Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes
Abstract
:1. Introduction
2. Ruthenium-Based Anticancer Drugs. Medicinal Applications
3. Ruthenium Complexes in Catalysis
4. Ruthenium Complexes in Sustainable Processes
Acknowledgments
Conflicts of Interest
References
- Storr, T. Ligand Design in Medicinal Inorganic Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Crabtree, R.H. The Organometallic Chemistry of the Transition Metals, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Gade, L.H.; Hofmann, P. Molecular Catalysts: Structure and Functional Design; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949–6985. [Google Scholar] [CrossRef] [PubMed]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [PubMed]
- Strasser, S.; Pump, E.; Fischer, R.C.; Slugovc, C. On the chloride lability in electron-rich second-generation ruthenium benzylidene complexes. Monatsh. Chem. 2015, 146, 1143–1151. [Google Scholar] [CrossRef]
- Gunanathan, C.; Milstein, D. Bond activation and catalysis by ruthenium pincer complexes. Chem. Rev. 2014, 114, 12024–12087. [Google Scholar] [CrossRef] [PubMed]
- Tönnemann, J.; Scopelliti, R.; Severin, K. (Arene)ruthenium complexes with imidazolin-2-imine and imidazolidin-2-imine ligands. Eur. J. Inorg. Chem. 2014, 2014, 4287–4293. [Google Scholar] [CrossRef]
- Ablialimov, O.; Kędziorek, M.; Malińska, M.; Woźniak, K.; Grela, K. Synthesis, structure, and catalytic activity of new ruthenium(II) indenylidene complexes bearing unsymmetrical N-heterocyclic carbenes. Organometallics 2014, 33, 2160–2171. [Google Scholar] [CrossRef]
- Mukherjee, T.; Ganzmann, C.; Bhuvanesh, N.; Gladysz, J.A. Syntheses of enantiopure bifunctional 2-guanidinobenzimidazole cyclopentadienyl ruthenium complexes: Highly enantioselective organometallic hydrogen bond donor catalysts for carbon-carbon bond forming reactions. Organometallics 2014, 33, 6723–6737. [Google Scholar] [CrossRef]
- Dragutan, I.; Dragutan, V.; Verpoort, F. Carbenoid transfer in competing reactions catalyzed by ruthenium complexes. Appl. Organomet. Chem. 2014, 28, 211–215. [Google Scholar] [CrossRef]
- Biffis, A.; Baron, M.; Tubaro, C. Poly-NHC Complexes of transition metals: Recent applications and new trends. Adv. Organomet. Chem. 2015, 63, 203–288. [Google Scholar]
- Ivry, E.; Ben-Asuly, A.; Goldberg, I.; Lemcoff, N.G. Amino acids as chiral anionic ligands for ruthenium based asymmetric olefin metathesis. Chem. Commun. 2015, 51, 3870–3873. [Google Scholar] [CrossRef] [PubMed]
- Carreira, E.M.; Yamamoto, H. Synthetic Methods III—Catalytic Methods: C–C Bond Formation. In Comprehensive Chirality; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4. [Google Scholar]
- Wilson, J.J.; Lippard, S.J. Synthetic methods for the preparation of platinum anticancer complexes. Chem. Rev. 2014, 114, 4470–4495. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol. 2014, 19, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Trudu, F.; Amato, F.; Vaňhara, P.; Pivetta, T.; Peña-Méndez, E.M.; Havel, J. Coordination compounds in cancer: Past, present and perspectives. J. Appl. Biomed. 2015, 13, 79–103. [Google Scholar] [CrossRef]
- Ramu, W.; Gill, M.R.; Jarman, P.J.; Turton, D.; Thomas, J.A.; Das, A.; Smythe, C. A cytostatic ruthenium(II)–platinum(II) bis(terpyridyl) anticancer complex that blocks entry into S phase by up-regulating p27KIP1. Chem. Eur. J. 2015, 21, 9185–9197. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, A.; Sava, G. Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem. Soc. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Motswainyana, W.M.; Ajibade, P.A. Anticancer activities of mononuclear ruthenium(II) coordination complexes. Adv. Chem. 2015, 1–21. [Google Scholar] [CrossRef]
- Blunden, B.M.; Rawal, A.; Lu, H.; Stenzel, M.H. Superior chemotherapeutic benefits from the ruthenium-based anti-metastatic drug NAMI-A through conjugation to polymeric micelles. Macromolecules 2014, 47, 1646–1655. [Google Scholar] [CrossRef]
- Bergamo, A.; Riedel, T.; Dyson, P.J.; Sava, G. Preclinical combination therapy of the investigational drug NAMI-A(+) with doxorubicin for mammary cancer. Invest. New Drugs 2015, 33, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Berger, W.; Keppler, B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 2014, 5, 2925–2932. [Google Scholar] [CrossRef]
- Dömötör, O.; Hartinger, C.G.; Bytzek, A.K.; Kiss, T.; Keppler, B.K.; Enyedy, E.A. Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies. J. Biol. Inorg. Chem. 2013, 18, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, A.; Garcia, M.H. Syntheses of macromolecular ruthenium compounds: A new approach for the search of anticancer drugs. Inorganics 2014, 2, 96–114. [Google Scholar] [CrossRef]
- Spreckelmeyer, S.; Orvig, C.; Casini, A. Cellular transport mechanisms of cytotoxic metallodrugs: An overview beyond cisplatin. Molecules 2014, 19, 15584–15610. [Google Scholar] [CrossRef] [PubMed]
- Adhireksan, Z.; Davey, G.E.; Campomanes, P.; Groessl, M.; Clavel, C.M.; Yu, H.; Nazarov, A.A.; Yeo, C.H.F.; Ang, W.H.; Dröge, P.; et al. Ligand substitutions between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity. Nat. Commun. 2014, 5, 3462. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, A.A.; Gardini, D.; Baquié, M.; Juillerat-Jeanneret, L.; Serkova, T.P.; Shevtsova, E.P.; Scopelliti, R.; Dyson, P.J. Organometallic anticancer agents that interfere with cellular energy processes: A subtle approach to inducing cancer cell death. Dalton Trans. 2013, 42, 2347–2350. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, A.A.; Meier, S.M.; Zava, O.; Nosova, Y.N.; Milaeva, E.R.; Hartinger, C.G.; Dyson, P.J. Protein ruthenation and DNA alkylation: Chlorambucil-functionalized RAPTA complexes and their anticancer activity. Dalton Trans. 2015, 44, 3614–3623. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.R.; Gangrade, D.M.; Bakshi, S.D.; John, J.S. Ruthenium complexes: Potential candidate for anti-tumour activity. Int. J. Chem. Tech. Res. 2014, 6, 828–837. [Google Scholar]
- Guidi, F.; Modesti, A.; Landini, I.; Nobili, S.; Mini, E.; Bini, L.; Puglia, M.; Casini, A.; Dyson, P.J.; Gabbiani, C.; et al. The molecular mechanisms of antimetastatic ruthenium compounds explored through DIGE proteomics. J. Inorg. Biochem. 2013, 118, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Luo, Q.; Hu, W.; Li, X.; Wang, F.; Xiong, S.; Sadler, P.J. Mechanism of interstrand migration of organoruthenium anticancer complexes within a DNA duplex. Metallomics 2012, 4, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Lippard, S.J.; Graf, N. Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv. Drug Deliv. Rev. 2012, 64, 993–1004. [Google Scholar]
- Lee, H.Z.S.; Buriez, O.; Labbé, E.; Top, S.; Pigeon, P.; Jaouen, G.; Amatore, C.; Leong, W.K. Oxidative sequence of a ruthenocene-based anticancer drug candidate in a basic environment. Organometallics 2014, 33, 4940–4946. [Google Scholar] [CrossRef]
- Srinivasarao, M.; Galliford, C.V.; Low, P.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 2015, 14, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Saez, R.; Lorenzo, J.; Prieto, M.J.; Font-Bardia, M.; Calvet, T.; Omenaca, N.; Vilaseca, M.; Moreno, V. Influence of PPh3 moiety in the anticancer activity of new organometallic ruthenium complexes. J. Inorg. Biochem. 2014, 136, 1–12. [Google Scholar] [CrossRef] [PubMed]
- De C. Pereira, F.; Lima, B.A.V.; de Lima, A.P.; Pires, W.C.; Monteiro, T.; Magalhaes, L.F.; Costa, W.; Graminha, A.E.; Batista, A.A.; Ellena, J.; et al. cis-[RuCl(BzCN)(N–N)(P–P)]PF6 Complexes: Synthesis and in vitro antitumor activity. J. Inorg. Biochem. 2015, 149, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Pandey, D.S.; Xu, Q.; Braunstein, P. Recent advances in supramolecular and biological aspects of arene ruthenium(II) complexes. Coord. Chem. Rev. 2014, 270–271, 31–56. [Google Scholar] [CrossRef]
- Süss-Fink, G. Water-soluble arene ruthenium complexes: From serendipity to catalysis and drug design. J. Organomet. Chem. 2014, 751, 2–19. [Google Scholar] [CrossRef]
- Martin, E.K.; Pagano, N.; Sherlock, M.E.; Harms, K.; Meggers, E. Synthesis and anticancer activity of ruthenium half-sandwich complexes comprising combined metal centrochirality and planar chirality. Inorg. Chim. Acta 2014, 423, 530–539. [Google Scholar] [CrossRef]
- Pastuszko, A.; Niewinna, K.; Czyz, M.; Józwiak, A.; Ma1ecka, M.; Budzisz, E. Synthesis, X-ray structure, electrochemical properties and cytotoxic effects of new arene ruthenium(II) complexes. J. Organomet. Chem. 2013, 745–746, 64–70. [Google Scholar] [CrossRef]
- Kilpin, K.J.; Cammack, S.M.; Clavel, C.M.; Dyson, P.J. Ruthenium(II) arene PTA (RAPTA) complexes: Impact of enantiomerically pure chiral ligands. Dalton Trans. 2013, 42, 2008–2014. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Berndsen, R.H.; Dubois, M.; Muller, C.; Schibli, R.; Griffioen, A.W.; Dyson, P.J.; Nowak-Sliwinska, P. In vivo anti-tumor activity of the organometallic ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem. Sci. 2014, 5, 4742–4748. [Google Scholar] [CrossRef]
- Govender, P.; Sudding, L.C.; Clavel, C.M.; Dyson, P.J.; Therrien, B.; Smith, G.S. The influence of RAPTA moieties on the antiproliferative activity of peripheral-functionalised poly(salicylaldiminato) metallodendrimers. Dalton Trans. 2013, 42, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Clavel, C.M.; Păunescu, E.; Nowak-Sliwinska, P.; Griffioen, A.W.; Scopelliti, R.; Dyson, P.J. Discovery of a highly tumor-selective organometallic ruthenium(II)-arene complex. J. Med. Chem. 2014, 57, 3546–3558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qian, H.; Yiu, S.-M.; Sun, J.; Zhu, G. Multi-targeted organometallic ruthenium(II)–arene anticancer complexes bearing inhibitors of poly(ADP-ribose) polymerase-1: A strategy to improve cytotoxicity. J. Inorg. Biochem. 2014, 131, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, A.A.; Hartinger, C.G.; Dyson, P.J. Opening the lid on piano-stool complexes: An account of ruthenium(II) arene complexes with medicinal applications. J. Organomet. Chem. 2014, 751, 251–260. [Google Scholar]
- Clavel, C.M.; Păunescu, E.; Nowak-Sliwinska, P.; Dyson, P.J. Thermoresponsive organometallic arene ruthenium complexes for tumour targeting. Chem. Sci. 2014, 5, 1097–1101. [Google Scholar] [CrossRef]
- Mishra, A.; Jeong, Y.J.; Jo, J.-H.; Kang, S.C.; Kim, H.; Chi, K.-W. Coordination-driven self-assembly and anticancer potency studies of arene–ruthenium-based molecular metalla-rectangles. Organometallics 2014, 33, 1144–1151. [Google Scholar] [CrossRef]
- Lai, H.; Zhao, Z.; Li, L.; Zheng, W.; Chen, T. Antiangiogenic ruthenium(II) benzimidazole complexes, structure-based activation of distinct signaling pathways. Metallomics 2015, 7, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Vargiu, A.V.; Magistrato, A. Ru[(bpy)2(dppz)]2+and Rh[(bpy)2(chrysi)]3+targeting double strand DNA: The shape of the intercalating ligand tunes the free energy landscape of deintercalation. Inorg. Chem. 2014, 53, 7999–8008. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, P.; Chen, H.; Ji, L.; Chao, H. Comparison between polypyridyl and cyclometallated ruthenium(II) complexes: Anticancer activities against 2D and 3D cancer models. Chem. Eur. J. 2015, 21, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Vyas, N.A.; Bhat, S.S.; Kumbhar, A.S.; Sonawane, U.B.; Jani, V.; Joshi, R.R.; Ramteke, S.N.; Kulkarni, P.P.; Joshi, B. Ruthenium(II) polypyridyl complex as inhibitor of acetylcholinesterase and Aβ aggregation. Eur. J. Med. Chem. 2014, 75, 375–381. [Google Scholar] [PubMed]
- Xiao, L.; Wang, H.; Zhang, Q.; Zhu, Y.; Luo, J.; Liang, Y.; Zhang, S.; Zhou, H.; Tian, Y.; Wu, J. Novel ruthenium(II) polypyridyl complexes containing carbazole with flexible substituents: Crystal structure, nonlinear optical properties and DNA-binding interaction. Dyes Pigments 2015, 113, 165–173. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, W.; Yang, E.; Li, N.; Liu, H.; Wang, W. Investigation of antibacterial activity and related mechanism of a ruthenium(II) polypyridyl complex. Inorg. Chem. Commun. 2015, 56, 17–21. [Google Scholar] [CrossRef]
- Chellan, P.; Land, K.M.; Shokar, A.; Au, A.; An, S.H.; Taylor, D.; Smith, P.J.; Riedel, T.; Dyson, P.J.; Chibale, K.; et al. Synthesis and evaluation of new polynuclear organometallic Ru(II), Rh(III) and Ir(III) pyridyl ester complexes as in vitro antiparasitic and antitumor agents. Dalton Trans. 2014, 43, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Kilpin, K.J.; Crot, S.; Riedel, T.; Kitchen, J.A.; Dyson, P.J. Ruthenium(II) and osmium(II) 1,2,3-triazolylidene organometallics: A preliminary investigation into the biological activity of “click” carbene complexes. Dalton Trans. 2014, 43, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Kalaivani, P.; Prabhakaran, R.; Vaishnavi, E.; Rueffer, T.; Lang, H.; Poornima, P.; Renganathan, R.; Vijaya Padmad, V.; Natarajan, K. Synthesis, structure, DNA/protein binding and in vitro cytotoxicity of new ruthenium metallates. Inorg. Chem. Front. 2014, 1, 311–324. [Google Scholar] [CrossRef]
- Peña, B.; David, A.; Pavani, C.; Baptista, M.S.; Pellois, J.-P.; Turro, C.; Dunbar, K.R. Cytotoxicity studies of cyclometallated ruthenium(II) compounds: New applications for ruthenium dyes. Organometallics 2014, 33, 1100–1103. [Google Scholar] [CrossRef]
- Garza-Ortiz, A.; Maheswari, P.U.; Siegler, M.; Spek, A.I.; Reedijk, J. A new family of Ru(II) complexes with a tridentate pyridine Schiff-base ligand and bidentate co-ligands: Synthesis, characterization, structure and in vitro cytotoxicity studies. New J. Chem. 2013, 37, 3450–3460. [Google Scholar] [CrossRef]
- Garza-Ortiz, A.; Maheswari, P.U.; Lutz, M.; Siegler, M.A.; Reedijk, J. Tuning the cytotoxic properties of new ruthenium(III) and ruthenium(II) complexes with a modified bis(arylimino)pyridine Schiff base ligand using bidentate pyridine-based ligands. J. Biol. Inorg. Chem. 2014, 19, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.J.; Licona, C.; Wong, D.Y.Q.; Pastorin, G.; Gaiddon, C.; Ang, W.H. Discovery and investigation of anticancer ruthenium-arene Schiff-base complexes via water-promoted combinatorial three-component assembly. J. Med. Chem. 2014, 57, 6043–6059. [Google Scholar] [CrossRef] [PubMed]
- Ljubijankić, N.; Zahirović, A.; Turkušić, E.; Kahrović, E. DNA binding properties of two ruthenium(III) complexes containing Schiff bases derived from salicylaldehyde: Spectroscopic and electrochemical evidence of CT DNA intercalation. Croat. Chem. Acta 2013, 86, 215–222. [Google Scholar] [CrossRef]
- Koiri, R.K.; Trigun, S.K.; Mishra, L. Activation of p53 mediated glycolytic inhibition-oxidative stress-apoptosis pathway in Dalton’s lymphoma by a ruthenium(II)-complex containing 4-carboxy N-ethylbenzamide. Biochimie 2015, 110, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Mokesch, S.; Novak, M.S.; Roller, A.; Jakupec, M.A.; Kandioller, W.; Keppler, B.K. 1,3-Dioxoindan-2-carboxamides as bioactive ligand scaffolds for the development of novel organometallic anticancer drugs. Organometallics 2015, 34, 848–857. [Google Scholar] [CrossRef]
- Donnici, C.L.; Nogueira, L.J.; Araujo, M.H.; Oliveira, S.R.; Magalhães, T.F.F.; Lopes, M.T.P.; Araújo e Silva, A.C.; da Costa Ferreira, A.M.; Martins, C.V.B.; de Resende Stoianoff, M.A. In vitro studies of the activity of dithiocarbamate organoruthenium complexes against clinically relevant fungal pathogens. Molecules 2014, 19, 5402–5420. [Google Scholar] [CrossRef] [PubMed]
- Enyedy, E.A.; Sija, E.; Jakusch, T.; Hartinger, C.G.; Kandioller, W.; Keppler, B.K.; Kiss, T. Solution equilibria of anticancer ruthenium(II)-(η6-p-cymene)-hydroxy(thio)pyr(id)one complexes: Impact of sulfur vs. oxygen donor systems on the speciation and bioactivity. J. Inorg. Biochem. 2013, 127, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettinari, R.; Pettinari, C.; Marchetti, F.; Clavel, C.M.; Scopelliti, R.; Dyson, P.J. Cytotoxicity of ruthenium arene complexes containing β-ketoamine ligands. Organometallics 2013, 32, 309–316. [Google Scholar] [CrossRef]
- Pettinari, R.; Marchetti, F.; Pettinari, C.; Petrini, A.; Scopelliti, R.; Clavel, C.M.; Dyson, P.J. Synthesis, structure, and antiproliferative activity of ruthenium(II) arene complexes with N,O-chelating pyrazolone-based β-ketoamine ligands. Inorg. Chem. 2014, 53, 13105–13111. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, R.; Pettinari, C.; Marchetti, F.; Skelton, B.W.; White, A.H.; Bonfili, L.; Cuccioloni, M.; Mozzicafreddo, M.; Cecarini, V.; Angeletti, M.; et al. Arene-ruthenium(II) acylpyrazolonato complexes: Apoptosis-promoting effects on human cancer cells. J. Med. Chem. 2014, 57, 4532–4542. [Google Scholar] [CrossRef] [PubMed]
- Filak, L.K.; Kalinowski, D.S.; Bauer, T.J.; Richardson, D.R.; Arion, V.B. Effect of the piperazine unit and metal-binding site position on the solubility and anti-proliferative activity of ruthenium(II)- and osmium(II)–arene complexes of isomeric indolo[3,2-c]quinoline-piperazine hybrids. Inorg. Chem. 2014, 53, 6934–6943. [Google Scholar] [CrossRef] [PubMed]
- Furrer, M.A.; Garci, A.; Denoyelle-Di-Muro, E.; Trouillas, P.; Giannini, F.; Furrer, J.; Clavel, C.M.; Dyson, P.J.; Süss-Fink, G.; Therrien, B. Synthesis, characterisation and in vitro anticancer activity of hexanuclear thiolato-bridged arene ruthenium metalla-prisms. Chem. Eur. J. 2013, 19, 3198–3203. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.-A.; Therrien, B.; Süss-Fink, G.; Zava, O.; Dyson, P.J. Arene ruthenium dichloro complexes containing isonicotinic ester ligands: Synthesis, molecular structure and cytotoxicity. J. Organomet. Chem. 2013, 730, 49–56. [Google Scholar] [CrossRef]
- Meier, S.M.; Hanif, M.; Adhireksan, Z.; Pichler, V.; Novak, M.; Jirkovsky, E.; Jakupec, M.A.; Arion, V.B.; Davey, C.A.; Keppler, B.K.; et al. Novel metal(II)-arene 2-pyridinecarbothioamides: A rationale to orally active organometallic anticancer agents. Chem. Sci. 2013, 4, 1837–1846. [Google Scholar] [CrossRef]
- Alagesan, M.; Bhuvanesh, N.S.P.; Dharmaraj, N. An investigation on new ruthenium(II) hydrazone complexes as anticancer agents and their interaction with biomolecules. Dalton Trans. 2014, 43, 6087–6099. [Google Scholar] [CrossRef] [PubMed]
- Alagesan, M.; Sathyadevi, P.; Krishnamoorthy, P.; Bhuvanesh, N.S.P.; Dharmaraj, N. DMSO containing ruthenium(II) hydrazone complexes: In vitro evaluation of biomolecular interaction and anticancer activity. Dalton Trans. 2014, 43, 15829–15840. [Google Scholar] [CrossRef]
- Hanif, M.; Nawaz, M.; Babak, M.; Iqbal, J.; Roller, A.; Keppler, B.; Hartinger, C.G. RutheniumII(η6-arene) complexes of thiourea derivatives: Synthesis, characterization and urease inhibition. Molecules 2014, 19, 8080–8092. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Chen, X.; Wu, J.; Qian, C.; Wang, Y.; Ji, L.; Chao, H. Ruthenium(II) polypyridyl complexes as dual inhibitors of telomerase and topoisomerase. Dalton Trans. 2015, 44, 15145–15156. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Jin, L.; Tan, L. DNA-binding, topoisomerases I and II inhibition and in vitro cytotoxicity of ruthenium(II) polypyridyl complexes: [Ru(dppz)2L]2+(L = dppz-11-CO2Me and dppz). Spectrochim. Acta A 2015, 135, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.S.; Menin, L.; Scopelliti, R.; Dyson, P. Conformational control of anticancer activity: The application of arene-linked dinuclear ruthenium(II) organometallics. Chem. Sci. 2014, 5, 2536–2545. [Google Scholar] [CrossRef]
- Sadafi, F.-Z.; Massai, L.; Bartolommei, G.; Moncelli, M.R.; Messori, L.; Tadini-Buoninsegni, F. Anticancer ruthenium(III) complex KP1019 interferes with ATP-dependent Ca2+translocation by sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). ChemMedChem 2014, 9, 1660–1664. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Huang, Y.; Zhu, H.; Pang, G.; Zheng, W.; Wong, Y.-S.; Chen, T. Cancer-targeted monodisperse mesoporous silica nanoparticles as carrier of ruthenium polypyridyl complexes to enhance theranostic effects. Adv. Funct. Mater. 2014, 24, 2754–2763. [Google Scholar] [CrossRef]
- Gueugnon, F.; Denis, I.; Pouliquen, D.; Collette, F.; Delatouche, R.; Héroguez, V.; Grégoire, M.; Bertrand, P.; Blanquart, C. Nanoparticles produced by ring-opening metathesis polymerization using norbornenyl-poly(ethylene oxide) as a ligand-free generic platform for highly selective in vivo tumor targeting. Biomacromolecules 2013, 14, 2396–2402. [Google Scholar] [CrossRef] [PubMed]
- Blunden, B.M.; Lu, H.; Stenzel, M.H. Enhanced delivery of the RAPTA-C macromolecular chemotherapeutic by conjugation to degradable polymeric micelles. Biomacromolecules 2013, 14, 4177–4188. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, A.A.; Ajibade, P.A. An insight into the anticancer activities of Ru(II)-based metallocompounds using docking methods. Molecules 2013, 18, 10829–10856. [Google Scholar] [CrossRef] [PubMed]
- Sinesio de Freitas, E.; Bento da Silva, P.; Chorilli, M.; Batista, A.A.; de Oliveira Lopes, E.; Martins da Silva, M.; Fujimura Leite, C.Q.; Pavan, F.R. Nanostructured lipid systems as a strategy to improve the in vitro cytotoxicity of ruthenium(II) compounds. Molecules 2014, 19, 5999–6008. [Google Scholar] [CrossRef] [PubMed]
- Wills, R.H.; Habtemariam, A.; Lopez-Clavijo, A.F.; Barrow, M.P.; Sadler, P.J.; O’Connor, P.B. Insights into the binding sites of organometallic ruthenium anticancer compounds on peptides using ultra-high resolution mass spectrometry. J. Am. Soc. Mass Spectrom. 2014, 25, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhu, D.; Liao, Y.; Liu, W.; Liu, H.; Ma, Z.; Xing, D. Synthesis, labeling and bioanalytical applications of a tris(2,2′-bipyridyl)ruthenium(II)-based electrochemiluminescence probe. Nat. Protocols 2014, 9, 1146–1159. [Google Scholar] [CrossRef] [PubMed]
- Wragg, A.; Gill, M.R.; Turton, D.; Adams, H.; Roseveare, T.M.; Smythe, C.; Su, X.; Thomas, J.A. Tuning the cellular uptake properties of luminescent heterobimetallic iridium(III)–ruthenium(II) DNA imaging probes. Chem. Eur. J. 2014, 20, 14004–14011. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.D.; Tasan, S.; Gros, C.P.; Devillers, C.H.; Richard, P.; Le Gendre, P.; Bodio, E. Ruthenium and osmium complexes of phosphine-porphyrin derivatives as potential bimetallic theranostics: Photophysical studies. Organometallics 2015, 34, 1218–1227. [Google Scholar] [CrossRef]
- Greenough, S.E.; Roberts, G.M.; Smith, N.A.; Horbury, M.D.; McKinlay, R.G.; Żurek, J.M.; Paterson, M.J.; Sadler, P.J.; Stavros, V.G. Ultrafast photo-induced ligand solvolysis of cis-[Ru(bipyridine)2(nicotinamide)2]2+: Experimental and theoretical insight into its photoactivation mechanism. Phys. Chem. Chem. Phys. 2014, 16, 19141–19155. [Google Scholar] [CrossRef] [PubMed]
- Ayaz Ahmed, K.B.; Reshma, E.; Mariappan, M.; Anbazhagan, V. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin. Spectrochim. Acta A 2015, 137, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Huang, Y.; Zheng, W.; Wu, K.; Luo, Q.; Zhao, Y.; Xiong, S.; Wang, F. Quantification of bindings of organometallic ruthenium complexes to GSTπ by mass spectrometry. J. Inorg. Biochem. 2015, 146, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Busto, N.; Martínez-Alonso, M.; Leal, J.M.; Rodríguez, A.M.; Domínguez, F.; Acuña, M.I.; Espino, G.; García, B. Monomer-dimer divergent behavior toward DNA in a half-sandwich ruthenium(II) aqua complex. Antiproliferative biphasic activity. Organometallics 2015, 34, 319–327. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, Y.; Wei, H. Ruthenium polypyridine complexes combined with oligonucleotides for bioanalysis: A review. Molecules 2014, 19, 11933–11987. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, A.A.; Ajibade, P.A. Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru(II)-based complexes as anticancer agents. Molecules 2013, 18, 3760–3778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, Q.; Wu, X.-H.; Sun, F.-Y.; Chen, L.-M.; Chen, J.-C.; Yang, S.-L.; Mei, W.-J. Ruthenium(II) complexes as apoptosis inducers by stabilizing c-mycG-quadruplex DNA. Eur. J. Med. Chem. 2014, 80, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Liu, S.; Luo, Q.; Hu, W.; Li, X.; Wang, F.; Zheng, R.; Cui, J.; Sadler, P.J.; Xiang, J.; et al. Thymines in single-stranded oligonucleotides and G-quadruplex DNA are competitive with guanines for binding to an organoruthenium anticancer complex. Inorg. Chem. 2013, 52, 11332–11342. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Hu, W.; Luo, Q.; Li, X.; Xiong, S.; Sadler, P.J.; Wang, F. Competitive binding sites of a ruthenium arene anticancer complex on oligonucleotides studied by mass spectrometry: Ladder-sequencing versus top-down. J. Am. Soc. Mass Spectrom. 2013, 24, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Pedregal, E.; Díez, J.; Manteca, A.; Sánchez, J.; Bento, A.C.; García-Navas, R. Antitumor activity of new enantiopure pybox-ruthenium complexes. Dalton Trans. 2013, 42, 13955–13967. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Walsby, C.J. Ruthenium anticancer compounds with biologically-derived ligands. In Ligand Design in Medicinal Inorganic Chemistry; Storr, T., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; Chapter 15. [Google Scholar]
- Paul, L.E.H.; Furrer, J.; Therrien, B. Reactions of a cytotoxic hexanuclear arene ruthenium assembly with biological ligands. J. Organomet. Chem. 2013, 734, 45–52. [Google Scholar] [CrossRef]
- Rathgeb, A.; Böhm, A.; Novak, M.S.; Gavriluta, A.; Dömötör, O.; Tommasino, J.B.; Enyedy, E.A.; Shova, S.; Meier, S.; Jakupec, M.A.; et al. Ruthenium-nitrosyl complexes with glycine, l-alanine, l-valine, l-proline, d-proline, l-serine, l-threonine, and l-tyrosine: Synthesis, X-ray diffraction structures, spectroscopic and electrochemical properties, and antiproliferative activity. Inorg. Chem. 2014, 53, 2718–2729. [Google Scholar] [CrossRef] [PubMed]
- Aman, F.; Hanif, M.; Siddiqui, W.A.; Ashraf, A.; Filak, L.K.; Reynisson, J.; Söhnel, T.; Jamieson, S.M.F.; Hartinger, C.G. Anticancer ruthenium(η6-p-cymene) complexes of nonsteroidal anti-inflammatory drug derivatives. Organometallics 2014, 33, 5546–5553. [Google Scholar] [CrossRef]
- Kandioller, W.; Balsano, E.; Meier, S.M.; Jungwirth, U.; Göschl, S.; Roller, A.; Jakupec, A.; Berger, W.; Keppler, B.K.; Hartinger, C.G. Organometallic anticancer complexes of lapachol: Metal centre-dependent formation of reactive oxygen species and correlation with cytotoxicity. Chem. Commun. 2013, 49, 3348–3350. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, R.; Marchetti, F.; Condello, F.; Pettinari, C.; Lupidi, G.; Scopelliti, R.; Mukhopadhyay, S.; Riedel, T.; Dyson, P.J. Ruthenium(II)-arene RAPTA type complexes containing curcumin and bisdemethoxycurcumin display potent and selective anticancer activity. Organometallics 2014, 33, 3709–3715. [Google Scholar] [CrossRef]
- Collins, I.; Jones, A.M. Diversity-oriented synthetic strategies applied to cancer chemical biology and drug discovery. Molecules 2014, 19, 17221–17255. [Google Scholar] [CrossRef] [PubMed]
- Devi, C.S.; Nagababu, P.; Natarajan, S.; Deepika, N.; Venkat Reddy, P.; Veerababu, N.; Singh, S.S.; Satyanarayana, S. Cellular uptake, cytotoxicity, apoptosis and DNA-binding investigations of Ru(II) complexes. Eur. J. Med. Chem. 2014, 72, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Combination of Ru(II) complexes and light: New frontiers in cancer therapy. Chem. Sci. 2015, 6, 2660–2686. [Google Scholar] [CrossRef]
- Joshi, T.; Gasser, G. Towards tris(diimine)–ruthenium(II) and bis(quinoline)–Re(I)(CO)3 complexes as photoactivated anticancer drug candidates. Synlett 2015, 26, 275–284. [Google Scholar] [CrossRef]
- Yin, H.; Stephenson, M.; Gibson, J.; Sampson, E.; Shi, G.; Sainuddin, T.; Monro, S.; McFarland, S.A. In vitro multiwavelength PDT with 3IL states: Teaching old molecules new tricks. Inorg. Chem. 2014, 53, 4548–4559. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.L.; Fish, T.J.; Benninghoff, A.D.; Buelt, A.A.; Smith, R.C.; Berreau, L.M. Photochemical reactivity of Ru(II)(η6-p-cymene) flavonolato compounds. Organometallics 2014, 33, 6341–6351. [Google Scholar] [CrossRef]
- Dickerson, M.; Sun, Y.; Howerton, B.; Glazer, E.C. Modifying charge and hydrophilicity of simple Ru(II) polypyridyl complexes radically alters biological activities: Old complexes, surprising new tricks. Inorg. Chem. 2014, 53, 10370–10377. [Google Scholar] [CrossRef] [PubMed]
- Askes, S.H.C.; Bahreman, A.; Bonnet, S. Activation of a photodissociative ruthenium complex by triplet–triplet annihilation upconversion in liposomes. Angew. Chem. Int. Ed. 2014, 53, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Y.; Li, G.; Zhang, P.; Jin, C.; Zeng, L.; Ji, L.; Chao, H. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials 2015, 56, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Albani, B.A.; Peña, B.; Leed, N.A.; de Paula, N.A.B.G.; Pavani, C.; Baptista, M.S.; Dunbar, K.R.; Turro, C. Marked improvement in photoinduced cell death by a new trisheteroleptic complex with dual action: Singlet oxygen sensitization and ligand dissociation. J. Am. Chem. Soc. 2014, 136, 17095–17101. [Google Scholar] [CrossRef] [PubMed]
- Sgambellone, M.A.; David, A.; Garner, R.N.; Dunbar, K.R.; Turro, C. Cellular toxicity induced by the photorelease of a caged bioactive molecule: Design of a potential dual-action Ru(II) complex. J. Am. Chem. Soc. 2013, 135, 11274–11282. [Google Scholar] [CrossRef] [PubMed]
- Sears, R.B.; Joyce, L.E.; Ojaimi, M.; Gallucci, J.C.; Thummel, R.P.; Turro, C. Photoinduced ligand exchange and DNA binding of cis-[Ru(phpy)(phen)(CH3CN)2]+ with long wavelength visible light. J. Inorg. Biochem. 2013, 121, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Frasconi, M.; Liu, Z.; Lei, J.; Wu, Y.; Strekalova, E.; Malin, D.; Ambrogio, M.W.; Chen, X.; Botros, Y.Y.; Cryns, V.L.; et al. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J. Am. Chem. Soc. 2013, 135, 11603–11613. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Pandey, D.S. Multifaceted half-sandwich arene-ruthenium complexes: Interactions with biomolecules, photoactivation, and multinuclearity approach. RSC Adv. 2014, 4, 1819–1840. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, W.; Jiang, G.; Hou, Y.; Li, C.; Zhang, B.; Zhou, Q.; Wang, X. Fusion of photodynamic therapy and photoactivated chemotherapy: A novel Ru(II) arene complex with dual activities of photobinding and photocleavage toward DNA. Dalton Trans. 2014, 43, 15375–15384. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, Y.; Nakamura, H.; Kubota, Y.; Morimoto, M.; Kawasaki, T.; Nakai, M.; Yamauchi, O. DNA interaction with dipolar ruthenium(II) ammine complexes containing 4,4′-bipyridinium as photochemotherapeutic agents. Inorg. Chim. Acta 2014, 423, 109–114. [Google Scholar] [CrossRef]
- Frei, A.; Rubbiani, R.; Tubafard, S.; Blacque, O.; Anstaett, P.; Felgenträger, A.; Maisch, T.; Spiccia, L.; Gasser, G. Synthesis, characterization, and biological evaluation of new Ru(II) polypyridyl photosensitizers for photodynamic therapy. J. Med. Chem. 2014, 57, 7280–7292. [Google Scholar] [CrossRef] [PubMed]
- Mari, C.; Pierroz, V.; Rubbiani, R.; Patra, M.; Hess, J.; Spingler, B.; Oehninger, L.; Schur, J.; Ott, I.; Salassa, L.; et al. DNA intercalating Ru(II) polypyridyl complexes as effective photosensitizers in photodynamic therapy. Chem. Eur. J. 2014, 20, 14421–14436. [Google Scholar] [CrossRef] [PubMed]
- Soldevila-Barreda, J.J.; Sadler, P.J. Approaches to the design of catalytic metallodrugs. Curr. Opin. Chem. Biol. 2015, 25, 172–183. [Google Scholar] [CrossRef]
- Soldevila-Barreda, J.J.; Romero-Canelón, I.; Habtemariam, A.; Sadler, P.J. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat. Commun. 2015, 6, 6582. [Google Scholar] [CrossRef] [PubMed]
- Roveda, A.C., Jr.; Ruiz Papa, T.B.; Castellano, E.E.; Franco, D.W. PAMAM dendrimers functionalized with ruthenium nitrosyl as nitric oxide carriers. Inorg. Chim. Acta 2014, 409, 147–155. [Google Scholar] [CrossRef]
- Fry, N.L.; Mascharak, P.K. Photoactive ruthenium nitrosyls as NO donors: How to sensitize them toward visible light. Acc. Chem. Res. 2011, 44, 289–298. [Google Scholar] [CrossRef] [PubMed]
- De Lima, R.G.; Silva, B.R.; da Silva, R.S.; Bendhack, L.M. Ruthenium complexes as NO donors for vascular relaxation induction. Molecules 2014, 19, 9628–9654. [Google Scholar] [CrossRef] [PubMed]
- Tahghighi, A. Importance of metal complexes for development of potential leishmanicidal agents. J. Organomet. Chem. 2014, 770, 51–60. [Google Scholar] [CrossRef]
- Sarniguet, C.; Toloza, J.; Cipriani, M.; Lapier, M.; Vieites, M.; Toledano-Magaña, Y.; García-Ramos, J.C.; Ruiz-Azuara, L.; Moreno, V.; Maya, J.D.; et al. Water-soluble ruthenium complexes bearing activity against protozoan parasites. Biol. Trace Elem. Res. 2014, 159, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Maurya, R.C.; Mir, J.M. Medicinal industrial & environmental relevance of metal nitrosyl complexes: A review. Int. J. Sci. Eng. Res. 2014, 5, 305–320. [Google Scholar]
- El-Gamel, N.E.A.; Fekry, A.M. Antimicrobial ruthenium complex coating on the surface of titanium alloy. High efficiency anticorrosion protection of ruthenium complex. Bioelectrochemistry 2015, 104, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Dixneuf, P.H.; Bruneau, C. Ruthenium in Catalysis; Springer: Berlin, Germany, 2014. [Google Scholar]
- Baraut, J.; Massard, A.; Chotard, F.; Bodio, E.; Picquet, M.; Richard, P.; Borguet, Y.; Nicks, F.; Demonceau, A.; Le Gendre, P. Assessment of catalysis by arene-ruthenium complexes containing phosphane or NHC groups bearing pendant conjugated diene systems. Eur. J. Inorg. Chem. 2015, 2671–2682. [Google Scholar] [CrossRef]
- Okamura, M.; Masaoka, S. Design of mononuclear ruthenium catalysts for low-overpotential water oxidation. Chem. Asian J. 2015, 10, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Di Giovanni, C.; Vaquer, L.; Sala, X.; Benet-Buchholz, J.; Llobet, A. New dinuclear ruthenium complexes: Structure and oxidative catalysis. Inorg. Chem. 2013, 52, 4335–4345. [Google Scholar] [CrossRef] [PubMed]
- Laine, T.M.; Kärkäs, M.D.; Liao, R.-Z.; Åkermark, T.; Lee, B.-L.; Karlsson, E.A.; Siegbahn, P.E.M.; Åkermark, B. Efficient photochemical water oxidation by a dinuclear molecular ruthenium complex. Chem. Commun. 2015, 51, 1862–1865. [Google Scholar] [CrossRef] [PubMed]
- Artz, J.; Mallmann, S.; Palkovits, R. Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. ChemSusChem 2015, 8, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Jahroni, B.T.; Kharat, A.N.; Amini, M.M.; Khavasi, H. Ruthenium diphosphine complexes as an efficient hydroamination catalyst. Appl. Petrochem. Res. 2015, 5, 105–112. [Google Scholar]
- Bantreil, X.; Cazin, C.S.J. Phosphite ligands in Ru-based olefin metathesis catalysts. Monatsh. Chem. 2015, 145, 1043–1052. [Google Scholar] [CrossRef]
- Varela, J.A.; Gonzales-Rodriguez, C.; Saa, C. Catalytic transformations of alkynes via ruthenium vinylidene and allenylidene intermediates. In Ruthenium in Catalysis; Dixneuf, P.H., Bruneau, C., Eds.; Springer: Berlin, Germany, 2014; Chapter 7; pp. 237–287. [Google Scholar]
- Dixneuf, P.H.; Bruneau, C. Ruthenium indenylidene catalysts for alkene metathesis. In Handbook of Metathesis: Catalyst Development and Mechanism, 2nd ed.; Grubbs, R.H., Wenzel, A.G., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 14; pp. 389–416. [Google Scholar]
- Urbina-Blanco, C.A.; Guidone, S.; Nolan, S.P.; Cazin, C.S.J. Ruthenium-indenylidene and other alkylidene containing olefin metathesis catalysts. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 15; pp. 417–436. [Google Scholar]
- Ding, F.; Sun, Y.; Verpoort, F.; Dragutan, V.; Dragutan, I. Catalytic activity and selectivity of a range of ruthenium complexes tested in the styrene/EDA reaction system. J. Mol. Catal. A: Chem. 2014, 386, 86–94. [Google Scholar] [CrossRef]
- Marx, V.M.; Rosebrugh, L.E.; Herbert, M.B.; Grubbs, R.H. Cyclometalated ruthenium alkylidene complexes: A powerful family of Z-selective olefin metathesis catalysts. In Ruthenium in Catalysis; Dixneuf, P.H., Bruneau, C., Eds.; Springer: Berlin, Germany, 2014; Chapter 1; pp. 1–17. [Google Scholar]
- Nolan, S.P. N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis, 1st ed.; Wiley-VCH: Weinheim, Germany, 2014; p. 568. [Google Scholar]
- Levin, E.; Ivry, E.; Diesendruck, C.E.; Lemcoff, N.G. Water in N-heterocyclic carbene-assisted catalysis. Chem. Rev. 2015, 115, 4607–4692. [Google Scholar] [CrossRef] [PubMed]
- Schwartsburd, L.; Whittlesey, M.K. Ruthenium N-heterocyclic carbene complexes for the catalysis of nonmetathesis organic transformations. In N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis, 1st ed.; Nolan, S.P., Ed.; Wiley-VCH: Weinheim, Germany, 2014; Chapter 12; pp. 341–369. [Google Scholar]
- Méret, M.; Maj, A.M.; Demonceau, A.; Delaude, L. Ruthenium-arene catalysts bearing N-heterocyclic carbene ligands for olefin cyclopropanation and metathesis. Monatsh. Chem. 2015, 146, 1099–1105. [Google Scholar] [CrossRef]
- Yang, D.; Tang, Y.; Song, H.; Wang, B. O-Aryloxide-N-heterocyclic carbenes: Efficient synthesis of the proligands and their p-cymene ruthenium complexes. Organometallics 2015, 34, 2012–2017. [Google Scholar] [CrossRef]
- Hitzel, S.; Färber, C.; Bruhn, C.; Siemeling, U. Reactions of [RuCl2(PPh3)3] with nitron and with the “Enders carbene”: Access to ruthenium(III) NHC complexes. Organometallics 2014, 33, 425–428. [Google Scholar] [CrossRef]
- Yaşar, S.; Çekirdek, S.; Özdemir, I. Synthesis, characterization, and transfer hydrogenation of Ru(II)-N-heterocyclic carbene complexes. J. Coord. Chem. 2014, 67, 1236–1248. [Google Scholar] [CrossRef]
- Malineni, J.; Keul, H.; Möller, M. An efficient N-heterocyclic carbene-ruthenium complex: Application towards the synthesis of polyesters and polyamides. Macromol. Rapid Commun. 2015, 36, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Marx, V.M.; Sullivan, A.H.; Melaimi, M.; Virgil, S.C.; Keitz, B.K.; Weinberger, D.S.; Bertrand, G.; Grubbs, R.H. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis. Angew. Chem. Int. Ed. 2015, 54, 1919–1923. [Google Scholar] [CrossRef] [PubMed]
- Dragutan, V.; Dragutan, I.; Delaude, L.; Demonceau, A. Exploring new achievements in olefin metathesis catalysts. Part 1. Highlights on N-heterocyclic carbene ruthenium complexes. Chem. Today 2009, 27, S9–S12. [Google Scholar]
- Troian-Gautier, L.; Moucheron, C. RutheniumII complexes bearing fused polycyclic ligands: From fundamental aspects to potential applications. Molecules 2014, 19, 5028–5087. [Google Scholar] [CrossRef] [PubMed]
- Mariconda, A.; Longo, P.; Agovino, A.; Guadagno, L.; Sorrentino, A.; Raimondo, M. Synthesis of ruthenium catalysts functionalized graphene oxide for self-healing applications. Polymer 2015, 69, 330–342. [Google Scholar] [CrossRef]
- Balaraman, E.; Milstein, D. Hydrogenation of polar bonds catalysed by ruthenium-pincer complexes. In Ruthenium in Catalysis; Dixneuf, P.H., Bruneau, C., Eds.; Springer: Berlin, Germany, 2014; Chapter 2; pp. 19–43. [Google Scholar]
- Suresh, P.; Munisamy, V.; Prabusankar, G. Synthesis, characterization and applications of vinyl functionalized N-heterocyclic carbene supported ruthenium(II) derivatives. Indian J. Chem. 2015, 54A, 588–595. [Google Scholar]
- Chen, T.; Li, H.; Qu, S.; Zheng, B.; He, L.; Lai, Z.; Wang, Z.-X.; Huang, K.-W. Hydrogenation of esters catalyzed by ruthenium PN3-pincer complexes containing an aminophosphine arm. Organometallics 2014, 33, 4152–4155. [Google Scholar] [CrossRef]
- Huff, C.A.; Sanford, M.S. Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex. ACS Catal. 2013, 3, 2412–2416. [Google Scholar] [CrossRef]
- Rezayee, N.M.; Huff, C.A.; Sanford, M.S. Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 2015, 137, 1028–1031. [Google Scholar] [CrossRef] [PubMed]
- Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K.M.; Kothe, J.; vom Stein, T.; Englert, U.; Hölscher, M.; Klankermayer, J.; et al. Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: From mechanistic investigations to multiphase catalysis. Chem. Sci. 2015, 6, 693–704. [Google Scholar] [CrossRef]
- Aho, A.; Roggan, S.; Eränen, K.; Salmi, T.; Murzin, D.Y. Continuous hydrogenation of glucose with ruthenium on carbon nanotube catalysts. Catal. Sci. Technol. 2015, 5, 953–959. [Google Scholar] [CrossRef]
- Václavík, J.; Šot, P.; Pecháček, J.; Vilhanová, B.; Matuška, O.; Kuzma, M.; Kačer, P. Experimental and theoretical perspectives of the Noyori-Ikariya asymmetric transfer hydrogenation of imines. Molecules 2014, 19, 6987–7007. [Google Scholar] [CrossRef] [PubMed]
- Karabuga, S.; Bars, S.; Karakaya, I.; Gumus, S. Efficient transfer hydrogenation reactions with quinazoline-based ruthenium complexes. Tetrahedron Lett. 2015, 56, 101–104. [Google Scholar]
- Bhosale, S.S.; Singh, K.S. Ruthenium(II)-catalyzed transfer hydrogenation of aromatic and heteroaromatic aldehydes in air. Synth. Commun. 2015, 45, 1411–1420. [Google Scholar] [CrossRef]
- Zimbron, J.M.; Dauphinais, M.; Charette, A.B. Noyori–Ikariya catalyst supported on tetra-arylphosphonium salt for asymmetric transfer hydrogenation in water. Green Chem. 2015, 17, 3255–3259. [Google Scholar] [CrossRef]
- Zoabi, A.; Omar, S.; Abu-Reziq, R. Chiral ruthenium catalyst immobilized within magnetically retrievable mesoporous silica microcapsules for aqueous asymmetric transfer hydrogenations. Eur. J. Inorg. Chem. 2015, 2015, 2101–2109. [Google Scholar] [CrossRef]
- Sarkar, S.M.; Yusoff, M.M.; Rahman, M.L. Asymmetric transfer hydrogenation catalyzed by mesoporous MCM-41-supported chiral Ru-complex. J. Chin. Chem. Soc. 2015, 62, 177–181. [Google Scholar] [CrossRef]
- Hudson, R.; Chazelle, V.; Bateman, M.; Roy, R.; Li, C.-J.; Moores, A. Sustainable synthesis of magnetic ruthenium-coated iron nanoparticles and application in the catalytic transfer hydrogenation of ketones. ACS Sustain. Chem. Eng. 2015, 3, 814–820. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Sang, X.-L.; Che, C.-M.; Chen, J. Ruthenium(IV) porphyrin catalyzed highly selective oxidation of internal alkenes into ketones with Cl2pyNO as terminal oxidant. Tetrahedron Lett. 2014, 55, 1736–1739. [Google Scholar] [CrossRef]
- Bruneau, C. sp3 C–H bond functionalization with ruthenium catalysts. In Ruthenium in Catalysis; Dixneuf, P.H., Bruneau, C., Eds.; Springer: Berlin, Germany, 2014; Chapter 6; pp. 195–236. [Google Scholar]
- Li, B.; Dixneuf, P.H. Ruthenium(II)-catalysed sp2 C–H bond functionalization by C–C bond formation. In Ruthenium in Catalysis; Dixneuf, P.H., Bruneau, C., Eds.; Springer: Berlin, Germany, 2014; Chapter 5; pp. 119–193. [Google Scholar]
- Kulago, A.A.; van Steijvoort, B.F.; Mitchell, E.A.; Meerpoel, L.; Maes, B.U.W. Directed ruthenium-catalyzed C(sp3)–H α-alkylation of cyclic amines using dioxolane-protected alkenones. Adv. Synth. Catal. 2014, 356, 1610–1618. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kashiwa, M.; Sonoda, M.; Kirihata, M.; Tanimori, S. Regioselective monoarylation of 2-phenylbenzimidazole via ruthenium-catalyzed C–H bond functionalization. Synthesis 2014, 46, 3185–3190. [Google Scholar] [CrossRef]
- Gonell, S.; Peris, E. Pyrene-based mono- and di-N-heterocyclic carbene ligand complexes of ruthenium for the preparation of mixed arylated/alkylated arylpyridines. ACS Catal. 2014, 4, 2811–2817. [Google Scholar] [CrossRef]
- Schmidt, B.; Hauke, S.; Mühlenberg, N. Imino glycals via ruthenium-catalyzed RCM and isomerization. Synthesis 2014, 46, 1648–1658. [Google Scholar] [CrossRef]
- Higman, C.S.; Plais, L.; Fogg, D.E. Isomerization during olefin metathesis: Assessment of potential culprits. ChemCatChem 2013, 5, 3548–3551. [Google Scholar] [CrossRef]
- Suárez, F.J.; Vidal, C.; García-Álvarez, J. Redox isomerization of allylic alcohols to carbonyl compounds catalyzed by ruthenium(IV) complexes containing N-heterocyclic ligands in ionic liquids. Curr. Green Chem. 2014, 1, 121–127. [Google Scholar] [CrossRef]
- Takagi, R.; Abe, M. [3 + 2] Cycloaddition of α,β-unsaturated metal–carbene complexes. In Methods and Applications of Cycloaddition Reactions Organic Syntheses; Nishiwaki, N., Ed.; John Wiley & Sons: New York, NY, USA, 2014; Chapter 5. [Google Scholar]
- Derien, S. C–C Bond formation on activation of alkynes and alkenes with (C5R5)Ru catalysts. In Ruthenium in Catalysis; Dixneuf, P.H., Bruneau, C., Eds.; Springer: Berlin, Germany, 2014; Chapter 8; pp. 289–318. [Google Scholar]
- Grubbs, R.H.; Wenzel, A.G.; O’Leary, D.J.; Khosravi, E. Handbook of Metathesis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, p. 1608. [Google Scholar]
- Crochet, P.; Cadierno, V. Ruthenium-catalyzed amide-bond formation. In Ruthenium in Catalysis; Dixneuf, P.H., Bruneau, C., Eds.; Springer: Berlin, Germany, 2014; Chapter 4; pp. 81–118. [Google Scholar]
- Konigs, C.D.F.; Muller, M.F.; Aiguabella, N.; Klare, H.F.T.; Oestreich, M. Catalytic dehydrogenative Si–N coupling of pyrroles, indoles, carbazoles as well as anilines with hydrosilanes without added base. Chem. Commun. 2013, 49, 1506–1508. [Google Scholar] [CrossRef] [PubMed]
- Långvik, O.; Mavrynsky, D.; Leino, R. Selective ruthenium-catalyzed epimerization of chiral sec-alcohols. Catal. Today 2015, 241, 255–259. [Google Scholar] [CrossRef]
- Curvey, N.; Widaman, A.K.; Rath, N.P.; Bauer, E.B. Ruthenium complexes of the general formula [RuCl2(PHOX)2] and their catalytic activity in the Mukaiyama aldol reaction. Tetrahedron Lett. 2014, 55, 3033–3037. [Google Scholar] [CrossRef]
- Yeung, C.-F.; Chung, L.-H.; Lo, H.-S.; Chiu, C.-H.; Cai, J.; Wong, C.-Y. Isolation of ruthenium-indoline and -indole zwitterion complexes: Insight into the metal-induced cyclization of aniline-tethered alkynes and strategy to lower the activation barrier of metal-vinylidene formation. Organometallics 2015, 34, 1963–1968. [Google Scholar] [CrossRef]
- Diaba, F.; Martínez-Laporta, A.; Bonjoch, J. Atom transfer radical cyclization of trichloroacetamides to electron-rich acceptors using Grubbs’ catalysts: Synthesis of the tricyclic framework of FR901483. J. Org. Chem. 2014, 79, 9365–9372. [Google Scholar] [CrossRef] [PubMed]
- Borguet, Y.; Sauvage, X.; Zaragoza, G.; Demonceau, A.; Delaude, L. Tandem catalysis of ring-closing metathesis/atom transfer radical reactions with homobimetallic ruthenium-arene complexes. Beilstein J. Org. Chem. 2010, 6, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Friedberger, T.; Ziller, J.W.; Guan, Z. Ruthenium(IV) complexes for ethylene insertion polymerization. Organometallics 2014, 33, 1913–1916. [Google Scholar] [CrossRef]
- Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J.-P.; May, R.B.; Surya Prakash, G.K.; Olah, G.A. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change. ChemSusChem 2015, 8, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Milstein, D. Challenging metal-based transformations. From single-bond activation to catalysis and metallaquinonoids. Pure Appl. Chem. 2003, 75, 445–460. [Google Scholar] [CrossRef]
- Wagner, D.; Bräse, S. Ruthenium-catalyzed C–H activation of thioxanthones. Beilstein J. Org. Chem. 2015, 11, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Alsabeh, P.G.; Mellmann, D.; Junge, H.; Beller, M. Ruthenium-catalyzed hydrogen generation from alcohols and formic acid, including Ru-pincer type complexes. In Ruthenium in Catalysis; Dixneuf, P.H., Bruneau, C., Eds.; Springer: Berlin, Germany, 2014; Chapter 3; pp. 45–79. [Google Scholar]
- Chen, Q.-A.; Cruz, F.A.; Dong, V.M. Alkyne hydroacylation: Switching regioselectivity by tandem ruthenium catalysis. J. Am. Chem. Soc. 2015, 137, 3157–3160. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.R.; Huber, S.M.; Breitenlechner, S.; Bannwarth, C.; Bach, T. Enantiotopos-selektive CH-Oxygenierung mit einem supramolekularen Ruthenium-Katalysator. Angew. Chem. Int. Ed. 2015, 127, 701–705. [Google Scholar] [CrossRef]
- Di Giovanni, C.; Poater, A.; Benet-Buchholz, J.; Cavallo, L.; Solà, M.; Llobet, A. Dinuclear Ru-aqua complexes for selective epoxidation catalysis based on supramolecular substrate orientation effects. Chem. Eur. J. 2014, 20, 3898–3902. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Wang, L.; Li, F.; Li, F.; Sun, L. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands. Acc. Chem. Res. 2015, 48, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Kaufhold, S.; Petermann, L.; Staehle, R.; Rau, S. Transition metal complexes with N-heterocyclic carbene ligands: From organometallic hydrogenation reactions toward water splitting. Coord. Chem. Rev. 2015, 304–305, 73–87. [Google Scholar] [CrossRef]
- Llobet, A. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes; John Wiley & Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Wang, L.; Duan, L.; Wang, Y.; Ahlquist, M.S.G.; Sun, L. Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes. Chem. Commun. 2014, 50, 12947–12950. [Google Scholar] [CrossRef] [PubMed]
- Staehle, R.; Tong, L.; Wang, L.; Duan, L.; Fischer, A.; Ahlquist, M.S.G.; Sun, L.; Rau, S. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2′-bipyridine-6,6′-dicarboxylate (bda) ligand: How ligand environment influences the catalytic behavior. Inorg. Chem. 2014, 53, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Mulyana, Y.; Keene, F.R.; Spiccia, L. Cooperative effects in homogenous water oxidation catalysis by mononuclear ruthenium complexes. Dalton Trans. 2014, 43, 6819–6827. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Lewis, F.W.; Harwood, L.M.; Hartl, F. Role of ligands in catalytic water oxidation by mononuclear ruthenium complexes. Coord. Chem. Rev. 2015, 304–305, 88–101. [Google Scholar] [CrossRef]
- Sander, A.C.; Maji, S.; Francàs, L.; Böhnisch, T.; Dechert, S.; Llobet, A.; Meyer, F. Highly efficient binuclear ruthenium catalyst for water oxidation. ChemSusChem 2015, 8, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
- Prokopchuk, D.E.; Tsui, B.T.H.; Lough, A.J.; Morris, R.H. Bond cleavage with water and alcohol using a phosphine-free ruthenium carbene NCN pincer complex. Chem. Eur. J. 2014, 20, 16960–16968. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ahlquist, M.S.G. A computational study of the mechanism for water oxidation by (bpc)(bpy)RuIIOH2. Dalton Trans. 2014, 43, 13776–13782. [Google Scholar] [CrossRef] [PubMed]
- Muckerman, J.T.; Kowalczyk, M.; Badiei, Y.M.; Polyansky, D.E.; Concepcion, J.J.; Zong, R.; Thummel, R.P.; Fujita, E. New water oxidation chemistry of a seven-coordinate ruthenium complex with a tetradentate polypyridyl ligand. Inorg. Chem. 2014, 53, 6904–6913. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Duan, L.; Tong, L.; Sun, L. Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes. J. Catal. 2013, 306, 129–132. [Google Scholar] [CrossRef]
- Manbeck, G.F.; Brewer, K.J. Photoinitiated electron collection in polyazine chromophores coupled to water reduction catalysts for solar H2 production. Coord. Chem. Rev. 2013, 257, 1660–1675. [Google Scholar] [CrossRef]
- Xu, J.; Boyer, C. Visible light photocatalytic thiol-ene reaction: An elegant approach for fast polymer postfunctionalization and step-growth polymerization. Macromolecules 2015, 48, 520–529. [Google Scholar] [CrossRef]
- Man, W.-L.; Lam, W.W.Y.; Lau, T.-C. Reactivity of nitrido complexes of ruthenium(VI), osmium(VI), and manganese(V) bearing Schiff base and simple anionic ligands. Acc. Chem. Res. 2014, 47, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Man, W.-L.; Xie, J.; Pan, Y.; Lam, W.W.Y.; Kwong, H.-K.; Ip, K.-W.; Yiu, S.-M.; Lau, K.-C.; Lau, T.-C. C–N Bond cleavage of anilines by a (Salen)ruthenium(VI) nitrido complex. J. Am. Chem. Soc. 2013, 135, 5533–5536. [Google Scholar] [CrossRef] [PubMed]
- Miyada, T.; Kwan, E.H.; Yamashita, M. Synthesis, structure, and bonding properties of ruthenium complexes possessing a boron-based PBP pincer ligand and their application for catalytic hydrogenation. Organometallics 2014, 33, 6760–6770. [Google Scholar] [CrossRef]
- Sun, C.; Liu, M.; Sun, H.; Hang, F.; Sun, N.; Chen, D. Theoretical mechanism for selective catalysis of ruthenium complex catalyzed hydroboration of terminal alkynes to Z-vinylboronates. Int. J. Quant. Chem. 2015, 115, 59–67. [Google Scholar] [CrossRef]
- Bose, S.K.; Roy, D.K.; Shankhari, P.; Yuvaraj, K.; Mondal, B.; Sikder, A.; Ghosh, S. Syntheses and characterization of new vinyl-borylene complexes by the hydroboration of alkynes with [(μ3-BH)(Cp*RuCO)2(μ-CO)Fe(CO)3]. Chem. Eur. J. 2013, 19, 2337–2343. [Google Scholar] [CrossRef] [PubMed]
- Conifer, C.; Gunanathan, C.; Rinesch, T.; Hölscher, M.; Leitner, W. Solvent-free hydrosilylation of terminal alkynes by reaction with a nonclassical ruthenium hydride pincer complex. Eur. J. Inorg. Chem. 2015, 2015, 333–339. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Yang, X.; Wei, H. Mechanistic investigation into catalytic hydrosilylation with a high-valent ruthenium(VI)–nitrido complex: A DFT study. Organometallics 2015, 34, 212–220. [Google Scholar] [CrossRef]
- Liang, T.; Nguyen, K.D.; Zhang, W.; Krische, M.J. Enantioselective ruthenium-catalyzed carbonyl allylation via alkyne-alcohol C–C bond-forming transfer hydrogenation: Allene hydrometalation vs oxidative coupling. J. Am. Chem. Soc. 2015, 137, 3161–3164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Highly efficient ruthenium-catalyzed N-formylation of amines with H2 and CO2. Angew. Chem. Int. Ed. 2015, 54, 6186–6189. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Gupta, R.K.; Pandey, D.S. Half-sandwich arene ruthenium complexes: Synthetic strategies and relevance in catalysis. Chem. Soc. Rev. 2014, 43, 707–733. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.C.; Bäckvall, J.-E. Racemization of olefinic alcohols by a carbonyl(cyclopentadienyl)ruthenium complex: Inhibition by the carbon–carbon double bond. Eur. J. Org. Chem. 2015, 2015, 2388–2393. [Google Scholar] [CrossRef]
- Warner, M.C.; Bäckvall, J.-E. Mechanistic aspects on cyclopentadienylruthenium complexes in catalytic racemization of alcohols. Acc. Chem. Res. 2013, 46, 2545–2555. [Google Scholar] [CrossRef] [PubMed]
- Mavrynsky, D.; Murzin, D.Y.; Leino, R. Kinetic studies on sec-alcohol racemization with dicarbonylchloro(pentabenzylcyclopentadienyl)- and dicarbonylchloro(pentaphenyl-cyclopentadienyl) ruthenium catalysts. ChemCatChem 2013, 5, 2436–2445. [Google Scholar] [CrossRef]
- Stewart, B.; Nyhlen, J.; Martín-Matute, B.; Bäckvall, J.-E.; Privalov, T. A computational study of the CO dissociation in cyclopentadienyl ruthenium complexes relevant to the racemization of alcohols. Dalton Trans. 2013, 42, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Cai, L.-H.; Wang, C.-X.; Zhu, X.-H.; Li, Z.-M.; Hou, X.-F. Ligand effect in racemization and dynamic kinetic resolution of alcohols: Mechanism on cymene ruthenium complexes. J. Organomet. Chem. 2015, 775, 60–66. [Google Scholar] [CrossRef]
- Fernández-Salas, J.A.; Manzini, S.; Nolan, S.P. A Cationic ruthenium complex for the dynamic kinetic resolution of secondary alcohols. Chem. Eur. J. 2014, 20, 13123–13135. [Google Scholar] [CrossRef] [PubMed]
- Grubbs, R.H.; Wenzel, A.G. Handbook of Metathesis. Catalyst Development and Mechanism, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2015; Volume 1, p. 448. [Google Scholar]
- Borguet, Y.; Zaragoza, G.; Demonceau, A.; Delaude, L. Ruthenium catalysts bearing a benzimidazolylidene ligand for the metathetical ring-closure of tetrasubstituted cycloolefins. Dalton Trans. 2015, 44, 9744–9755. [Google Scholar] [CrossRef] [PubMed]
- Pump, E.; Poater, A.; Zirngast, M.; Torvisco, A.; Fischer, R.; Cavallo, L.; Slugovc, C. Impact of electronic modification of the chelating benzylidene ligand in cis-dichloro-configured second-generation olefin metathesis catalysts on their activity. Organometallics 2014, 33, 2806–2813. [Google Scholar] [CrossRef]
- Kozłowska, A.; Dranka, M.; Zachara, J.; Pump, E.; Slugovc, C.; Skowerski, K.; Grela, K. Chelating ruthenium phenolate complexes—Synthesis, general catalytic activity and applications in olefin metathesis polymerisation. Chem. Eur. J. 2014, 43, 14120–14125. [Google Scholar] [CrossRef] [PubMed]
- Varnado, C.D., Jr.; Rosen, E.L.; Collins, M.S.; Lynch, V.M.; Bielawski, C.W. Synthesis and study of olefin metathesis catalysts supported by redox-switchable diaminocarbene[3]-ferrocenophanes. Dalton Trans. 2013, 42, 13251–13264. [Google Scholar] [CrossRef] [PubMed]
- Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V. Recent advances in ruthenium catalysts for alkene metathesis. In Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology; Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 3–16. [Google Scholar]
- Dragutan, I.; Dragutan, V.; Delaude, L.; Demonceau, A. N-Heterocyclic carbenes as highly efficient ancillary ligands in homogeneous and immobilized metathesis ruthenium catalytic systems. Arkivoc 2005, 206–253. [Google Scholar] [CrossRef]
- Dragutan, V.; Dragutan, I.; Balaban, A.T. Single-site ruthenium metathesis catalysts: Progress in their design and synthesis. Platinum Metals Rev. 2001, 45, 155–163. [Google Scholar]
- Dragutan, V.; Dragutan, I.; Balaban, A.T. Metathesis catalysed by platinum group metals—A new strategy for synthesis of organic compounds and polymers. Part I: Types of catalysts, metathesis activity and selectivity. Platinum Metals Rev. 2000, 44, 58–66. [Google Scholar]
- Deraedt, C.; d’Halluin, M.; Astruc, D. The metathesis reactions: Recent trends and new challenges. Eur. J. Inorg. Chem. 2013, 2013, 4881–4908. [Google Scholar] [CrossRef]
- Grela, K. Olefin Metathesis: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2014; p. 608. [Google Scholar]
- Grubbs, R.H.; O’Leary, D.J. Handbook of Metathesis: Applications in Organic Synthesis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, p. 744. [Google Scholar]
- Dragutan, V.; Demonceau, A.; Dragutan, I.; Finkelshtein, E.S. Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology; Springer: Dordrecht, The Netherlands, 2010; p. 425. [Google Scholar]
- Imamoglu, Y.; Dragutan, V. Metathesis Chemistry: From Nanostructure Design to Synthesis of Advanced Materials; Springer: Dordrecht, The Netherlands, 2007; p. 504. [Google Scholar]
- Dragutan, V.; Dragutan, I.; Balaban, A.T. Metathesis catalysed by platinum group metals—A new strategy for synthesis of organic compounds and polymers. Part III: Acyclic diene metathesis reactions and ring-opening metathesis polymerisations. Platinum Metals Rev. 2000, 44, 168–172. [Google Scholar]
- Zukowska, K.; Grela, K. Cross metathesis. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 39–84. [Google Scholar]
- O’Leary, D.J.; O’Neil, G.W. Cross-metathesis. In Handbook of Metathesis, Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 2; pp. 171–294. [Google Scholar]
- Pietraszuk, C.; Pawluc, P.; Marciniec, B. Metathesis of silicon-containing olefins. In Handbook of Metathesis, Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 9; pp. 583–631. [Google Scholar]
- Méndez, L.; Mata, E.G. Solid-supported cross-metathesis and a formal alkane metathesis for the generation of biologically relevant molecules. ACS Comb. Sci. 2015, 17, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Van Lierop, B.J.; Lummiss, J.A.M.; Fogg, D.E. Ring-closing metathesis. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 85–154. [Google Scholar]
- Hanson, P.R.; Maitra, S.; Chegondi, R.; Markley, J.L. General ring-closing metathesis. In Handbook of Metathesis: Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 1; pp. 1–170. [Google Scholar]
- Monfette, S.; Fogg, D.E. Ring-closing metathesis: Synthesis of medium and large rings: Challenges and implications for sustainable synthesis. In Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology; Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 129–156. [Google Scholar]
- Compain, P.; Hazelard, D. Synthesis of amine-containing heterocycles by metathesis reactions: Recent advances and opportunities. Top. Heterocycl. Chem. 2015. [Google Scholar] [CrossRef]
- Dragutan, V.; Dragutan, I.; Balaban, A.T. Metathesis catalysed by platinum group metals—A new strategy for synthesis of organic compounds and polymers. Part II: Applications of platinum metals metathesis catalysts in ring-closing reactions. Platinum Metals Rev. 2000, 44, 112–118. [Google Scholar]
- Li, J.; Lee, D. Enyne metathesis. In Handbook of Metathesis Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 5; pp. 381–444. [Google Scholar]
- Astruc, D. Olefin metathesis reactions: From a historical account to recent trends. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 5–38. [Google Scholar]
- Schmidt, B.; Krehl, S. Domino and other olefin metathesis reaction sequences. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 187–232. [Google Scholar]
- Nam, Y.H.; Snapper, M.L. Ruthenium-catalyzed tandem metathesis/non-metathesis processes. In Handbook of Metathesis Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 4; pp. 311–380. [Google Scholar]
- Bicchielli, D.; Borguet, Y.; Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V.; Jossifov, C.; Kalinova, R.; Nicks, F.; Sauvage, X. Recent applications of alkene metathesis in fine chemical synthesis. In Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology; Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 207–274. [Google Scholar]
- Cossy, J.; Arseniyadis, S.; Meyer, C. Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts; Wiley-VCH: Weinheim, Germany, 2010; p. 412. [Google Scholar]
- Cossy, J. Applications in the synthesis of natural and biologically active molecules. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 287–310. [Google Scholar]
- Rolfe, A.; Marcaurelle, L.A. Metathesis strategies in diversity-oriented synthesis. In Handbook of Metathesis Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 11; pp. 659–697. [Google Scholar]
- Vanderwal, C.D.; Walczak, M.A.; Danishefsky, S.J. Two vignettes: RCM in natural product total synthesis. In Handbook of Metathesis Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 8; pp. 563–582. [Google Scholar]
- Lin, Y.A.; Davis, B.G. Vignette: Extending the application of metathesis in chemical biology—The development of site-selective peptide and protein modifications. In Handbook of Metathesis Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 3; pp. 295–309. [Google Scholar]
- Fandrick, K.R.; Savoie, J.; Yee, N.; J. Song, J.J.; Senanayake, C.H. Challenges and opportunities for scaling the ring-closing metathesis reaction in the pharmaceutical industry. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 349–366. [Google Scholar]
- Farina, V.; Horváth, A. Ring-closing metathesis in the large-scale synthesis of pharmaceuticals. In Handbook of Metathesis Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 10; pp. 633–658. [Google Scholar]
- Nickel, A.; Pederson, R.L. Commercial potential of olefin metathesis of renewable feedstocks. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 335–348. [Google Scholar]
- Dassonneville, B.; Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V. Selected recent advances in the synthesis of bioactive compounds using olefin metathesis as a key step. Curr. Org. Chem. 2013, 17, 2609–2653. [Google Scholar] [CrossRef]
- Dragutan, I.; Dragutan, V.; Mitan, C.; Vosloo, H.C.M.; Delaude, L.; Demonceau, A. Metathesis access to monocyclic iminocyclitol-based therapeutic agents. Beilstein J. Org. Chem. 2011, 7, 699–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragutan, I.; Dragutan, V.; Demonceau, A.; Vosloo, H.C.M. Synthesis of castanospermine and epimers by metathesis routes. Curr. Org. Chem. 2013, 17, 2721–2739. [Google Scholar] [CrossRef]
- Demonceau, A.; Dragutan, I.; Dragutan, V.; Le Gendre, P. Olefin metathesis as key step in the synthesis of bioactive compounds. Challenges in the total synthesis of iriomoteolides. Curr. Org. Synth. 2012, 9, 779–790. [Google Scholar] [CrossRef]
- Bicchielli, D.; Borguet, Y.; Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V.; Hans, M.; Jossifov, C.; Nicks, F.; Willem, Q. Olefin metathesis as key step in the synthesis of bioactive compounds. Challenges in the total synthesis of (−)-kendomycin. Curr. Org. Synth. 2012, 9, 397–405. [Google Scholar] [CrossRef]
- Dragutan, I.; Dragutan, V.; Demonceau, A. Targeted drugs by olefin metathesis: Piperidine-based iminosugars. RSC Adv. 2012, 2, 719–736. [Google Scholar] [CrossRef]
- Dragutan, I.; Dragutan, V.; Demonceau, A.; Delaude, L. Enabling access to diverse bioactive molecules through enyne metathesis concepts. Curr. Org. Chem. 2013, 17, 2678–2720. [Google Scholar] [CrossRef]
- Fürstner, A. Alkyne metathesis. In Handbook of Metathesis Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 6; pp. 445–501. [Google Scholar]
- Grubbs, R.H.; Khosravi, E. Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, p. 424. [Google Scholar]
- Tzur, E.; Lemcoff, G. Latent ruthenium catalysts for ring opening metathesis polymerization (ROMP). In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 12; pp. 283–312. [Google Scholar]
- Leitgeb, A.; Wappel, J.; Urbina-Blanco, C.A.; Strasser, S.; Wappl, C.; Cazin, C.S.J.; Slugovc, C. Two commercially available initiators for the retarded ring opening metathesis polymerization of dicyclopentadiene. Monatsh. Chem. 2014, 145, 1513–1517. [Google Scholar] [CrossRef]
- Li, M.; Song, H.; Wang, B. Synthesis and structures of N-heterocyclic carbene-sulfonate ruthenium complexes and their applications in the ring-opening metathesis polymerization of norbornene. Eur. J. Inorg. Chem. 2015, 2015, 4055–4061. [Google Scholar] [CrossRef]
- Slugovc, C. Synthesis of homopolymers and copolymers. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 1; pp. 1–23. [Google Scholar]
- Héroguez, V.; Chemtob, A.; Quemener, D. ROMP in dispersed media. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 2; pp. 25–44. [Google Scholar]
- Eissa, A.M.; Khosravi, E. Comb-like graft copolymers of poly(oxa)norbornene: Efficient synthesis using a combination of ROMP and click chemistry. Macromol. Chem. Phys. 2015, 216, 964–976. [Google Scholar] [CrossRef]
- Spurcaciu, B.; Buzdugan, E.; Nicolae, C.; Ghioca, P.; Iancu, L.; Dragutan, V.; Dragutan, I. New applications of ring-opening metathesis polymerization for grafting alkylene oxide-based copolymers. In Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology; Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 409–416. [Google Scholar]
- Kurzhals, S.; Binder, W.H. Combination of olefin metathesis polymerization with click chemistry. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 9; pp. 207–227. [Google Scholar]
- Mauldin, T.C.; Boday, D.J. Self-healing polymers. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 10; pp. 229–252. [Google Scholar]
- Hanik, N.; Kilbinger, A.F.M. Telechelic polymers. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 3; pp. 45–70. [Google Scholar]
- Elacqua, E.; ten Brummelhuis, N.; Weck, M. Supramolecular polymers. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 4; pp. 71–92. [Google Scholar]
- Schulz, M.D.; Wagener, K.B. ADMET polymerization. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 13; pp. 313–355. [Google Scholar]
- Bachler, P.R.; Wagener, K.B. Functional precision polymers via ADMET polymerization. Monatsh. Chem. 2015, 146, 1053–1061. [Google Scholar] [CrossRef]
- Masuda, T.; Zhang, A. Polymerization of substituted acetylenes. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 15; pp. 375–390. [Google Scholar]
- Kiessling, L.L.; Fishman, J.M. Biologically active polymers. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 8; pp. 169–205. [Google Scholar]
- Phillips, J.H. Biorenewable polymers. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 14; pp. 357–374. [Google Scholar]
- Czelusniak, I.; Khosravi, E. Synthesis of biodegradable copolymers. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 7; pp. 149–167. [Google Scholar]
- Rush, A.M.; James, C.R.; Gianneschi, N.C. Synthesis of nanoparticles. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 6; pp. 115–148. [Google Scholar]
- Miyake, G.M.; Weitekamp, R.A.; Grubbs, R.H. Synthesis of materials with nanostructured periodicity. In Handbook of Metathesis. Polymer Synthesis, 2nd ed.; Grubbs, R.H., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 3, Chapter 5; pp. 93–113. [Google Scholar]
- Bang, A.; Mohite, D.; Saeed, A.M.; Leventis, N.; Sotiriou-Leventis, C. Polydicyclopentadiene aerogels from first- versus second generation Grubbs’ catalysts: A molecular versus a nanoscopic perspective. J. Sol-Gel Sci. Technol. 2015, 75, 460–474. [Google Scholar] [CrossRef]
- Barolo, C.; Yum, J.-H.; Artuso, E.; Barbero, N.; di Censo, D.; Lobello, M.G.; Fantacci, S.; de Angelis, F.; Grätzel, M.; Nazeeruddin, M.K.; et al. A simple synthetic route to obtain pure trans-ruthenium(II) complexes for dye-sensitized solar cell applications. ChemSusChem 2013, 6, 2170–2180. [Google Scholar] [CrossRef] [PubMed]
- Bignozzi, C.A.; Argazzi, R.; Boaretto, R.; Busatto, E.; Carli, S.; Ronconi, F.; Caramori, S. The role of transition metal complexes in dye sensitized solar devices. Coord. Chem. Rev. 2013, 257, 1472–1492. [Google Scholar] [CrossRef]
- Swierk, J.R.; McCool, N.S.; Saunders, T.P.; Barber, G.D.; Mallouk, T.E. Effects of electron trapping and protonation on the efficiency of water-splitting dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136, 10974–10982. [Google Scholar] [CrossRef] [PubMed]
- Gonell, S.; Poyatos, M.; Peris, E. Pyrene-based bisazolium salts: From luminescence properties to Janus-type bis-N-heterocyclic carbenes. Chem. Eur. J. 2014, 20, 9716–9724. [Google Scholar] [CrossRef] [PubMed]
- Visbal, R.; Gimeno, M.C. N-heterocyclic carbene metal complexes: Photoluminescence and applications. Chem. Soc. Rev. 2014, 43, 3551–3574. [Google Scholar] [CrossRef] [PubMed]
- Dreyse, P.; Loeb, B.; Soto-Arriaza, M.; Tordera, D.; Orti, E.; Serrano-Pérez, J.J.; Bolink, H.J. Effect of free rotation in polypyridinic ligands of Ru(II) complexes applied in light-emitting electrochemical cells. Dalton Trans. 2013, 42, 15502–15513. [Google Scholar] [CrossRef] [PubMed]
- Beley, M.; Gros, P.C. Ruthenium polypyridine complexes bearing pyrroles and π-extended analogues. Synthesis, spectroelectronic, electrochemical, and photovoltaic properties. Organometallics 2014, 33, 4590–4606. [Google Scholar] [CrossRef]
- Sawaki, T.; Ishizuka, T.; Kawano, M.; Shiota, Y.; Yoshizawa, K.; Kojima, T. Complete photochromic structural changes in ruthenium(II)-diimine complexes, based on control of the excited states by metalation. Chem. Eur. J. 2013, 19, 8978–8990. [Google Scholar] [CrossRef] [PubMed]
- Norel, L.; di Piazza, E.; Feng, M.; Vacher, A.; He, X.; Roisnel, T.; Maury, O.; Rigaut, S. Lanthanide sensitization with ruthenium carbon-rich complexes and redox commutation of near-IR luminescence. Organometallics 2014, 33, 4824–4835. [Google Scholar] [CrossRef]
- Murugan, E.; Pakrudheen, I. Efficient amphiphilic poly(propylene imine) dendrimer encapsulated ruthenium nanoparticles for sensing and catalysis applications. Sci. Adv. Mater. 2015, 7, 891–901. [Google Scholar] [CrossRef]
- Antonels, N.C.; Meijboom, R. Preparation of well-defned dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir-Hinshelwood approach. Langmuir 2013, 29, 13433–13442. [Google Scholar] [CrossRef] [PubMed]
- Maximov, A.; Zolotukhina, A.; Murzin, V.; Karakhanov, E.; Rosenberg, E. Ruthenium nanoparticles stabilized in cross-linked dendrimer matrices: Hydrogenation of phenols in aqueous media. ChemCatChem 2015, 7, 1197–1210. [Google Scholar] [CrossRef]
- Astruc, D. The olefin metathesis reactions in dendrimers. In Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology; Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 173–184. [Google Scholar]
- Dragutan, V.; Dragutan, I.; Fischer, H. Synthesis of metal-containing polymers via ring opening metathesis polymerization (ROMP). Part II. Polymers containing transition metals. J. Inorg. Organomet. Polym. Mater. 2008, 18, 311–324. [Google Scholar] [CrossRef]
- Dragutan, V.; Dragutan, I.; Fischer, H. Synthesis of metal-containing polymers via ring opening metathesis polymerization (ROMP). Part I. Polymers containing main group metals. J. Inorg. Organomet. Polym. Mater. 2008, 18, 18–31. [Google Scholar] [CrossRef]
- Gu, H.; Rapakousiou, A.; Castel, P.; Guidolin, N.; Pinaud, N.; Ruiz, J.; Astruc, D. Living ring-opening metathesis-polymerization synthesis and redox-sensing properties of norbornene polymers and copolymers containing ferrocenyl and tetraethylene glycol groups. Organometallics 2014, 33, 4323–4335. [Google Scholar] [CrossRef]
- Wang, Y.; Rapakousiou, A.; Astruc, D. ROMP synthesis of cobalticenium-enamine polyelectrolytes. Macromolecules 2014, 47, 3767–3774. [Google Scholar] [CrossRef]
- Rapakousiou, A.; Deraedt, C.; Gu, G.; Salmon, L.; Belin, C.; Ruiz, J.; Astruc, D. Mixed-valent click intertwined polymer units containing biferrocenium chloride side chains form nanosnakes that encapsulate gold nanoparticles. J. Am. Chem. Soc. 2014, 136, 13995–13998. [Google Scholar] [CrossRef] [PubMed]
- Rapakousiou, A.; Deraedt, C.; Irigoyen, J.; Wang, Y.; Pinaud, N.; Salmon, L.; Ruiz, J.; Moya, S.; Astruc, D. Synthesis and redox activity of “clicked” triazolylbiferrocenyl polymers, network encapsulation of gold and silver nanoparticles and anion sensing. Inorg. Chem. 2015, 54, 2284–2299. [Google Scholar] [CrossRef] [PubMed]
- Wenjuan, Y.; LeGoff, A.; Spinelli, N.; Holzinger, M.; Diao, G.-W.; Shan, D.; Defrancq, E.; Cosnier, S. Electrogenerated trisbipyridyl Ru(II)-nitrilotriacetic-polypyrene copolymer for the easy fabrication of label-free photoelectrochemical immunosensor and aptasensor: Application to the determination of thrombin and anti-cholera toxin antibody. Biosens. Bioelectron. 2013, 42, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Slugovc, C. Industrial applications of olefin metathesis polymerization. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 10; pp. 329–333. [Google Scholar]
- Stoianova, D.; Johns, A.; Pederson, R. Olefin metathesis: Commercial applications and future opportunities. In Handbook of Metathesis. Applications in Organic Synthesis, 2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 2, Chapter 12; pp. 699–726. [Google Scholar]
- Seidensticker, T.; Vorholt, A.J.; Behr, A. The mission of addition and fission—Catalytic functionalization of oleochemicals. Eur. J. Lipid Sci. Technol. 2015. [Google Scholar] [CrossRef]
- Elevance teams up with Malaysia’s Genting to build third biorefinery. Focus Surfactants 2014, 2014, 2. Available online: http://www.sciencedirect.com/science/article/pii/S135142101470191X (accessed on 6 August 2015).
- Butilkov, D.; Lemcoff, N.G. Jojoba oil olefin metathesis: A valuable source for bio-renewable materials. Green Chem. 2014, 16, 4728–4733. [Google Scholar] [CrossRef]
- Kajetanowicz, A.; Sytniczuk, A.; Grela, K. Metathesis of renewable raw materials—Influence of ligands in the indenylidene type catalysts on self-metathesis of methyl oleate and cross-metathesis of methyl oleate with (Z)-2-butene-1,4-diol diacetate. Green Chem. 2014, 16, 1579–1585. [Google Scholar] [CrossRef]
- Mudiyanselage, A.Y.; Viamajala, S.; Varanasi, S.; Yamamoto, K. Simple ring-closing metathesis approach for synthesis of PA11, 12, and 13 precursors from oleic acid. ACS Sustain. Chem. Eng. 2014, 2, 2831–2836. [Google Scholar] [CrossRef]
- Koh, M.J.; Khan, R.K.M.; Torker, S.; Yu, M.; Mikus, M.S.; Hoveyda, A.H. High-value alcohols and higher-oxidation-state compounds by catalytic Z-selective cross-metathesis. Nature 2015, 517, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Tanaka Noble Metal Industrial Co, Ltd. Saccharification of Biomass Materials. Jpn. Appl. 2012-110,873, 2012. [Google Scholar]
- Bidange, J.; Fischmeister, C.; Bruneau, C.; Dubois, J.-L.; Couturier, J.-L. Cross metathesis of bio-sourced fatty nitriles with acrylonitrile. Monatsh. Chem. 2015, 146, 1107–1113. [Google Scholar] [CrossRef] [Green Version]
- News. Marine Pollution Bulletin 2015, 92, 4–7. Available online: http://www.sciencedirect.com/science/article/pii/S0025326X1500096X (accessed on 6 August 2015). [CrossRef]
- Reinforced plastics. Available online: http://www.reinforcedplastics.com (accessed on 9 June 2015).
- Skowerski, K.; Gułajski, Ł. Purification strategies in olefin metathesis. In Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 25; pp. 559–571. [Google Scholar]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragutan, I.; Dragutan, V.; Demonceau, A. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015, 20, 17244-17274. https://doi.org/10.3390/molecules200917244
Dragutan I, Dragutan V, Demonceau A. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules. 2015; 20(9):17244-17274. https://doi.org/10.3390/molecules200917244
Chicago/Turabian StyleDragutan, Ileana, Valerian Dragutan, and Albert Demonceau. 2015. "Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes" Molecules 20, no. 9: 17244-17274. https://doi.org/10.3390/molecules200917244
APA StyleDragutan, I., Dragutan, V., & Demonceau, A. (2015). Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules, 20(9), 17244-17274. https://doi.org/10.3390/molecules200917244