Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability
Abstract
:1. Introduction
2. Results
2.1. Fluorinated Thin Films Obtained by Magnetron Sputtering of PTFE Targets
2.1.1. Chemical Composition of the Sputter-Deposited Thin Films
2.1.2. Morphological and Topographical Characteristics
2.2. Fluorination of Nanostructured Thin Films Obtained by Plasma Assisted Chemical Vapor Deposition or Treatment by Using SF6 and C2H2F4 Gases
2.2.1. Chemical Composition of the CNW Materials Exposed to Fluorinated Plasmas
2.2.2. Morphology and Topography of the Surfaces
2.3. Impact of Surface Modification by Fluorine Containing Radicals on the Wettability
3. Discussion
4. Materials and Methods
4.1. Substrates
4.2. Methods
4.2.1. Deposition of PTFE-Like Layers by Magnetron Sputtering
4.2.2. Surface Fluorination by Plasma Assisted Chemical Vapor Deposition of C2H2F4 and Plasma Treatment in SF6 Discharge
4.3. Material Characterization Methods
4.3.1. Chemical Composition of Plasma Fluorinated Samples
4.3.2. Surface Topography and Morphology
4.3.3. Surface Wettability
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tang, G.; Ma, X.; Sun, M.; Li, X. Mechanical characterization of ultra-thin fluorocarbon films deposited by R.F. magnetron sputtering. Carbon 2005, 43, 345–350. [Google Scholar] [CrossRef]
- Ohnishi, Y.; Kita, R.; Tsuchiya, K.; Iwamori, S. Optical characteristics of poly(tetrafluoroethylene) thin film prepared by a vacuum evaporation. Jpn. J. Appl. Phys. 2016, 55, 02BB04. [Google Scholar] [CrossRef]
- Endo, K.; Tatsumi, T. Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics. J. Appl. Phys. 1995, 78, 1370–1372. [Google Scholar] [CrossRef]
- Verplanck, N.; Coffinier, Y.; Thomy, V.; Boukherroub, R. Wettability Switching Techniques on Superhydrophobic Surfaces. Nanoscale Res. Lett. 2007, 2, 577–596. [Google Scholar] [CrossRef]
- Yan, A.; Xiao, X.; Kulaots, I.; Sheldon, B.W.; Hurt, R.H. Controlling water contact angle on carbon surfaces from 5° to 167°. Lett. Ed. Carbon 2006, 44, 3113–3148. [Google Scholar] [CrossRef]
- Heinonen, S.; Nikkanen, J.P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E. Bacterial growth on a superhydrophobic surface containing silver nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2013, 47, 012064. [Google Scholar] [CrossRef]
- Liu, H.; Gao, S.W.; Cai, J.S.; He, C.L.; Mao, J.J.; Zhu, T.X.; Chen, Z.; Huang, J.Y.; Meng, K.; Zhang, K.Q.; et al. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. Materials 2016, 9, 124. [Google Scholar] [CrossRef]
- Ma, M.; Hill, R.M. Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 2006, 11, 193–202. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wilde, W. Evaporation of polytetrafluoroethylene by electron bombardment of the bulk material. Thin Solid Films 1974, 24, 101–111. [Google Scholar] [CrossRef]
- Limb, S.J.; Labelle, C.B.; Gleason, K.K.; Edell, D.J.; Gleason, E.F. Growth of fluorocarbon polymer thin films with high CF2 fractions and low dangling bond concentrations by thermal chemical vapor deposition. Appl. Phys. Lett. 1996, 68, 2810–2812. [Google Scholar] [CrossRef]
- Biederman, H. Organic films prepared by polymer sputtering. J. Vac. Sci. Technol. A 2000, 18, 1642–1648. [Google Scholar] [CrossRef]
- Blanchet, G.B.; Shah, S.L. Deposition of polytetrafluoroethylene films by laser ablation. Appl. Phys. Lett. 1993, 62, 1026–1028. [Google Scholar] [CrossRef]
- Bodas, D.S.; Mandalea, A.B.; Gangal, S.A. Deposition of PTFE thin films by RF plasma sputtering on <100> silicon substrates. Appl. Surf. Sci. 2005, 245, 202–207. [Google Scholar] [CrossRef]
- Drabik, M.; Polonskyi, O.; Kylian, O.; Cechvala, J.; Artemenko, A.; Gordeev, I.; Choukourov, A.; Slavinska, D.; Matolinova, I.; Biederman, H. Super-Hydrophobic Coatings Prepared by RF Magnetron Sputtering of PTFE. Plasma Process. Polym. 2010, 7, 544–551. [Google Scholar] [CrossRef]
- Pihosh, Y.; Biederman, H.; Slavinska, D.; Kousal, J.; Choukourov, A.; Trchova, M.; Mackova, A.; Boldyryeva, A. Composite SiOx/fluorocarbon plasma polymer films prepared by R.F. magnetron sputtering of SiO2 and PTFE. Vacuum 2006, 81, 38–44. [Google Scholar] [CrossRef]
- Huang, F.; Wei, Q.; Liu, Y.; Gao, W.; Huang, Y. Surface functionalization of silk fabric by PTFE sputter coating. J. Mater. Sci. 2007, 42, 8025–8028. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, G.H.; Kang, E.T.; Neoh, K.G. Deposition of Fluoropolymer Films on Si(100) Surfaces by Rf Magnetron Sputtering of Poly(tetrafluoroethylene). Langmuir 2002, 18, 6373–6380. [Google Scholar] [CrossRef]
- Labelle, C.B.; Gleason, K. Surface morphology of PECVD fluorocarbon thin films from hexafluoropropylene oxide, 1,1,2,2-tetrafluoroethane, and difluoromethane. J. Appl. Polym. Sci. 1999, 74, 2439–2447. [Google Scholar] [CrossRef]
- Guruvenket, S.; Iyer, G.; Shestakova, L.; Morgen, P.; Larsen, N.B.; Rao, G.M. Fluorination of polymethylmethaacrylate with tetrafluoroethane using DC glow discharge plasma. Appl. Surf. Sci. 2008, 254, 5722–5726. [Google Scholar] [CrossRef]
- Liu, D.; Yin, Y.; Li, D.; Niu, J.; Feng, Z. Surface modification of materials by dielectric barrier discharge deposition of fluorocarbon films. Thin Solid Films 2009, 517, 3656–3660. [Google Scholar] [CrossRef]
- Tserepi, A.D.; Vlachopoulou, M.E.; Gogolides, E. Nanotexturing of poly (dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology 2006, 17, 3977–3983. [Google Scholar] [CrossRef]
- Jung, S.; Hong, S.; Park, B.; Choi, J.; Kim, Y.; Yeom, G.; Baik, S. Neutralized fluorine radical detection using single-walled carbon nanotube network. Carbon 2008, 46, 24–29. [Google Scholar] [CrossRef]
- Kravets, L.I.; Yablokov, M.Y.; Gilman, A.B.; Shchegolikhin, A.N.; Mitu, B.; Dinescu, G. Micro- and Nanofluidic Diodes Based on Track-Etched Poly(Ethylene Terephthalate) Membrane. High Energ. Chem. 2015, 49, 367–374. [Google Scholar] [CrossRef]
- Satulu, V.; Mitu, B.; Altynov, V.A.; Lizunov, N.E.; Kravets, L.; Dinescu, G. Synthesis and characterization of porous composite membranes with hydrophilic/hydrophobic sides. Thin Solid Films 2016. [Google Scholar] [CrossRef]
- Yang, C.; Li, X.-M.; Gilron, J.; Kong, D.-F.; Yin, Y.; Oren, Y.; Linder, C.; He, T. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J. Membr. Sci. 2014, 456, 155–161. [Google Scholar] [CrossRef]
- Hubert, J.; Mertens, J.; Dufour, T.; Vandencasteele, N.; Reniersa, F. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma. J. Mater. Res. 2015, 30, 3177–3191. [Google Scholar] [CrossRef]
- Krimm, S. Infrared Spectra of High Polymers. Adv. Polym. Sci. 1960, 51–172. [Google Scholar]
- Vizireanu, S.; Ionita, M.D.; Dinescu, G.; Enculescu, I.; Baibarac, M.; Baltog, I. Post-synthesis carbon nanowalls transformation under hydrogen, oxygen, nitrogen, tetrafluoroethane and sulfur hexafluoride plasma treatments. Plasma Process. Polym. 2012, 9, 363–370. [Google Scholar] [CrossRef]
- Stancu, E.C.; Stanciuc, A.-M.; Vizireanu, S.; Luculescu, C.; Moldovan, L.; Achour, A.; Dinescu, G. Plasma functionalization of carbon nanowalls and its effect on attachment of fibroblast-like cells. J. Phys. D Appl. Phys. 2014, 47, 265203. [Google Scholar] [CrossRef]
- Fanelli, F.; Renzo, G.D.; Fracassi, F.; D’Agostino, R. Recent advances in the atmospheric pressure PE-CVD of fluorocarbon films: Influence of air and water vapour impurities. Plasma Process. Polym. 2009, 6, S503–S507. [Google Scholar] [CrossRef]
- Felten, A.; Bittencourt, C.; Pireaux, J.J.; van Lier, G.; Charlier, J.C. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J. Appl. Phys. 2005, 98, 74308. [Google Scholar] [CrossRef]
- Guan, C.; Xia, X.; Meng, N.; Zeng, Z.; Cao, X.; Soci, C.; Zhang, H.; Fan, H.J. Hollow core-shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 2012, 5, 9085–9090. [Google Scholar] [CrossRef]
- Gueorguiev, G.K.; Goyenola, C.; Schmidt, S.; Hultman, L. CFx: A first-principles study of structural patterns arising during synthetic growth. Chem. Phys. Lett. 2011, 516, 62–67. [Google Scholar] [CrossRef]
- Schmidt, S.; Greczynski, G.; Goyenola, C.; Gueorguiev, G.K.; Czigány, Z.; Jensen, J.; Ivanov, I.G.; Hultman, L. CFx thin solid films deposited by high power impulse magnetron sputtering: Synthesis and characterization. Surf. Coat. Technol. 2011, 206, 646–653. [Google Scholar] [CrossRef]
- Labelle, C.B.; Gleason, K.K. Pulsed Plasma Deposition from 1,1,2,2-Tetrafluoroethane by Electron Cyclotron Resonance and Conventional Plasma Enhanced Chemical Vapor Deposition. J. Appl. Polym. Sci. 2001, 80, 2084–2092. [Google Scholar] [CrossRef]
- Schmidt, S.; Goyenola, C.; Gueorguiev, G.K.; Jensen, J.; Greczynski, G.; Ivanov, I.G.; Czigány, Z.; Hultman, L. Reactive high power impulse magnetron sputtering of CFx thin films in mixed Ar/CF4 and Ar/C4F8 discharges. Thin Solid Films 2013, 542, 21–30. [Google Scholar] [CrossRef]
- Fanelli, F.; Fracassi, F.; Lovascio, S.; d’Agostino, R. GC-MS Investigation of Organosilicon and Fluorocarbon Fed Plasmas. Contrib. Plasma Phys. 2011, 51, 137–142. [Google Scholar] [CrossRef]
- Hegemann, D.; Korner, E.; Guimond, S. Plasma Polymerization of Acrylic Acid Revisited. Plasma Proc. Polym. 2009, 6, 246–254. [Google Scholar] [CrossRef]
- Jansen, H.; Gardeniers, H.; Boer, M.; Elwenspoek, M.; Fluitman, J. A survey on the reactive ion etching of silicon in microtechnology. J. Micromech. Microeng. 1996, 6, 14–28. [Google Scholar] [CrossRef]
- Zhang, L.X.; Sun, Z.; Qi, J.L.; Shi, J.M.; Hao, T.D.; Feng, J.C. Understanding the growth mechanism of vertically aligned graphene and control of its wettability. Carbon 2016, 103, 339–345. [Google Scholar] [CrossRef]
- Vizireanu, S.; Nistor, L.; Haupt, M.; Katzenmaier, V.; Oehr, C.; Dinescu, G. Carbon nanowalls growth by radiofrequency plasma-beam-enhanced chemical vapor deposition. Plasma Process. Polym. 2008, 5, 263–268. [Google Scholar] [CrossRef]
- Vizireanu, S.; Mitu, B.; Luculescu, C.R.; Nistor, L.C.; Dinescu, G. PECVD synthesis of 2D nanostructured carbon material. Surf. Coat. Technol. 2012, 211, 2–8. [Google Scholar] [CrossRef]
- González, Z.; Vizireanu, S.; Dinescu, G.; Blanco, C.; Santamaría, R. Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries. Nano Energy 2012, 1, 833–839. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors.
Sample | F (%) | C (%) | O (%) | N (%) | F/C Ratio |
---|---|---|---|---|---|
PTFE target | 68.40 | 31.60 | - | - | 2.16 |
PTFE-like films | 49.70 | 45.86 | 3.43 | 1.01 | 1.08 |
Components | Position | Concentration CNW + SF6 | Concentration CNW + C2H2F4 |
---|---|---|---|
(eV) | % | % | |
C1 | 283.4 | 5.6 | 9.8 |
C2 | 284.5 | 30.7 | 25.9 |
C3 | 285.5 | 19.5 | 18.1 |
C4 | 286.6 | 14.4 | 15.6 |
C5 | 288.4 | 19.1 | 15.0 |
C6 | 290.0 | 8.6 | 3.2 |
C7 | 292.0 | 2.1 | 12.4 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satulu, V.; Ionita, M.D.; Vizireanu, S.; Mitu, B.; Dinescu, G. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability. Molecules 2016, 21, 1711. https://doi.org/10.3390/molecules21121711
Satulu V, Ionita MD, Vizireanu S, Mitu B, Dinescu G. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability. Molecules. 2016; 21(12):1711. https://doi.org/10.3390/molecules21121711
Chicago/Turabian StyleSatulu, Veronica, Maria Daniela Ionita, Sorin Vizireanu, Bogdana Mitu, and Gheorghe Dinescu. 2016. "Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability" Molecules 21, no. 12: 1711. https://doi.org/10.3390/molecules21121711
APA StyleSatulu, V., Ionita, M. D., Vizireanu, S., Mitu, B., & Dinescu, G. (2016). Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability. Molecules, 21(12), 1711. https://doi.org/10.3390/molecules21121711