; Fujii, N.; Yoshino, F.; Sudo, H.; Saito, K.; Aimi, N.; Takayama, H. Camptothecins and two new monoterpene glucosides from Ophiorrhiza liukiuensis. Chem. Pharm. Bull. 2005, 53, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M. Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza. J. Nat. Med. 2007, 61, 14–23. [Google Scholar] [CrossRef]
- Saito, K.; Sudo, H.; Yamazaki, M.; Koseki-Nakamura, M.; Kitajima, M.; Takayama, H.; Aimi, N. Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep. 2001, 20, 267–271. [Google Scholar]
- Kitajima, M.; Fischer, U.; Nakamura, M.; Ohsawa, M.; Ueno, M.; Takayama, H.; Unger, M.; Stöckigt, J.; Aimi, N. Anthraquinones from Ophiorrhiza pumila tissue and cell cultures. Phytochemistry 1998, 48, 107–111. [Google Scholar] [CrossRef]
- Yamazaki, M.; Mochida, K.; Asano, T.; Nakabayashi, R.; Chiba, M.; Udomson, N.; Yamazaki, Y.; Goodenowe, D.B.; Sankawa, U.; Yoshida, T. Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. Plant and Cell Physiol. 2013, 54, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, V.V.; Vijayan, F.P.; Padikkala, J. Antitumor activities of an anthraquinone fraction isolated from in vitro cultures of Ophiorrhiza rugosa var decumbens. Integr. Cancer Ther. 2011, 11, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Ohara, S.; Kogure, N.; Santiarworn, D.; Takayama, H. β-Carboline-type indole alkaloid glycosides from Ophiorrhiza trichocarpon. Tetrahedron 2013, 69, 9451–9456. [Google Scholar] [CrossRef]
- Uddin, N.; Hossain, M.K.; Haque, M.R.; Hasan, C.M. Chemical Investigation of Paederia foetidae (Rubiaceae). Asian J. Chem. 2013, 25, 1163–1164. [Google Scholar]
- Suzuki, S.; Endo, Y. Studies on the Constituents of the Fruits of Paederia scandens. Structure of A New Iridoid, Paederia lactone. J. Tohoku Pharm. Univ. 2004, 51, 17–21. [Google Scholar]
- Quang, D.N.; Hashimoto, T.; Tanaka, M.; Dung, N.X.; Asakawa, Y. Iridoid glucosides from roots of Vietnamese Paederia scandens. Phytochemistry 2002, 60, 505–514. [Google Scholar] [CrossRef]
- Wu, Z.J.; Wang, J.H.; Fang, D.M.; Zhang, G.L. Analysis of iridoid glucosides from Paederia scandens using HPLC–ESI-MS/MS. J. Chromatogr.B 2013, 923, 54–64. [Google Scholar] [CrossRef] [PubMed]
- He, D.H.; Chen, J.S.; Wang, X.L.; Ding, K.Y. A new iridoid glycoside from Paederia scandens. Chin. Chem. Lett. 2010, 21, 437–439. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, L.; Chen, Z.; Hu, C. Analgesic effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on spared nerve injury rat model of neuropathic pain. Pharmacol. Biochem. Behav. 2012, 102, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Zhu, W.; Pang, M.; Jeffry, J.; Zhou, L. Protective effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats induced by yeast and potassium oxonate. Food Chem. Toxicol. 2014, 64, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.L.; Chin, Y.-W.; Kim, J.; Park, J.H. Two new acylated iridoid glucosides from the aerial parts of Paederia scandens. Chem. Pharm. Bull. 2004, 52, 1356–1357. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Peng, S.; Liu, X.; Bai, B.; Ding, L. Sulfur-containing iridoid glucosides from Paederia scandens. Fitoterapia 2006, 77, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Osman, C.P.; Ismail, N.H.; Ahmad, R.; Ahmat, N.; Awang, K.; Jaafar, F.M. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth.(Rubiaceae). Molecules 2010, 15, 7218–7226. [Google Scholar] [CrossRef] [PubMed]
- Lorence, A.; Medina-Bolivar, F.; Nessler, C.L. Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep. 2004, 22, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, M.; Fasshuber, H.; Robien, W.; Brecker, L.; Greger, H. Dopamine-iridoid alkaloids in Carapichea affinis (Psychotria borucana) confirm close relationship to the vomiting root Ipecac. Biochem. Syst. Ecol. 2011, 39, 232–235. [Google Scholar] [CrossRef]
- Itoh, A.; Baba, Y.; Tanahashi, T.; Nagakura, N. Tetrahydroisoquinoline-monoterpene glycosides from Cephaelis acuminata. Phytochemistry 2002, 59, 91–97. [Google Scholar] [CrossRef]
- Itoh, A.; Ikuta, Y.; Baba, Y.; Tanahashi, T.; Nagakura, N. Ipecac alkaloids from Cephaelis acuminata. Phytochemistry 1999, 52, 1169–1176. [Google Scholar] [CrossRef]
- Solis, P.N.; Wright, C.W.; Gupta, M.P.; Philipson, J.D. Alkaloids from Cephaelis dichroa. Phytochemistry 1993, 33, 1117–1119. [Google Scholar] [CrossRef]
- Itoh, A.; Tanahashi, T.; Nagakura, N.; Nayeshiro, H. Tetrahydroisoquinoline-monoterpene glucosides from Alangium lamarckii and Cephaelis ipecacuanha. Phytochemistry 1994, 36, 383–387. [Google Scholar] [CrossRef]
- Yoshimatsu, K.; Shimomura, K. Emetic alkaloid formation in root culture of Cephaelis ipecacuanha. Phytochemistry 1991, 30, 505–507. [Google Scholar] [CrossRef]
- Schinnerl, J.; Orlowska, E.A.; Lorbeer, E.; Berger, A.; Brecker, L. Alstrostines in Rubiaceae: Alstrostine A from Chassalia curviflora var. ophioxyloides and a novel derivative, rudgeifoline from Rudgea cornifolia. Phytochem. Lett. 2012, 5, 586–590. [Google Scholar]
- Brand, G.; Henriques, A.T.; Passos, C.S.; Baldoqui, D.C.; Oliveira Santin, S.M.; Ferreira da Costa, W.; Sarragiotto, M.H. Pyrrolidinoindoline alkaloids from Margaritopsis cymuligera (Muell. Arg.) CM Taylor (Rubiaceae). Biochem. Syst. Ecol. 2012, 45, 155–157. [Google Scholar] [CrossRef]
- Berger, A.; Fasshuber, H.; Schinnerl, J.; Brecker, L.; Greger, H. Various types of tryptamine-iridoid alkaloids from Palicourea acuminata (Psychotria acuminata, Rubiaceae). Phytochem. Lett. 2012, 5, 558–562. [Google Scholar] [CrossRef]
- Valverde, J.; Tamayo, G.; Hesse, M. β-Carboline monoterpenoid glucosides from Palicourea adusta. Phytochemistry 1999, 52, 1485–1489. [Google Scholar] [CrossRef]
- Narine, L.L.; Maxwell, A.R. Monoterpenoid indole alkaloids from Palicourea crocea. Phytochem. Lett. 2009, 2, 34–36. [Google Scholar] [CrossRef]
- Nascimento, C.A.; Gomes, M.S.; Liao, L.M.; de Oliveira, C.; Kato, L.; da Silva, C.C.; Tanaka, C. Alkaloids from Palicourea coriacea (Cham.) K. Schum. Z. Naturforsch. B 2006, 61, 1443–1446. [Google Scholar] [CrossRef]
- Düsman, L.T.; Marinho Jorge, T.C.; Souza, M.C.D.; Eberlin, M.N.; Meurer, E.C.; Bocca, C.C.; Basso, E.A.; Sarragiotto, M.H. Monoterpene Indole Alkaloids from Palicourea crocea. J. Nat. Prod. 2004, 67, 1886–1888. [Google Scholar] [CrossRef] [PubMed]
- Soares, P.R.O.; Oliveira, P.L.; Oliveira, C.M.A.; Kato, L.; Guillo, L.A. In vitro antiproliferative effects of the indole alkaloid vallesia chotamine on human melanoma cells. Arch. Pharm. Res. 2012, 35, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Feng, S.X.; Qiu, S.X.S.; Chen, T. Anthraquinone Glycosides from the Roots of Prismatomeris connata. Chin. J. Nat. Med. 2011, 9, 42–45. [Google Scholar] [CrossRef]
- Feng, S.X.; Bai, J.; Qiu, S.; Li, Y.; Chen, T. Iridoid and phenolic glycosides from the roots of Prismatomeris connata. Nat. Prod. Commun. 2012, 7, 561–562. [Google Scholar] [PubMed]
- Tuntiwachwuttikul, P.; Butsuri, Y.; Sukkoet, P.; Prawat, U.; Taylor, W.C. Anthraquinones from the roots of Prismatomeris malayana. Nat. Prod. Res. 2008, 22, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Krohn, K.; Gehle, D.; Dey, S.K.; Nahar, N.; Mosihuzzaman, M.; Sultana, N.; Sohrab, M.H.; Stephens, P.J.; Pan, J.J.; Sasse, F. Prismatomerin, a new iridoid from Prismatomeris tetrandra. Structure elucidation, determination of absolute configuration, and cytotoxicity. J. Nat. Prod. 2007, 70, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Pan, J.J.; Krohn, K. Determination of the absolute configurations of pharmacological natural products via density functional theory calculations of vibrational circular dichroism: the new cytotoxic iridoid prismatomerin. J. Org. Chem. 2007, 72, 7641–7649. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.; Maxwell, A.; Reynolds, W. Novel bis (monoterpenoid) indole alkaloids from Psychotria bahiensis. J. Nat. Prod. 2003, 66, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.M.; Lemos, R.P.L.; Conserva, L.M. β-Carboline alkaloids from Psychotria barbiflora DC. (Rubiaceae). Biochem. Syst. Ecol. 2013, 50, 339–341. [Google Scholar] [CrossRef]
- Nascimento, N.C.; Menguer, P.K.; Henriques, A.T.; Fett-Neto, A.G. Accumulation of brachycerine, an antioxidant glucosidic indole alkaloid, is induced by abscisic acid, heavy metal, and osmotic stress in leaves of Psychotria brachyceras. Plant Physiol. Biochem. 2013, 73, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.; Claessens, S.; de Kimpe, N. First straightforward synthesis of 1-hydroxy-3,4-dihydro-1H-benz [g] isochromene-5,10-dione and structure revision of a bioactive benz [g] isochromene-5, 10-dione from Psychotria camponutans. Tetrahedron 2008, 64, 412–418. [Google Scholar] [CrossRef]
- Verotta, L.; Pilati, T.; Tatò, M.; Elisabetsky, E.; Amador, T.A.; Nunes, D.S. Pyrrolidinoindoline Alkaloids from Psychotria colorata. J. Nat. Prod. 1998, 61, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; He, H.P.; Wang, Y.H.; Hao, X.J. A new dimeric alkaloid from the leaf of Psychotria calocarpa. Helv. Chim. Acta 2010, 93, 1650–1652. [Google Scholar] [CrossRef]
- Achenbach, H.; Lottes, M.; Waibel, R.; Karikas, G.A.; Correa, M.D.; Gupta, M.P. Alkaloids and other compounds from Psychotria correae. Phytochemistry 1995, 38, 1537–1545. [Google Scholar] [CrossRef]
- Solís, P.N.; Ravelo, A.G.; Antonio Palenzuela, J.; Gupta, M.P.; González, A.; David Phillipson, J. Quinoline alkaloids from Psychotria glomerulata. Phytochemistry 1997, 44, 963–969. [Google Scholar] [CrossRef]
- Garcia, R.M.A.; Oliveira, L.O.; Moreira, M.A.; Barros, W.S. Variation in emetine and cephaeline contents in roots of wild Ipecac (Psychotria ipecacuanha). Biochem. Syst. Ecol. 2005, 33, 233–243. [Google Scholar] [CrossRef]
- Lopes, S.; Von Poser, G.L.; Kerber, V.A.; Farias, F.M.; Konrath, E.L.; Moreno, P.; Sobral, M.E.; Zuanazzi, J.A.S.; Henriques, A.T. Taxonomic significance of alkaloids and iridoid glucosides in the tribe Psychotrieae (Rubiaceae). Biochem. Syst. Ecol. 2004, 32, 1187–1195. [Google Scholar] [CrossRef]
- Farias, F.M.; Passos, C.S.; Arbo, M.D.; Zuanazzi, J.A.S.; Steffen, V.M.; Henriques, A.T. Monoamine levels in rat striatum after acute intraperitoneal injection of strictosidinic acid isolated from Psychotria myriantha Mull. Arg. (Rubiaceae). Phytomedicine 2010, 17, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Farias, F.M.; Passos, C.S.; Arbo, M.D.; Barros, D.M.; Gottfried, C.; Steffen, V.M.; Henriques, A.T. Strictosidinic acid, isolated from Psychotria myriantha Mull. Arg. (Rubiaceae), decreases serotonin levels in rat hippocampus. Fitoterapia 2012, 83, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Farias, F.M.; Konrath, E.L.; Zuanazzi, J.A.S.; Henriques, A.T. Strictosamide from Psychotria nuda (Cham. et Schltdl) Wawra (Rubiaceae). Biochem. Syst. Ecol. 2008, 36, 919–920. [Google Scholar] [CrossRef]
- Jannic, V.; Guéritte, F.; Laprévote, O.; Serani, L.; Martin, M.T.; Sévenet, T.; Potier, P. Pyrrolidinoindoline Alkaloids from Psychotria oleoides and Psychotria lyciiflora. J. Nat. Prod. 1999, 62, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Faria, E.O.; Kato, L.; de Oliveira, C.M.; Carvalho, B.G.; Silva, C.C.; Sales, L.S.; Schuquel, I.T.; Silveira-Lacerda, E.P.; Delprete, P.G. Quaternary β-carboline alkaloids from Psychotria prunifolia (Kunth) Steyerm. Phytochem. Lett. 2010, 3, 113–116. [Google Scholar] [CrossRef]
- De Oliveira Figueiredo, P.; Perdomo, R.T.; Garcez, F.R.; Matos, M.D.F.C.; de Carvalho, J.E.; Garcez, W.S. Further constituents of Galianthe thalictroides (Rubiaceae) and inhibition of DNA topoisomerases I and IIα by its cytotoxic β-carboline alkaloids. Bioorg. Med. Chem. Lett. 2014, 24, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- Lucilia, K.; Oliveira, C.; Faria, E.O.; Ribeiro, L.C.; Carvalho, B.G.; Silva, C.C.D.; Schuquel, I.T.; Santin, S.M.; Nakamura, C.V.; Britta, E.A. Antiprotozoal alkaloids from Psychotria prunifolia (Kunth) steyerm. J. Braz. Chem. Soc. 2012, 23, 355–360. [Google Scholar] [CrossRef]
- Van De Santos, L.; Fett Neto, A.G.; Kerber, V.A.; Elisabetsky, E.; Quirion, J.C.; Henriques, A.T. Indole monoterpene alkaloids from leaves of Psychotria suterella Mull. Arg. (Rubiaceae). Biochem. Syst. Ecol. 2001, 29, 1185–1187. [Google Scholar] [CrossRef]
- Fragoso, V.; Nascimento, N.C.; Moura, D.J.; Richter, M.F.; Saffi, J.; Fett-Neto, A.G. Antioxidant and antimutagenic properties of the monoterpene indole alkaloid psychollatine and the crude foliar extract of Psychotria umbellata Vell. Toxicol. in Vitro 2008, 22, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Moreno, B.P.; Fiorucci, L.L.R.; do Carmo, M.R.B.; Sarragiotto, M.H.; Baldoqui, D.C. Terpenoids and a coumarin from aerial parts of Psychotria vellosiana Benth. (Rubiaceae). Biochem. Syst. Ecol. 2014, 56, 80–82. [Google Scholar] [CrossRef]
- Blackledge, R.D.; Taylor, C.M. Psychotria Viridis—A Botanical Source of Dimethyltryptamine (DMT). Microgram J. 2003, 1, 18–22. [Google Scholar]
- Oliveira, M.D.C.; Negri, G.; Salatino, A.; Braga, M.R. Detection of anthraquinones and identification of 1,4-naphthohydroquinone in cell suspension cultures of Rudgea jasminoides (Cham.) Müll. Arg. (Rubiaceae). Braz. J. Bot. 2007, 30, 167–172. [Google Scholar] [CrossRef]
- Fraga, B.M.; Díaz, C.E.; Quintana, N. Naphthohydroquinones and lignans from the roots of Plocama pendula, a canary island paleoendemism. Biochem. Syst. Ecol. 2010, 38, 784–788. [Google Scholar] [CrossRef]
- Fraga, B.M.; Quintana, N.; Díaz, C.E. Anthraquinones from natural and transformed roots of Plocama pendula. Chem. Biodivers. 2009, 6, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Fraga, B.M.; Díaz, C.E.; Quintana, N. Triterpenes from Natural and Transformed Roots of Plocama pendula. J. Nat. Prod. 2006, 69, 1092–1094. [Google Scholar] [CrossRef] [PubMed]
- Calis, I.; Heilmann, J.; Tasdemir, D.; Linden, A.; Ireland, C.M.; Sticher, O. Flavonoid, Iridoid, and Lignan Glycosides from Putoria calabrica. J. Nat. Prod. 2001, 64, 961–964. [Google Scholar] [CrossRef] [PubMed]
- Baldé, A.; Pieters, L.; Gergely, A.; Wray, V.; Claeys, M.; Vlietinck, A. Spermacoceine, a bis-indole alkaloid from Borreria verticillata. Phytochemistry 1991, 30, 997–1000. [Google Scholar] [CrossRef]
- Moreira, V.F.; Oliveira, R.R.; Mathias, L.; Braz-Filho, R.; Curcino Vieira, I.J. New chemical constituents from Borreria verticillata (Rubiaceae). Helv. Chim. Acta 2010, 93, 1751–1757. [Google Scholar] [CrossRef]
- Wei, X.; Xie, H.; Ge, X.; Zhang, F. Iridoids from Dunnia sinensis. Phytochemistry 2000, 53, 837–840. [Google Scholar] [CrossRef]
- Moura, V.M.; Santos, A.R.; Nurnberg, V.; de Souza, M.C.; Santin, S.M.O. Iridoid glycosides from Galianthe brasiliensis. Biochem. Syst. Ecol. 2005, 33, 451–453. [Google Scholar] [CrossRef]
- De Freitas, C.S.; Kato, L.; de Oliveira, C.; Queiroz, L., Jr.; Santana, M.J.; Schuquel, I.T.; Delprete, P.G.; da Silva, R.A.; Quintino, G.O.; da Silva, N.B. β-Carboline Alkaloids from Galianthe ramosa Inhibit Malate Synthase from Paracoccidioides spp. Planta Med. 2014, 80, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.O.; Garcez, F.R.; Maria de Fátima, C.; Perdomo, R.T.; Queiroz, L.M.; Pott, A.; Garcez, A.J.; Garcez, W.S. A New Cytotoxic β-Carboline Alkaloid from Galianthe thalictroides. Planta Med. 2011, 77, 1852–1854. [Google Scholar] [CrossRef] [PubMed]
- Lajis, N.H.; Ahmad, R. Phytochemical studies and pharmacological activities of plants in genus Hedyotis oldenlandia. Stud. Nat. Prod. Chem. 2006, 33, 1057–1090. [Google Scholar]
- Ahmad, R.; Shaari, K.; Lajis, N.H.; Hamzah, A.S.; Ismail, N.H.; Kitajima, M. Anthraquinones from Hedyotis capitellata. Phytochemistry 2005, 66, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Phuong, N.M.; van Sung, T.; Porzel, A.; Schmidt, J.; Merzweiler, K.; Adam, G. β-Carboline alkaloids from Hedyotis capitellata. Phytochemistry 1999, 52, 1725–1729. [Google Scholar] [CrossRef]
- Phuong, N.M.; van Sung, T.; Schmidt, J.; Porzel, A.; Adam, G. Capitelline-A New Indole Alkaloid from Hedyotis capitellata. Nat. Prod. Lett. 1998, 11, 93–100. [Google Scholar] [CrossRef]
- Peng, J.N.; Feng, X.Z.; Zheng, Q.T.; Liang, X.T. A β-carboline alkaloid from Hedyotis chrysotricha. Phytochemistry 1997, 46, 1119–1121. [Google Scholar] [CrossRef]
- Sudarsono, A. Distribution of Asperuloside, Scandoside Methyl Ester in Plant Organs of Hedyotis corymbosa (L.) Lamk (Oldenlandia Corymbosa Linn) of Rubiaceae Family. Maj. Farm. Indones. 2004, 15, 62–67. [Google Scholar]
- Jiang, W.; Kuang, L.S.; Hou, A.J.; Qian, M.; Li, J.Z. Iridoid glycosides from Hedyotis corymbosa. Helv. Chim. Acta 2007, 90, 1296–1301. [Google Scholar] [CrossRef]
- Huu, B.C.; Phi Phung, N.K. Contribution to the study on chemical constituents of Hedyotis crassifolia L., (Rubiaceae). Vietnam J. Chem. 2014, 45, 363. [Google Scholar]
- Xu, G.H.; Kim, Y.H.; Chi, S.W.; Choo, S.J.; Ryoo, I.J.; Ahn, J.S.; Yoo, I.D. Evaluation of human neutrophil elastase inhibitory effect of iridoid glycosides from Hedyotis diffusa. Bioorg. Med. Chem. Lett. 2010, 20, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Fan, C.; Ye, W.; Luo, J. Two new iridoid glucosides from Hedyotis diffusa. Fitoterapia 2010, 81, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, X.; Sanchez, H.; Palacios Estrada, T. Estudio Quimico de Hedyotis intricata. Rubiaceae. Rev. Latinoam. Quím. 1992, 22, 46–46. [Google Scholar]
- Peng, J.N.; Feng, X.Z.; Liang, X.T. Iridoids from Hedyotis hedyotidea. Phytochemistry 1998, 47, 1657–1659. [Google Scholar] [CrossRef]
- Hamzah, A.S.; Aimi, N.; Lajis, N.H.J. Constituents of Hedyotis herbacea (Rubiaceae). Biochem. Syst. Ecol. 1996, 24, 273. [Google Scholar] [CrossRef]
- Konishi, M.; Hano, Y.; Takayama, M.; Nomura, T.; Hamzah, A.S.; Jasmani, H. Triterpenoid saponins from Hedyotis nudicaulis. Phytochemistry 1998, 48, 525–528. [Google Scholar] [CrossRef]
- Duy, L.H.; Phi Phung, N.K. Anthraquinones from Hedyotis pinifolia. Vietnam J. Chem. 2014, 47. [Google Scholar] [CrossRef]
- Zhao, J.F.; Yuan, Q.M.; Yang, X.D.; Zhang, H.B.; Li, L. Two new iridoid glycosides from Hedyotis tenelliflora Blume. Helv. Chim. Acta 2005, 88, 2532–2536. [Google Scholar] [CrossRef]
- Hang, N.H.; Khoi, N.D.T.; Truong, T.L.; Linh, N.P.; Tuyen, P.N.K.; Phung, N.K.P.; Nga, V.T. Further study on the chemical constituents of Hedyotis vestita (Rubiaceae). Vietnam J. Chem. 2014, 51, 648–652. [Google Scholar]
- Fabri, R.L.; Grazul, R.M.; Carvalho, L.O.; Coimbra, E.S.; Cardoso, G.M.M.; Souza-Fagundes, E.M.; Silva, A.D.; Scio, E. Antitumor, antibiotic and antileishmanial properties of the Pyranonaphthoquinone Psychorubrin from Mitracarpus frigidus. An. Acad. Bras. Cienc. 2012, 84, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Harouna, H.; Faure, R.; Elias, R.; Debrauwer, L.; Saadou, M.; Balansard, G.; Boudon, G. Harounoside a pentalongin hydroquinone diglycoside from Mitracarpus scaber. Phytochemistry 1995, 39, 1483–1484. [Google Scholar] [CrossRef]
- Ekpendu, T.O.E.; Adesomoju, A.A.; Ekundayo, O.; Okogun, J.I.; Laakso, I. Constituents of the volatile oil of Mitracarpus scaber Zucc. Flavour Frag. J. 1993, 8, 269–271. [Google Scholar] [CrossRef]
- Ekpendu, T.O.E.; Adesomoju, A.A.; Okogun, J.I. Chemical Studies of Mitracarpus villosus (Sw.) Dc—A Medicinal Rubiaceous Weed. J. Chem. Soc. Niger. 2001, 26, 69–71. [Google Scholar]
- Otsuka, H.; Yoshimura, K.; Yamasaki, K.; Cantoria, M.C. Isolation of 10-O-acyl iridoid glucosides from a Philippine medicinal plant, Oldenlandia corymbosa L.(Rubiaceae). Chem. Pharm. Bull. 1991, 39, 2049–2052. [Google Scholar] [CrossRef]
- Kim, S.H.; Ahn, B.Z.; Ryu, S.Y. Antitumour effects of ursolic acid isolated from Oldenlandia diffusa. Phytother. Res. 1998, 12, 553–556. [Google Scholar] [CrossRef]
- Lu, H.C.; He, J. A study on chemical constituents of Oldenlandia diffusa (Willd) Roxb. Nat. Prod. Res. Dev. 1996, 8, 34–37. [Google Scholar]
- Siva, R.; Mayes, S.; Behera, S.K.; Rajasekaran, C. Anthraquinones dye production using root cultures of Oldenlandia umbellata L. Ind. Crops Prod. 2012, 37, 415–419. [Google Scholar] [CrossRef]
- Tomaz, A.C.D.A.; Nogueira, R.B.S.; Pinto, D.S.; Agra, M.D.F.; Souza, M.D.F.V.D.; Da-Cunha, E.V.L. Chemical constiuents from Richardia grandiflora (Cham. & Schltdl.) Steud. (Rubiaceae). Rev. Bras. Farmacogn. 2008, 18, 47–52. [Google Scholar]
- Singh, D.; Verma, N.; Raghuwanshi, S.; Shukla, P.; Kulshreshtha, D. Antifungal anthraquinones from Saprosma fragrans. Bioorg. Med. Chem. Lett. 2006, 16, 4512–4514. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, G.Y.; Han, C.R.; Yuan, Y.; Yang, B.; Zhang, Y.; Wang, J.; Zhong, X.Q.; Huang, X. Two novel alkaloids from the stem of Saprosma hainanense and their cytotoxic activities in vitro. Chem. Pharm. Bull. 2011, 59, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.K.; Komorita, A.; Tanaka, T.; Fujioka, T.; Mihashi, K.; Kouno, I. Iridoids and anthraquinones from the Malaysian medicinal plant, Saprosma scortechinii (Rubiaceae). Chem. Pharm. Bull. 2002, 50, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.K.; Komorita, A.; Tanaka, T.; Fujioka, T.; Mihashi, K.; Kouno, I. Sulfur-Containing Bis-iridoid Glucosides and Iridoid Glucosides from Saprosma s cortechinii. J. Nat. Prod. 2002, 65, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.L.; Cao, X.; Liu, X.Y.; Long, C.; Liu, J.H.; Xu, Q.Z.; Jiao, B.H. Iridoid glycosides from Saprosma ternatum. Planta Med. 2010, 76, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.R.J.C.; Lemos, R.P.L.; Conserva, L.M. Chemical constituents from Spermacoce verticillata (Rubiaceae). Biochem. Syst. Ecol. 2012, 44, 208–211. [Google Scholar] [CrossRef]
- Park, A.; Kim, H.J.; Lee, J.S.; Woo, E.R.; Park, H.; Lee, Y.S. New Iridoids from Asperula m aximowiczii. J. Nat. Prod. 2002, 65, 1363–1366. [Google Scholar] [CrossRef] [PubMed]
- Mitova, M.I.; Anchev, M.E.; Panev, S.G.; Handjieva, N.V.; Popov, S.S. Coumarins and Iridoids from Crucianella graeca, Cruciata glabra, Cruciata laevipes and Cruciata pedemontana (Rubiaceae). Z. Naturforsch. B 1996, 51, 631–634. [Google Scholar]
- El Lakany, A.M.; Kader, M.S.A.; Sabri, N.N. Anthraquinones with antibacterial activities from Crucianella maritima L. growing in Egypt. Nat. Prod. Sci. 2004, 10, 63–68. [Google Scholar]
- Venditti, A.; Altieri, A.; Bianco, A. Monoterpenoids glycosides content from two Mediterranean populations of Crucianella maritima L. Nat. Prod. Res. 2014, 28, 586–588. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; Mitova, M.; Handjieva, N.; Ersoz, T.; Calis, I. Aromatic monoterpenoid glycosides from Cruciata taurica. Nat. Prod. Res. 2003, 17, 109–113. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; Mitova, M.; Handjieva, N.; Çalış, I.H. Coumarin glucosides from Cruciata taurica. Phytochemistry 2002, 59, 447–450. [Google Scholar] [CrossRef]
- Handjieva, N.; Mitova, M.; Ancev, M.; Popov, S. Iridoid glucosides from Galium album and G. lovcense. Phytochemistry 1996, 43, 625–628. [Google Scholar] [CrossRef]
- Morimoto, M.; Tanimoto, K.; Sakatani, A.; Komai, K. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura F. Phytochemistry 2002, 60, 163–166. [Google Scholar] [CrossRef]
- Rosa, S.; Iodice, C.; Mitova, M.; Handjieva, N.; Popov, S.; Anchev, M. Triterpene saponins and iridoid glucosides from Galium rivale. Phytochemistry 2000, 54, 751–756. [Google Scholar] [CrossRef]
- Mitova, M.; Handjieva, N.; Spassov, S.; Popov, S. Macedonine, a non-glycosidic iridoid from Galium macedonicum. Phytochemistry 1996, 42, 1227–1229. [Google Scholar] [CrossRef]
- El-Gamal, A.A.; Takeya, K.; Itokawa, H.; Halim, A.F.; Amer, M.M.; Saad, H.E.A.; Awad, S.A. Anthraquinones from the polar fractions of Galium sinaicum. Phytochemistry 1996, 42, 1149–1155. [Google Scholar] [CrossRef]
- Yang, S.W. Antioxidative constituents of the aerial parts of Galium spurium. Biomol. Ther. 2011, 19, 336–341. [Google Scholar] [CrossRef]
- Banthorpe, D.V.; White, J.J. Novel anthraquinones from undifferentiated cell cultures of Galium verum. Phytochemistry 1995, 38, 107–111. [Google Scholar] [CrossRef]
- Lee, T.G.; Kim, D.K. Articles: Iridoid Compounds from the Whole Plant of Galium verum var. asiaticum. Nat. Prod. Sci. 2013, 19, 227–230. [Google Scholar] [CrossRef]
- Miyazawa, M.; Kawata, J. Identification of the key aroma compounds in dried roots of Rubia cordifolia. J. Oleo Sci. 2006, 55, 37–39. [Google Scholar] [CrossRef]
- Wu, L.J.; Wang, S.X.; Hua, H.M.; Li, X.; Zhu, T.R.; Miyase, T.; Ueno, A. 6-Methoxygeniposidic acid, an iridoid glycoside from Rubia cordifolia. Phytochemistry 1991, 30, 1710–1711. [Google Scholar] [CrossRef]
- Longo, L.; Scardino, A.; Vasapollo, G. Identification and quantification of anthocyanins in the berries of Pistacia lentiscus L., Phillyrea latifolia L. and Rubia peregrina L. Innov. Food Sci. Emerg. 2007, 8, 360–364. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B.; Bai, Y.; Duddeck, H.; Hiegemann, M. Digiferriginol glycoside from Rubia schumanniana. Phytochemistry 1991, 30, 947–949. [Google Scholar]
- Kuang, B.; Han, J.; Zeng, G.Z.; Chen, X.Q.; He, W.J.; Tan, N.H. Three new triterpenoids from Rubia schumanniana. Nat. Prod. Bioprosp. 2012, 2, 166–169. [Google Scholar] [CrossRef]
- Zou, C.; Hao, X.J.; Chen, C.; Zhou, J. A new antitumor glycocyclohexapeptide and arborane type new triterpenoids Rubia yunnanensis. Acta Bot. Yunn. 1992, 14, 114. [Google Scholar]
- Marec, F.; Kollarova, I.; Jegorov, A. Mutagenicity of natural anthraquinones from Rubia tinctorum in the Drosophila wing spot test. Planta Med. 2001, 67, 127–131. [Google Scholar] [CrossRef] [PubMed]
- El-Emary, N.A.; Backheet, E.Y. Three hydroxymethylanthraquinone glycosides from Rubia tinctorum. Phytochemistry 1998, 49, 277–279. [Google Scholar] [CrossRef]
- Perassolo, M.; Quevedo, C.; Busto, V.; Ianone, F.; Giulietti, A.M.; Talou, J.R. Enhance of anthraquinone production by effect of proline and aminoindan-2-phosphonic acid in Rubia tinctorum suspension cultures. Enzyme Microb. Technol. 2007, 41, 181–185. [Google Scholar] [CrossRef]
- Orbán, N.; Boldizsár, I.; Szucs, Z.; Dános, B. Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes Pigments 2008, 77, 249–257. [Google Scholar] [CrossRef]
- Fan, J.T.; Chen, Y.S.; Xu, W.Y.; Du, L.; Zeng, G.Z.; Zhang, Y.M.; Su, J.; Li, Y.; Tan, N.H. Rubiyunnanins A and B, two novel cyclic hexapeptides from Rubia yunnanensis. Tetrahedron Lett. 2010, 51, 6810–6813. [Google Scholar] [CrossRef]
- Liou, M.-J.; Wu, T.S. Triterpenoids from Rubia yunnanensis. J. Nat. Prod. 2002, 65, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.Y.; Du, Z.Z.; Yang, X.S.; Hao, X.J. Note: A new triterpene from Luculia pinciana Hook. J. Asian Nat. Prod. Res. 2005, 7, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Hao, X. Terpenoid glycosides from stem of Luculia pinceana. J. Chin. Mater. Med. 2007, 32, 2606–2609. [Google Scholar]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, D.; Nunez, C.V. Secondary Metabolites from Rubiaceae Species. Molecules 2015, 20, 13422-13495. https://doi.org/10.3390/molecules200713422
Martins D, Nunez CV. Secondary Metabolites from Rubiaceae Species. Molecules. 2015; 20(7):13422-13495. https://doi.org/10.3390/molecules200713422
Chicago/Turabian StyleMartins, Daiane, and Cecilia Veronica Nunez. 2015. "Secondary Metabolites from Rubiaceae Species" Molecules 20, no. 7: 13422-13495. https://doi.org/10.3390/molecules200713422
APA StyleMartins, D., & Nunez, C. V. (2015). Secondary Metabolites from Rubiaceae Species. Molecules, 20(7), 13422-13495. https://doi.org/10.3390/molecules200713422