Synthesis and Pharmacological Evaluation of Novel Pleuromutilin Derivatives with Substituted Benzimidazole Moieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activity
2.3. Inhibitory Effects on Cytochrome P450
3. Experimental Section
3.1. Synthesis
3.1.1. General
3.1.2. 14-O-((5-Amino-benzimidazole-2-yl) thioacetyl) Mutilin (3)
3.1.3. General Procedure for the Synthesis of Compounds 4a–l
3.2. Biological Evaluation
3.2.1. MIC Testing
3.2.2. Oxford Cup Assays
3.2.3. Inhibition of the Bacterial Growth
3.2.4. Cytochrome P450 Inhibition Assay
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Duan, F.X.; Li, X.H.; Cai, S.P.; Xin, G.; Wang, Y.Y.; Du, D.; He, S.L.; Huang, B.Z.; Guo, X.R.; Zhao, H.; et al. Haloemodin as Novel Antibacterial Agent Inhibiting DNA Gyrase and Bacterial Topoisomerase I. J. Med. Chem. 2014, 57, 3707–3714. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. Has the Era of Untreatable Infections Arrived? J. Antimicrob. Chemother. 2009, 64, i29–i36. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, F.; Hervey, A.; Robbins, W.J. Antibiotic Substances from Basidiomycetes. VIII. Pleurotus Multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc. Natl. Acad. Sci. USA 1951, 37, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Dreier, I.; Kumar, S.; Sondergaard, H.; Rasmussen, M.L.; Hansen, L.H.; List, N.H.; Kongsted, J.; Vester, B.; Nielsen, P. A click chemistry approach to pleuromutilin derivatives, part 2: Conjugates with acyclic nucleosides and their ribosomal binding and antibacterial activity. J. Med. Chem. 2012, 55, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Z.; Liu, Y.H.; Chen, J.X. Pleuromutilin and its derivatives-the lead compounds for novel antibiotics. Mini Rev. Med. Chem. 2012, 12, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.F.; Wang, S.Y.; Xu, X.M.; Yi, Y.P.; Guo, W.Z.; Liu, Y.; Liang, J.P. Chemical Synthesis and Biological Activities of Novel Pleuromutilin Derivatives with Substituted Amino Moiety. PLoS ONE 2013, 8, e82595. [Google Scholar] [CrossRef] [PubMed]
- Moody, M.N.; Morrison, L.K.; Tyring, S.K. Retapamulin: What is the role of this topical antimicrobial in the treatment of bacterial infections in atopic dermatitis? Skin Ther. Lett. 2010, 15, 1–4. [Google Scholar]
- Novak, R. Are pleuromutilin antibiotics finally fit for human use? Ann. N. Y. Acad. Sci. 2011, 1241, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.F.; Wang, J.T.; Guo, W.Z.; Liang, J.P. Efficient antibacterial agents: A review of the synthesis, biological evaluation and mechanism of pleuromutilin derivatives. Curr. Top. Med. Chem. 2013, 13, 3013–3025. [Google Scholar] [CrossRef] [PubMed]
- Schlunzen, F.; Pyetan, E.; Fucini, P.; Yonath, A.; Harms, J.M. Inhibition of peptide bond formation by pleuromutilins: The structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol. 2004, 54, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Davidovich, C.; Bashan, A.; Auerbach-Nevo, T.; Yaggie, R.D.; Gontarek, R.R.; Yonath, A. Induced-fit tightens pleuromutilins, binding to ribosomes and remote interactions enable their selectivity. Proc. Natl. Acad. Sci. USA 2007, 104, 4291–4296. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.Y.; Fu, L.Q.; Gao, S.; Chu, W.J.; Wang, H.; Huang, Y.Q.; Huang, X.Y.; Chen, Y.S. Design, Synthesis, and Structure-Activity Relationship Studies of Novel Thioether Pleuromutilin Derivatives as Potent Antibacterial Agents. J. Med. Chem. 2014, 57, 4772–4795. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.F.; Pu, X.Y.; Xu, X.M.; Xin, Z.J.; Zhang, C.; Guo, W.Z.; Liu, Y.; Liang, J.P. Synthesis and Biological Activities of Novel Pleuromutilin Derivatives with a Substituted Thiadiazole Moiety as Potent Drug-Resistant Bacteria Inhibitors. J. Med. Chem. 2014, 57, 5664–5678. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.F.; Wang, G.H.; Xu, X.M.; Liu, S.J.; Zhang, C.; Yi, Y.P.; Liang, J.P.; Liu, Y. Synthesis and Biological Evaluation of New Pleuromutilin Derivatives as Antibacterial Agents. Molecules 2014, 19, 19050–19065. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.P.; Yang, G.Z.; Zhang, C.; Cheng, J.R.; Liang, J.P.; Shang, R.F. Synthesis and evaluation of novel pleuromutilin derivatives with a substituted pyrimidine moiety. Eur. J. Med. Chem. 2015, 101, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Stresser, D.M.; Broudy, M.I.; Ho, T.; Cargill, C.E.; Blanchard, A.P.; Sharma, R.; Dandeneau, A.A.; Goodwin, J.J.; Turner, S.D.; Erve, J.C.; et al. Highly selective inhibition of human CYP3A4 in vitro by azamulin and evidence that inhibition is irreversible. Drug Metab. Dispos. 2004, 32, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Zhang, L.X.; Dai, R.K. An inhibition study of beauvericin on human and rat cytochrome P450 enzymes and its pharmacokinetics in rats. J. Enzyme Inhib. Med. Chem. 2009, 24, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Witkamp, R.F.; Nijmeijer, S.M.; Van-Miert, A.S. Cytochrome P-450 complex formation in rat liver by the antibiotic tiamulin. Antimicrob. Agents Chemother. 1996, 40, 50–54. [Google Scholar] [PubMed]
- Liu, L.Y.; Han, Y.L.; Zhu, J.H.; Yu, Q.; Yang, Q.J.; Lu, J.; Guo, C. A sensitive and high-throughput LC-MS/MS method for inhibition assay of seven major cytochrome P450s in human liver microsomes using an in vitro cocktail of probe substrates. Biomed. Chromatogr. 2015, 3, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Guo, J.J.; Zhan, J.; Bu, H.Z.; Lin, J.H. An in vitro cocktail assay for assessing compound-mediated inhibition of six major cytochrome P450 enzymes. J. Pharm. Anal. 2014, 4, 270–278. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds 2, 3 and 4a–i are available from the authors.
Compound No. | MIC (µg/mL) | |||||
---|---|---|---|---|---|---|
E. coli | S. aureus | MRSA | S. vitulinus | S. warneri | S. haemolyticus | |
3 | 10 | 0.156 | 0.156 | 0.156 | 0.156 | 0.156 |
4a | 40 | 40 | 40 | 40 | 40 | 5 |
4b | 80 | 40 | 20 | 10 | 20 | 20 |
4c | 40 | 40 | 40 | 40 | 40 | 40 |
4d | 80 | 10 | 40 | 40 | 40 | 40 |
4e | 80 | 40 | 40 | 40 | 40 | 40 |
4f | 80 | 40 | 40 | 40 | 20 | 40 |
4g | 80 | 40 | 40 | 40 | 40 | 10 |
4h | 40 | 40 | 40 | 40 | 40 | 10 |
4i | 40 | 40 | 20 | 40 | 20 | 5 |
4j | 20 | 5 | 1.25 | 1.25 | 2.5 | 10 |
4k | 20 | 1.25 | 1.25 | 1.25 | 5 | 1.25 |
4l | 20 | 10 | 10 | 5 | 2.5 | 10 |
Tiamulin | 1.25 | 0.156 | 0.156 | 0.156 | 0.156 | 0.156 |
Compound | E. coli | S. aureus | MRSA | S. vitulinus | S. warneri | S. haemolyticus | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
320 | 160 | 320 | 160 | 320 | 160 | 320 | 160 | 320 | 160 | 320 | 160 | |
3 | 25.52 | 21.38 | 29.56 | 27.28 | 30.56 | 25.42 | 29.56 | 25.48 | 32.28 | 28.02 | 33.04 | 30.28 |
4a | 11.28 | 0.00 | 12.44 | 9.02 | 20.16 | 15.88 | 19.22 | 13.78 | 22.38 | 21.58 | 24.92 | 20.38 |
4b | 0.00 | 10.38 | 15.84 | 12.28 | 21.68 | 17.26 | 23.82 | 20.48 | 19.48 | 16.46 | 20.38 | 20.30 |
4c | 17.66 | 17.16 | 16.46 | 14.30 | 15.46 | 14.58 | 21.76 | 20.54 | 22.24 | 19.18 | 20.95 | 16.95 |
4d | 0.00 | 0.00 | 17.84 | 14.72 | 19.70 | 16.30 | 19.12 | 18.18 | 22.28 | 20.60 | 18.36 | 17.38 |
4e | 0.00 | 0.00 | 19.36 | 17.88 | 27.76 | 25.58 | 20.26 | 18.10 | 21.46 | 20.82 | 20.80 | 18.32 |
4f | 8.64 | 0.00 | 17.84 | 16.72 | 17.32 | 14.06 | 15.08 | 14.00 | 22.94 | 22.86 | 20.72 | 16.20 |
4g | 9.38 | 0.00 | 18.34 | 13.74 | 21.54 | 19.12 | 18.00 | 16.24 | 20.10 | 18.54 | 25.58 | 24.30 |
4h | 18.02 | 15.32 | 18.72 | 15.88 | 19.70 | 16.30 | 21.66 | 19.78 | 19.78 | 17.92 | 28.41 | 25.41 |
4i | 17.72 | 14.22 | 21.48 | 18.62 | 25.70 | 21.32 | 18.20 | 17.62 | 21.78 | 18.58 | 32.86 | 23.04 |
4j | 19.78 | 17.44 | 27.25 | 15.42 | 31.90 | 28.00 | 29.10 | 25.98 | 27.69 | 24.72 | 26.36 | 23.00 |
4k | 20.06 | 18.54 | 28.86 | 26.62 | 30.68 | 26.54 | 27.00 | 24.68 | 25.54 | 21.22 | 29.88 | 25.52 |
4l | 20.48 | 17.36 | 24.72 | 20.88 | 21.58 | 19.76 | 26.54 | 22.06 | 29.56 | 25.36 | 25.12 | 20.80 |
Tiamulin | 27.10 | 25.84 | 28.16 | 25.12 | 30.48 | 28.14 | 30.94 | 18.58 | 30.52 | 22.42 | 31.48 | 28.80 |
P450 Isozyme | Probe | Final Concentrations (mM) a | Metabolite | IC50 (μM) |
---|---|---|---|---|
CYP1A2 | Phenacetin | 45 | Acetaminophen | >50 |
CYP2C19 | Mephenytoin | 55 | 4-OH-S-mephenytoin | >50 |
CYP2D6 | Dextromethorphan | 10 | Dextrophan | >100 |
CYP2C9 | Diclofenac | 10 | 4-OH-diclofenac | 10.70 |
CYP3A4 | Midazolam | 5 | 1-OH-midazolam | 1.69 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, X.; Pu, X.; Yi, Y.; Liu, Y.; Xu, S.; Liang, J.; Shang, R. Synthesis and Pharmacological Evaluation of Novel Pleuromutilin Derivatives with Substituted Benzimidazole Moieties. Molecules 2016, 21, 1488. https://doi.org/10.3390/molecules21111488
Ai X, Pu X, Yi Y, Liu Y, Xu S, Liang J, Shang R. Synthesis and Pharmacological Evaluation of Novel Pleuromutilin Derivatives with Substituted Benzimidazole Moieties. Molecules. 2016; 21(11):1488. https://doi.org/10.3390/molecules21111488
Chicago/Turabian StyleAi, Xin, Xiuying Pu, Yunpeng Yi, Yu Liu, Shuijin Xu, Jianping Liang, and Ruofeng Shang. 2016. "Synthesis and Pharmacological Evaluation of Novel Pleuromutilin Derivatives with Substituted Benzimidazole Moieties" Molecules 21, no. 11: 1488. https://doi.org/10.3390/molecules21111488
APA StyleAi, X., Pu, X., Yi, Y., Liu, Y., Xu, S., Liang, J., & Shang, R. (2016). Synthesis and Pharmacological Evaluation of Novel Pleuromutilin Derivatives with Substituted Benzimidazole Moieties. Molecules, 21(11), 1488. https://doi.org/10.3390/molecules21111488