New Biopolymer Nanoparticles Improve the Solubility of Lipophilic Megestrol Acetate
Abstract
:1. Introduction
2. Results and Discussion
2.1.Structural Analysis
2.2.GCP and HPLC Analysis
2.3. Cytotoxicity Assay
2.4. Solubility
Surfactant Concentration | Solubility (mg/100 mL) in Three Different pH | ||
---|---|---|---|
5.0 | 7.4 | 9.0 | |
0.5% Tween 80 | 6.976 NC | 7.873 NC | 5.514 NC |
2.406 C | 2.146 C | 2.280 C | |
1% Tween 80 | 12.960 NC | 11.359 NC | 10.595 NC |
5.580 C | 4.754 C | 4.279 C | |
1% Pluronic F68 | 3.021 NC | 2.621 NC | 2.322 NC |
0.191 C | 0.178 C | 0.235 C | |
2% Pluronic F68 | 1.631 NC | 2.098 NC | 1.894 NC |
0.102 C | 0.206 C | 0.184 C | |
1% Rofam 70 | 6.696 NC | 5.228 NC | 6.233 NC |
2.526 C | 2.773 C | 2.288 C | |
2% Rofam 70 | 10.385 NC | 7.541 NC | 7.352 NC |
5.187 C | 4.906 C | 4.749 C |
3. Materials and Methods
3.1. Structure Analysis
3.1.1. Mass Spectroscopy
- -
- proportion of temple solutions:sample:salt = 25 µL:5 µL:0/1 µL; 25 µL:10 µL:0/1 µL; 10 µL:10 µL:0 µL; 5 µL:10 µL:0 µL; 5 µL:20 µL:0 µL
- -
- applied 1 µL of mixture.
3.1.2. GPC and HPLC Analysis
3.2. Cytotoxicity
3.2.1. Cell Culture
3.2.2. Cytotoxicity Assay
3.3. Solubility Determination
3.3.1. Method I
3.3.2. Method II
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Agrawal, A.G.; Kumar, A.; Gide, P.S. Self emulsifying drug delivery system for enhanced solubility and dissolution of glipizide. Colloids Surf. B Biointerfaces 2015, 126, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Sylvestre, J.P.; Tang, M.C.; Furtos, A.; Leclair, G.; Meunier, M.; Leroux, J.C. Nanonization of megestrol acetate by laser fragmentation in aqueous milieu. J. Control. Release 2011, 149, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, D.S.; Pipaliya, R.M.; Surti, N. Liquisolid Tablets for Dissolution Enhancement of a Hypolipidemic Drug. Indian J. Pharm. Sci. 2015, 77, 290–298. [Google Scholar] [PubMed]
- Gurram, A.K.; Deshpande, P.B.; Kar, S.S.; Nayak, U.Y.; Udupa, N.; Reddy, M.S. Role of components in the formation of self-microemulsifying drug delivery systems. Indian J. Pharm. Sci. 2015, 77, 249–257. [Google Scholar] [PubMed]
- Potrč, T.; Baumgartner, S.; Roškar, R.; Planinšek, O.; Lavrič, Z.; Kristl, J.; Kocbek, P. Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. Eur. J. Pharm. Sci. 2015, 75, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, A.Z.; Noori, S.; Kabir-ud-Din. Effect of surfactant structure on the mixed micelle formation of cationic gemini-zwitterionic phospholipid systems. Colloids Surf. A Physicochem. Eng. Asp. 2015, 477, 9–18. [Google Scholar] [CrossRef]
- Parvataneni, D.M.; Devraj, R.; Mangamoori, L.N. Microparticles-entrapped micelles: A novel delivery system to improve solubility and dissolution rate of poorly water-soluble valsartan. J. Microencapsul. 2013, 30, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, K.; Takata, N.; Takano, R.; Hayashi, Y.; Terada, K. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm. Res. 2008, 25, 2581–2592. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.K. Nanoparticles in modern medicine: State of the art and future challenges. Int. J. Nanomed. 2007, 2, 129–141. [Google Scholar]
- De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef]
- Malam, Y.; Lim, E.J.; Seifalian, A.M. Current trends in the application of nanoparticles in drug delivery. Curr. Med. Chem. 2011, 18, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Shiu, Y.P.; Tang, Y.M.; Zhang, X.F.; Ge, J.; Pu, Z.C. Adjuvant chemotherapy of megestrol acetate in advanced breast cancer: A meta-analysis. Bangladesh J. Pharmacol. 2015, 10, 383–392. [Google Scholar] [CrossRef]
- Von Haehling, S.; Anker, S.D. Treatment of cachexia: An overview of recent development. J. Am. Med. Dir. Assoc. 2014, 15, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Yamini, Y.; Tayyebi, M.; Moradi, M.; Vatanara, A. Solubility of megestrol acetate and levonorgestrel in supercritical carbon dioxide. Thermochim. Acta 2013, 569, 48–54. [Google Scholar] [CrossRef]
- Bines, J.; Dienstmann, R.; Obadia, R.M.; Branco, L.G.; Quintella, D.C.; Castro, T.M.; Camacho, P.G.; Soares, F.A.; Costa, M.E. Activity of megestrol acetate in postmenopausal women with advanced breast cancer after nonsteroidal aromatase inhibitor failure: A phase II trial. Ann. Oncol. 2014, 25, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Engelmaier, A.; Anderle, H.; Schwarz, H.P. Method for the Determination of Polysorbate 80. Baxter Healthcare S.A., Baxter International Inc. U.S. Patent 20,120,225,487 A1, 6 September 2012. [Google Scholar]
- Renkin, M.; Fleurackers, S.; Szwach, I.; Hreczuch, W. Rapeseed Methyl Ester Ethoxylates: A New Class of Surfactants of Environmental and Commercial Interest. Tenside Surfactants Deterg. 2005, 42, 280–287. [Google Scholar] [CrossRef]
- Smidrkal, J.; Vokacova, M.; Polakova, L.; Filip, V.; Machkova, K. Properties of Oxyethylenated Fatty Acid Methyl Esters and Ethyl Esters; Hydrolysis, Critical Micelle Concentrations and Foaming. Tenside Surfactants Deterg. 2008, 45, 249–253. [Google Scholar] [CrossRef]
- Kumar, S.; Bhargava, D.; Thakkar, A.; Arora, S. Drug carrier systems for solubility enhancement of BCS class II drugs: A critical review. Crit. Rev. Ther. Drug Carr. Syst. 2013, 30, 217–256. [Google Scholar] [CrossRef]
- Ha, E.S.; Kim, J.S.; Baek, I.H.; Yoo, J.W.; Jung, Y.; Moon, H.R.; Kim, M.S. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process. Drug Des. Dev. Ther. 2015, 9, 4269–4277. [Google Scholar]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012. [Google Scholar] [CrossRef] [PubMed]
- Gelperina, S.; Kisich, K.; Iseman, M.D.; Heifets, L. The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis. Am. J. Respir. Crit. Care Med. 2005, 172, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Grbic, S.; Parojcic, J.; Djuric, Z.; Ibric, S. Mathematical modeling of pH-surfactant-mediated solubilization of nimesulide. Drug Dev. Ind. Pharm. 2009, 35, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, K. Novel Surfactants—Preparation, Applications and Biodegradability; Surfactant Science Series; Marvel Dekker Inc.: New York, NY, USA, 2003; Volume 114. [Google Scholar]
- Sample Availability: Sample of Rofam 70 is available from the authors.
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachowicz, M.; Kołodziejczyk, M.; Lukosek, M.; Kosno, J.; Olszewska, P.; Szymański, P. New Biopolymer Nanoparticles Improve the Solubility of Lipophilic Megestrol Acetate. Molecules 2016, 21, 197. https://doi.org/10.3390/molecules21020197
Lachowicz M, Kołodziejczyk M, Lukosek M, Kosno J, Olszewska P, Szymański P. New Biopolymer Nanoparticles Improve the Solubility of Lipophilic Megestrol Acetate. Molecules. 2016; 21(2):197. https://doi.org/10.3390/molecules21020197
Chicago/Turabian StyleLachowicz, Malwina, Michał Kołodziejczyk, Marek Lukosek, Jacek Kosno, Paulina Olszewska, and Paweł Szymański. 2016. "New Biopolymer Nanoparticles Improve the Solubility of Lipophilic Megestrol Acetate" Molecules 21, no. 2: 197. https://doi.org/10.3390/molecules21020197
APA StyleLachowicz, M., Kołodziejczyk, M., Lukosek, M., Kosno, J., Olszewska, P., & Szymański, P. (2016). New Biopolymer Nanoparticles Improve the Solubility of Lipophilic Megestrol Acetate. Molecules, 21(2), 197. https://doi.org/10.3390/molecules21020197