Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Hydrogen Bond Donors of DESs
2.2. Effect of the Water Content of DESs
2.3. Optimization of the Extraction Conditions by RSM
2.4. Method Validation
2.5. Comparison of Different Extraction Procedures
2.6. Microstructure Alteration of Different Extraction Procedures
3. Experimental
3.1. Chemicals
3.2. HPLC Analysis
3.3. Preparation of DESs
3.4. Preparation of Herbal Samples
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data 2010, 55, 4632–4637. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Czajkowska, Z.A. Aqueous two phase system based on ionic liquid for isolation of quinine from human plasma sample. Food Chem. 2015, 166, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Ge, D.; Lee, H.K. A new 1-hexyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate ionic liquid based ultrasound-assisted emulsification microextraction for the determination of organic ultraviolet filters in environmental water samples. J. Chromatogr. A 2012, 1251, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.H.; Liu, T.T.; Yang, L.; Zu, Y.G.; Chen, X.; Zhang, L.; Zhang, Y.; Zhao, C. Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits. J. Chromatogr. A 2011, 1218, 8573–8580. [Google Scholar] [CrossRef] [PubMed]
- Radošević, K.; Bubalo, M.C.; Srček, V.G.; Grgasb, D.; Dragičevićb, T.L.; Redovnikovića, I.R. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotox. Environ. Safe. 2015, 112, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Deng, D.; Chen, Y.; Shan, H.; Ai, N. Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents. J. Chem. Thermodyn. 2014, 75, 58–62. [Google Scholar] [CrossRef]
- Hayyan, M.; Hashim, M.A.; Al-Saadi, M.A.; Hayyan, A.; AlNashef, I.M.; Mirghani, M.E. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere 2013, 93, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.A.; AlNashef, I.M.; Mirghani, M.E.; Saheed, O.K. Are deep eutectic solvents benign or toxic? Chemosphere 2013, 90, 2193–2195. [Google Scholar] [CrossRef] [PubMed]
- Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef] [PubMed]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep eutectic solvents: The organic reaction medium of the century. Eur. J. Org. Chem. 2016, 4, 612–632. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, H.; Row, K.H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J. Sep. Sci. 2015, 38, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Namiesnik, J. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem 2014, 7, 1784–1800. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Y.; Xu, K.; Huang, Y.; Wen, Q.; Ding, X. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein. Talanta 2016, 152, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.; Merz, L.; García-Álvarez, J. Deep eutectic solvents: Biorenewable reaction media for Au(i)-catalysed cycloisomerisations and one-pot tandem cycloisomerisation/Diels-Alder reactions. Green Chem. 2015, 17, 3870–3878. [Google Scholar] [CrossRef]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Khezeli, T.; Daneshfar, A.; Sahraei, R. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 2016, 150, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Zhang, M.; Wan, Y.; Qiu, H. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids. Talanta 2016, 149, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, Y.; Ding, X.; Huang, Y.; Li, N.; Wen, Q. Magnetic solid-phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles. Talanta 2016, 148, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.T.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 2014, 159, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.Y.; Wang, Y.P. Pharmacological actions and therapeutic applications of Salvia miltiorrhiza depside salt and its active components. Acta Pharmacol. Sin. 2012, 33, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Y.; Xue, L.; Severino, R.P.; Gao, S.; Niu, J.; Qin, L.P.; Zhang, D.; Bromme, D. Salvia miltiorrhiza: An ancient Chinese herbal medicine as a source for anti-osteoporotic drugs. J. Ethnopharmacol. 2014, 155, 1401–1416. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, J.; Zhang, Y.; Zhang, S.; Ye, J.; Wen, Z.; Ding, J.; Kunapuli, S.P.; Luo, X.; Ding, Z. Salvianolic acid B inhibits platelets as a P2Y12 antagonist and PDE inhibitor: Evidence from clinic to laboratory. Thromb. Res. 2014, 134, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.R.; Zhang, H.M.; Ye, T.X.; Xiang, Z.J.; Yuan, Y.J.; Guo, Z.X.; Zhao, L.B. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem. Toxicol. 2008, 46, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, Z.; Liang, Q.; Tang, X.; Hu, D.; Liu, C.; Tan, H.; Xiao, C.; Zhang, B.; Wang, Y.; et al. Tanshinone IIA exerts protective effects in a LCA-induced cholestatic liver model associated with participation of pregnane X receptor. J. Ethnopharmacol. 2015, 164, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.S.; Zhang, F.J.; Li, H.; Liu, Y.; Du, G.Y.; Huang, Y.H. Tanshinone ІІA inhibits human esophageal cancer cell growth through miR-122-mediated PKM2 down-regulation. Arch. Biochem. Biophys. 2016, 598, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, D.; Lou, H.; Sun, L.; Ji, J. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages. J. Ethnopharmacol. 2016, 188, 193–199. [Google Scholar] [PubMed]
- Lee, J.S.; Kim, H.G.; Han, J.M.; Kim, D.W.; Yi, M.H.; Son, S.W.; Kim, Y.A.; Lee, J.S.; Choi, M.K.; Son, C.G. Ethanol extract of Astragali Radix and Salviae Miltiorrhizae Radix, Myelophil, exerts anti-amnesic effect in a mouse model of scopolamine-induced memory deficits. J. Ethnopharmacol. 2014, 153, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Editorial Committee for the Pharmacopoeia of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China; Medical Science and Technology Publishing House: Beijing, China, 2010; Volume 1, p. 159. [Google Scholar]
- Guo, Y.X.; Xiu, Z.L.; Zhang, D.J.; Wang, H.; Wang, L.X.; Xiao, H.B. Kinetics and mechanism of degradation of lithospermic acid B in aqueous solution. J. Pharm. Biomed. Anal. 2007, 43, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Sun, L.; Lou, H.; Rahman, M.M. Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity. Phytomedicine 2014, 21, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y. Study on the thermal stability of salvianolic acid B. Drug Develop. 2014, 35, 78–80. [Google Scholar]
- Capua, M.; Perrone, S.; Perna, F.M.; Vitale, P.; Troisi, L.; Salomone, A.; Capriati, V. An expeditious and greener synthesis of 2-aminoimidazoles in deep eutectic solvents. Molecules 2016, 21, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Peng, X.; Yao, X.H.; Wei, Z.F.; Luo, M.; Wang, W.; Zhao, C.J.; Fu, Y.J.; Zu, Y.G. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 2015, 150, 63–72. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.F.; Yao, Z.F.; Yang, D.W.; Zhang, L.W. Improved stability of salvianolic acid B from Radix Salviae miltiorrhizae in deep eutectic solvents. Anal. Methods 2016, 8, 2502–2509. [Google Scholar] [CrossRef]
- Sample Availability: Not Available.
No. | Type of HBD | Abbreviation | ChCl/HBD Ratio |
---|---|---|---|
DES-1 | Ethylene glycol | EG | 1:2 |
DES-2 | 1,2-Propanediol | PDO | 1:1 |
DES-3 | 1:2 | ||
DES-4 | 1:3 | ||
DES-5 | Glycerol | GL | 1:1 |
DES-6 | 1:2 | ||
DES-7 | 1:3 | ||
DES-8 | 1:4 | ||
DES-9 | 1,4-Butanediol | BDO | 1:2 |
DES-10 | 1:4 | ||
DES-11 | Oxalic acid | OA | 2:1 |
DES-12 | 1:1 | ||
DES-13 | Succinic acid | SA | 2:1 |
DES-14 | 1:1 | ||
DES-15 | Lactic acid | LA | 1:1 |
DES-16 | Malonic acid | MaA | 1:1 |
DES-17 | 1:2 | ||
DES-18 | Malic acid | MA | 1:1 |
DES-19 | Citric acid | CA | 2:1 |
DES-20 | Maltose | Mal | 1:1 |
DES-21 | Fructose | Fru | 2:1 |
DES-22 | Glucose | Glu | 2:1 |
DES-23 | Urea | U | 2:1 |
DES-24 | 1:1 | ||
DES-25 | 1:2 |
Run | A | B | C | D | ROS | LIT | SAB | SAA | TIIA |
---|---|---|---|---|---|---|---|---|---|
1 | 60 | 10 | 800 | 0.0075 | 2.78 | 3.19 | 55.64 | 2.12 | 5.79 |
2 | 60 | 15 | 1000 | 0.0075 | 1.31 | 3.19 | 45.82 | 1.55 | 5.13 |
3 | 60 | 10 | 800 | 0.0075 | 2.77 | 3.03 | 53.62 | 2.10 | 5.54 |
4 | 60 | 10 | 800 | 0.0075 | 2.83 | 3.05 | 53.48 | 2.08 | 5.52 |
5 | 40 | 10 | 800 | 0.0100 | 2.21 | 2.61 | 48.88 | 1.34 | 4.58 |
6 | 40 | 15 | 800 | 0.0075 | 2.65 | 2.49 | 48.74 | 1.56 | 4.68 |
7 | 60 | 15 | 800 | 0.0100 | 2.49 | 2.55 | 51.24 | 1.47 | 5.90 |
8 | 60 | 10 | 800 | 0.0075 | 2.80 | 2.99 | 53.29 | 2.09 | 5.45 |
9 | 40 | 5 | 800 | 0.0075 | 1.77 | 2.41 | 45.84 | 1.56 | 4.75 |
10 | 60 | 5 | 800 | 0.0050 | 1.89 | 2.91 | 47.16 | 1.70 | 5.16 |
11 | 60 | 10 | 600 | 0.0100 | 2.30 | 2.12 | 43.98 | 1.56 | 4.71 |
12 | 60 | 10 | 1000 | 0.0050 | 2.36 | 2.92 | 39.41 | 1.82 | 5.78 |
13 | 80 | 10 | 1000 | 0.0075 | 2.59 | 2.94 | 45.88 | 1.58 | 5.95 |
14 | 40 | 10 | 800 | 0.0050 | 2.69 | 1.99 | 41.36 | 1.85 | 4.34 |
15 | 80 | 10 | 800 | 0.0050 | 2.60 | 3.35 | 47.71 | 1.94 | 5.45 |
16 | 80 | 5 | 800 | 0.0075 | 2.58 | 2.83 | 52.66 | 1.64 | 4.82 |
17 | 60 | 10 | 600 | 0.0050 | 2.08 | 3.07 | 41.66 | 1.88 | 4.17 |
18 | 80 | 10 | 800 | 0.0100 | 2.61 | 2.04 | 50.45 | 1.76 | 5.80 |
19 | 60 | 15 | 600 | 0.0075 | 2.64 | 2.63 | 47.12 | 1.54 | 5.25 |
20 | 60 | 10 | 1000 | 0.0100 | 1.56 | 2.54 | 44.77 | 1.05 | 5.10 |
21 | 80 | 10 | 600 | 0.0075 | 1.46 | 2.94 | 50.65 | 2.07 | 4.68 |
22 | 40 | 10 | 600 | 0.0075 | 2.36 | 2.49 | 42.21 | 1.44 | 4.12 |
23 | 80 | 15 | 800 | 0.0075 | 2.27 | 3.19 | 49.92 | 2.02 | 5.92 |
24 | 60 | 5 | 800 | 0.0100 | 2.61 | 2.08 | 50.03 | 1.53 | 4.97 |
25 | 60 | 5 | 600 | 0.0075 | 1.22 | 3.02 | 48.63 | 1.70 | 4.10 |
26 | 60 | 15 | 800 | 0.0050 | 2.71 | 2.96 | 47.02 | 1.95 | 5.45 |
27 | 60 | 10 | 800 | 0.0075 | 2.82 | 3.06 | 53.39 | 2.02 | 5.47 |
28 | 40 | 10 | 1000 | 0.0075 | 1.21 | 2.60 | 44.91 | 1.43 | 3.97 |
29 | 60 | 5 | 1000 | 0.0075 | 1.95 | 2.77 | 46.42 | 1.34 | 5.37 |
No. | Calibration Curve | r2 | Linear Range | LOQs | LODs | Precision (RSD) | Concentrations | |
---|---|---|---|---|---|---|---|---|
(μg·mL−1) | (μg·mL−1) | (μg·mL−1) | Intra- (n = 6) | Inter- (n = 3) | (mg·g−1) | |||
ROS | y = 2831.5x − 46.721 | 0.9998 | 1.61–250.00 | 0.80 | 0.24 | 1.61 | 2.02 | 2.80 |
LIT | y = 1442.2x − 12.717 | 0.9999 | 3.05–350.00 | 1.37 | 0.49 | 1.67 | 2.96 | 3.19 |
SAB | y = 1188.8x − 40.956 | 0.9998 | 2.03–4000.00 | 1.96 | 0.62 | 1.09 | 1.03 | 53.35 |
SAA | y = 2907.2x − 73.327 | 0.9997 | 1.96–195.00 | 0.87 | 0.31 | 2.49 | 2.83 | 2.11 |
TІІA | y = 1755.2x − 5.950 | 0.9999 | 1.96–500.00 | 1.45 | 0.48 | 0.15 | 0.76 | 5.89 |
No. | Original/mg | Recovery (Low Spiked) | Recovery (Middle Spiked) | Recovery (High Spiked) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Spiked (mg) | Found (mg) | Recovery (%) | Spiked (mg) | Found (mg) | Recovery (%) | Spiked (mg) | Found (mg) | Recovery (%) | ||
1 | 1.40 | 0.65 | 1.97 | 96.10 | 1.40 | 2.78 | 99.29 | 2.10 | 3.40 | 97.14 |
2 | 1.61 | 0.79 | 2.29 | 95.42 | 1.60 | 3.19 | 99.53 | 2.39 | 3.95 | 98.69 |
3 | 26.68 | 13.37 | 39.76 | 99.28 | 26.68 | 52.15 | 97.74 | 40.01 | 66.61 | 99.88 |
4 | 1.06 | 0.52 | 1.51 | 95.57 | 1.06 | 2.01 | 95.04 | 1.58 | 2.57 | 97.26 |
5 | 2.95 | 1.47 | 4.40 | 99.55 | 2.95 | 5.69 | 96.52 | 4.42 | 7.36 | 99.93 |
Extraction Method | Solvent | Extraction Yields (mg·g−1) | ||||
---|---|---|---|---|---|---|
ROS | LIT | SAB | SAA | TIIA | ||
Microwave | 80% ChCl-PDO (1:1)/20% H2O | 2.89 ± 0.03 | 3.19 ± 0.05 | 53.35 ± 0.01 | 2.11 ± 0.01 | 5.89 ± 0.02 |
100% Ethanol | 1.89 ± 0.02 | 2.32 ± 0.07 | 45.37 ± 0.65 | 1.69 ± 0.01 | 4.78 ± 0.00 | |
100% Methanol | 2.06 ± 0.02 | 2.21 ± 0.02 | 46.68 ± 0.57 | 1.87 ± 0.01 | 5.97 ± 0.05 | |
75% Methanol | 2.75 ± 0.01 | 2.68 ± 0.02 | 52.63 ± 0.07 | 2.54 ± 0.00 | 5.94 ± 0.05 | |
50% Methanol | 2.80 ± 0.02 | 2.92 ± 0.04 | 48.66 ± 0.04 | 1.69 ± 0.05 | 3.47 ± 0.08 | |
Water | 2.99 ± 0.02 | 3.16 ± 0.02 | 53.89 ± 0.57 | 1.61 ± 0.01 | ND | |
Ultrasound | 80% ChCl-PDO (1:1)/20% H2O | 1.80 ± 0.01 | 1.66 ± 0.03 | 40.81 ± 0.08 | 1.97 ± 0.03 | 4.48 ± 0.04 |
75% Methanol | 0.89 ± 0.02 | 1.31 ± 0.09 | 31.39 ± 0.04 | 1.50 ± 0.02 | 3.87 ± 0.03 | |
Hot reflux | 80% ChCl-PDO (1:1)/20% H2O | 2.38 ± 0.08 | 2.78 ± 0.06 | 41.78 ± 0.02 | 2.09 ± 0.07 | 4.98 ± 0.08 |
75% Methanol | 2.73 ± 0.08 | 2.93 ± 0.03 | 49.31 ± 0.09 | 2.09 ± 0.05 | 5.25 ± 0.08 | |
100% Methanol | 2.05 ± 0.03 | 2.12 ± 0.01 | 43.35 ± 0.21 | 1.88 ± 0.01 | 5.97 ± 0.09 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liu, M.; Wang, Q.; Du, H.; Zhang, L. Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae. Molecules 2016, 21, 1383. https://doi.org/10.3390/molecules21101383
Chen J, Liu M, Wang Q, Du H, Zhang L. Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae. Molecules. 2016; 21(10):1383. https://doi.org/10.3390/molecules21101383
Chicago/Turabian StyleChen, Jue, Mengjun Liu, Qi Wang, Huizhi Du, and Liwei Zhang. 2016. "Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae" Molecules 21, no. 10: 1383. https://doi.org/10.3390/molecules21101383
APA StyleChen, J., Liu, M., Wang, Q., Du, H., & Zhang, L. (2016). Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae. Molecules, 21(10), 1383. https://doi.org/10.3390/molecules21101383