Catechin Hydrate Augments the Antibacterial Action of Selected Antibiotics against Staphylococcus aureus Clinical Strains
Abstract
:1. Introduction
2. Results
2.1. Identification of Examined Strains
2.2. Antimicrobial Activity of the Catechin Hydrate (CH)
2.3. Combined in Vitro Effects of CH and Antibiotics
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and CH
4.2. Identification of Examined Strains
4.3. Determination of Methicillin Resistance Profiles
4.4. Disk Diffusion Method
4.5. Microdilution Method
4.6. The Synergistic Effect of CH and Antibiotics
4.7. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CFU | colony forming-unit |
CH | catechin hydrate |
DA | clindamycin |
E | erythromycin |
EUCAST | European Committee for Antimicrobial Susceptibility Testing |
FOX | cefoxitin |
iMLSB | inducible macrolide, lincosamide and streptogramin B mechanism |
kMLSB | constitutive macrolide, lincosamide and streptogramin B mechanism |
MHA | Mueller-Hinton agar |
MIC | minimal inhibitory concentration |
MRSA | methicillin resistance Staphylococcus aureus |
MSSA | methicillin susceptible Staphylococcus aureus |
VA | vancomycin |
References
- Wojtyczka, R.D.; Dziedzic, A.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Mularz, T.; Idzik, D. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro. Molecules 2014, 19, 6583–6596. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Mikrobiologia; Elsevier Urban & Partner: Wrocław, Poland, 2011; Volume 6, pp. 161–164, 195–203 and 205–210. [Google Scholar]
- Qin, R.; Xiao, K.; Li, B.; Jiang, W.; Peng, W.; Zheng, J.; Zhou, H. The combination of catechin and epicatechin callate from Fructus Crataegi potentiates beta-lactam antibiotics against methicillin-resistant staphylococcus aureus (MRSA) in vitro and in vivo. Int. J. Mol. Sci. 2013, 14, 1802–1821. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.W.; Stapleton, P.D.; Paul Luzio, J. New ways to treat bacterial infections. Drug Discov. Today 2002, 7, 1086–1091. [Google Scholar] [CrossRef]
- Kyaw, B.M.; Arora, S.; Lim, C.S. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus. Braz. J. Microbiol. 2012, 43, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Wojtyczka, R.D.; Dziedzic, A.; Idzik, D.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Smoleń-Dzirba, J.; Stojko, J.; Sajewicz, M.; Wąsik, T.J. Susceptibility of Staphylococcus aureus clinical isolates to propolis extract alone or in combination with antimicrobial drugs. Molecules 2013, 18, 9623–9640. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol. 2011, 137, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Jiang, Y.; Xia, L.; Xiang, H.; Feng, H.; Pu, S.; Huang, N.; Yu, L.; Deng, X. Subinhibitory concentrations of licochalcone A decrease alpha-toxin production in both methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Lett. Appl. Microbiol. 2010, 50, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Deng, X.; Qiu, J. Antimicrobial activity of Licochalcone E against Staphylococcus aureus and its impact on the production of staphylococcal alpha-toxin. J. Microbiol. Biotechnol. 2012, 22, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Silva, F.; Sousa, S.; Duarte, A.P.; Domingues, F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 2014, 30, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 2012, 28, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Miklasińska, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Zdebik, A.; Orlewska, K.; Wąsik, T.J. Antibacterial activity of protocatechuic acid ethyl ester on Staphylococcus aureus clinical strains alone and in combination with antistaphylococcal drugs. Molecules 2015, 20, 13536–13549. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y. Novel uses of catechin in foods. Trends Food Sci. Technol. 2006, 17, 64–71. [Google Scholar] [CrossRef]
- Moini, H.; Guo, Q.; Packe, L. Xanthine oxidase and xanthine dehydrogenase inhibition by the procyanidin-rich French maritime pine bark extract, pycnogenol: A protein binding effect. Adv. Exp. Med. Biol. 2002, 505, 141–149. [Google Scholar] [PubMed]
- Scott, B.C.; Butler, J.; Halliwell, B.; Aruoma, O.I. Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radic. Res. Commun. 1993, 19, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, L.R.; Mazza, G.J. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Morel, I.; Lescoat, G.; Cogrel, P.; Sergent, O.; Pasdeloup, N.; Brissot, P.; Cillard, P.; Cillard, J. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem. Pharmacol. 1993, 45, 13–19. [Google Scholar] [CrossRef]
- Holloway, A.C.; Mueller-Harvey, I.; Gould, S.W.J.; Fielder, M.D.; Naughton, D.P.; Kelly, A.F. The effect of copper(II), iron(II) sulphate, and vitamin C combinations on the weak antimicrobial activity of (+)-catechin against Staphylococcus aureus and other microbes. Metallomics 2012, 4, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Al-Hazzani, A.A.; Alshatwi, A.A. Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem. Toxicol. 2011, 49, 3281–3286. [Google Scholar] [CrossRef] [PubMed]
- Alshatwi, A.A. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J. Exp. Clin. Cancer Res. 2010, 17, 167. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.S.; Pizza, C. Observations on the inhibition of HIV-1 reverse transcriptase by catechins. Biochem. J. 1992, 15, 717–719. [Google Scholar] [CrossRef]
- Yam, T.S.; Hamilton-Miller, J.M.; Shah, S. The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and beta-lactamase production in Staphylococcus aureus. J. Antimicrob. Chemother. 1998, 42, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.D.; Shah, S.; Hamilton-Miller, J.M.; Hara, Y.; Nagaoka, Y.; Kumagai, A.; Uesato, S.; Taylor, P.W. Anti-Staphylococcus aureus activity and oxacillin resistance modulating capacity of 3-O-acyl-catechins. Int. J. Antimicrob. Agents 2004, 24, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Caturla, N.; Vera-Samper, E.; Villalaín, J.; Mateo, C.R.; Micol, V. The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radic. Biol. Med. 2003, 34, 648–662. [Google Scholar] [CrossRef]
- Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta 1993, 1147, 132–136. [Google Scholar] [CrossRef]
- Kajiya, K.; Kumazawa, S.; Nakayama, T. Steric effects on interaction of tea catechins with lipid bilayers. Biosci. Biotechnol. Biochem. 2001, 65, 2638–2643. [Google Scholar] [CrossRef] [PubMed]
- Kajiya, K.; Kumazawa, S.; Nakayama, T. Effects of external factors on the interaction of tea catechins with lipid bilayers. Biosci. Biotechnol. Biochem. 2002, 66, 2330–2335. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.D.; Shah, S.; Anderson, J.C.; Hara, Y.; Hamilton-Miller, J.M.; Taylor, P.W. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int. J. Antimicrob. Agents 2004, 23, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.D.; Taylor, P.W. Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci. Prog. 2002, 85, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.H.; Hu, Z.Q.; Okubo, S.; Hara, Y.; Shimamura, T. Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Bernal, P.; Lemaire, S.; Pinho, M.G.; Mobashery, S.; Hinds, J.; Taylor, P.W. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated beta-lactam resistance by delocalizing PBP2. J. Biol. Chem. 2010, 285, 24055–24065. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, S.; Moser, E.; Kaatz, G.W. Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Planta Med. 2004, 70, 1240–1242. [Google Scholar] [CrossRef] [PubMed]
- Shiota, S.; Shimizu, M.; Mizushima, T.; Ito, H.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Marked reduction in the minimum inhibitory concentration (MIC) of beta-lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis). Biol. Pharm. Bull. 1999, 22, 1388–1390. [Google Scholar] [CrossRef] [PubMed]
- Hamilton-Miller, J.M.; Shah, S. Activity of the tea component epicatechin gallate and analogues against methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2000, 46, 852–853. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Xiao, P.; Fujita, K. Anti-MRSA activity of alkyl gallates. Bioorg. Med. Chem. Lett. 2002, 12, 113–116. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Zhao, W.H.; Asano, N.; Yoda, Y.; Hara, Y.; Shimamura, T. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.Q.; Zhao, W.H.; Hara, Y.; Shimamura, T. Epigallocatechin gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2001, 48, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, O.M.; Kiendrebeogo, M.; Rajaonson, S.; Diallo, B.; Mol, A.; El Jaziri, M.; Baucher, M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 2010, 76, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Choi, O.; Yahiro, K.; Morinaga, N.; Miyazaki, M.; Noda, M. Inhibitory effects of various plant polyphenols on the toxicity of Staphylococcal alpha-toxin. Microb. Pathog. 2007, 42, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Loes, A.N.; Ruyle, L.; Arvizu, M.; Gresko, K.E.; Wilson, A.L.; Deutch, C.E. Inhibition of urease activity in the urinary tract pathogen Staphylococcus saprophyticus. Lett. Appl. Microbiol. 2014, 58, 31–41. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. EUCAST definitive document E. Def 1.2. Clin. Microbiol. Infect. 2000, 6, 503–508. [Google Scholar]
- Taylor, P.W.; Hamilton-Miller, J.M.T.; Stapleton, P.D. Antimicrobial properties of green tea catechins. Food Sci. Technol. Bull. 2005, 2, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Park, K.D.; Cho, S.J. Synthesis and antimicrobial activities of 3-O-alkyl analogues of (+)-catechin: Improvement of stability and proposed action mechanism. Eur. J. Med. Chem. 2010, 45, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.M.; Iihara, H.; Noda, M.; Song, S.X.; Nhung, P.H.; Ohkusu, K.; Kawamura, Y.; Ezaki, T. dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int. J. Syst. Evol. Microbiol. 2007, 57, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Minamide, W.; Wada, K.; Nakamura, E.; Teraoka, H.; Watanabe, S. Identification of methicillin-resistant strains of Staphylococci by polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 2240–2244. [Google Scholar] [PubMed]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemoter. 2001, 48, 5–16. [Google Scholar] [CrossRef]
- Amsterdam, D. Susceptibility testing of antimicrobials in liquid media. In Antibiotics in Laboratory Medicine, 5th ed.; Loman, V., Ed.; Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 61–143. [Google Scholar]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determinantion of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. EUCAST discussion document E. Dis 5.1. Clin. Microbiol. Infect. 2003, 9. [Google Scholar] [CrossRef]
- Cudic, M.; Condie, B.A.; Weiner, D.J.; Lysenko, E.S.; Xiang, Z.Q.; Insug, O.; Bulet, P.; Otvos, L., Jr. Development of novel antibacterial peptides that kill resistant clinical isolates. Peptides 2002, 23, 2071–2083. [Google Scholar] [CrossRef]
- Devienne, K.F.; Raddi, M.S.G. Screening for antimicrobial activity of natural Products using a microplate photometer. Braz. J. Microbiol. 2002, 33, 166–168. [Google Scholar] [CrossRef]
- Fernandes, A., Jr.; Balestrin, E.C.; Betoni, J.E.C.; Orsi, R.O.; da Cunha, M.R.S.; Montelli, A.C. Propolis: Anti-Staphylococcus aureus activity and synergism with antimicrobial drugs. Mem. Inst. Os. Cruz 2005, 100, 563–566. [Google Scholar] [CrossRef]
- Mahon, C.R.; Manuselis, J.R.G. Textbook of Diagnostic Microbiology; W.B. Saunders: Philadelphia, PA, USA, 1995. [Google Scholar]
- Sample Availability: Samples of the compounds and clinical strains are available from the authors.
Strain | Cefoxitin Diameter of the Inhibition Zone (mm) | Presence of mecA | Methicillin Resistance Profile | Erythromycin Diameter of the Inhibition Zone (mm) | Clindamycin Diameter of the Inhibition Zone (mm) | Mechanism of Resistance to MLSB Antibiotics | CH MIC (µg/mL) |
---|---|---|---|---|---|---|---|
S. aureus ATCC 25923 | 35 | − | MSSA | 25 | 25 | - | 2048 |
S. aureus ATCC 43300 | 21 | + | MRSA | 0 | 0 | kMLSB | 1024 |
S. aureus ATCC 6538 | 31 | + | MRSA * | 30 | 30 | - | 2048 |
S. aureus 1 | 34 | − | MSSA | 25 | 25 | - | 1024 |
S. aureus 2 | 32 | − | MSSA | 23 | 25 | - | 1024 |
S. aureus 3 | 31 | − | MSSA | 0 | 25 | iMLSB | 2048 |
S. aureus 4 | 32 | + | MRSA * | 25 | 27 | - | 1024 |
S. aureus 5 | 13 | + | MRSA | 0 | 30 | iMLSB | 1024 |
S. aureus 6 | 31 | − | MSSA | 30 | 35 | - | 1024 |
S. aureus 7 | 32 | + | MRSA * | 35 | 33 | - | 1024 |
S. aureus 8 | 31 | − | MSSA | 30 | 35 | - | 1024 |
S. aureus 9 | 30 | + | MRSA * | 35 | 25 | - | 1024 |
S. aureus 10 | 31 | − | MSSA | 10 | 22 | iMLSB | 256 |
S. aureus 11 | 31 | − | MSSA | 21 | 22 | - | 1024 |
S. aureus 12 | 8 | + | MRSA | 0 | 0 | kMLSB | 1024 |
S. aureus 13 | 14 | + | MRSA | 0 | 0 | kMLSB | 1024 |
S. aureus 14 | 0 | + | MRSA | 0 | 0 | kMLSB | 2048 |
S. aureus 15 | 21 | + | MRSA | 25 | 30 | - | 1024 |
S. aureus 16 | 18 | + | MRSA | 0 | 0 | kMLSB | 1024 |
S. aureus 17 | 11 | + | MRSA | 0 | 0 | kMLSB | 1024 |
S. aureus 18 | 19 | + | MRSA | 25 | 30 | - | 256 |
S. aureus 19 | 14 | + | MRSA | 0 | 0 | kMLSB | 1024 |
S. aureus 20 | 19 | + | MRSA | 0 | 0 | kMLSB | 256 |
Bacterial Strain | E | E + CH | ∆% | DA | DA + CH | ∆% | FOX | FOX+CH | ∆% | VA | VA + CH | ∆% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus ATCC 25923 | 0.38 | 0.50 | 32% | 0.064 | 0.064 | 0% | 1 | 1 | 0% | 0.75 | 1 | 33% |
S. aureus ATCC 43300 | 256 | 256 | 0% | 256 | 256 | 0% | 12 | 8 | −33% | 0.38 | 0.75 | 97% |
S. aureus ATCC 6538 | 0.064 | 0.19 | 197% | 0.023 | 0.032 | 39% | 2 | 1.5 | −25% | 0.50 | 0.38 | −24% |
S. aureus 1 | 0.50 | 0.19 | −62% | 0.064 | 0.032 | −50% | 2 | 1.5 | −25% | 0.75 | 0.50 | −33% |
S. aureus 2 | 0.50 | 0.25 | −50% | 0.064 | 0.064 | 0% | 0.75 | 1.5 | 100% | 0.38 | 0.75 | 97% |
S. aureus 3 | 256 | 256 | 0% | 0.023 | 0.016 | −30% | 1.5 | 1.5 | 0% | 0.50 | 0.50 | 0% |
S. aureus 4 | 0.38 | 0.064 | −83% | 0.064 | 0.023 | −64% | 2 | 1.5 | −25% | 0.50 | 0.38 | −24% |
S. aureus 5 | 256 | 4 | −98% | 0.094 | 0.064 | −32% | 256 | 24 | −91% | 0.75 | 0.50 | −33% |
S. aureus 6 | 0.50 | 0.25 | −50% | 0.064 | 0.032 | −50% | 1.5 | 2 | 33% | 0.38 | 0.38 | 0% |
S. aureus 7 | 0.38 | 0.125 | −67% | 0.032 | 0.016 | −50% | 1 | 0.25 | −75% | 0.50 | 0.25 | −50% |
S. aureus 8 | 0.19 | 0.064 | −66% | 0.032 | 0.016 | −50% | 1.5 | 1 | −33% | 0.38 | 0.50 | 32% |
S. aureus 9 | 0.38 | 0.19 | −50% | 0.064 | 0.016 | −75% | 1 | 2 | 100% | 0.38 | 0.50 | 32% |
S. aureus 10 | 32 | 32 | 0% | 0.047 | 0.047 | 0% | 2 | 2 | 0% | 0.38 | 0.38 | 0% |
S. aureus 11 | 0.38 | 0.094 | −75% | 0.047 | 0.023 | −51% | 1.5 | 2 | 33% | 0.38 | 0.25 | −34% |
S. aureus 12 | 256 | 256 | 0% | 256 | 256 | 0% | 256 | 256 | 0% | 0.75 | 0.50 | −33% |
S. aureus 13 | 256 | 256 | 0% | 256 | 256 | 0% | 32 | 32 | 0% | 0.75 | 0.50 | −33% |
S. aureus 14 | 256 | 256 | 0% | 256 | 256 | 0% | 256 | 256 | 0% | 0.75 | 0.50 | −33% |
S. aureus 15 | 0.25 | 0.38 | 52% | 0.064 | 0.047 | −27% | 8 | 6 | −25% | 0.38 | 0.75 | 97% |
S. aureus 16 | 256 | 256 | 0% | 256 | 256 | 0% | 256 | 256 | 0% | 0.50 | 0.50 | 0% |
S. aureus 17 | 256 | 256 | 0% | 256 | 256 | 0% | 256 | 2 | −99% | 0.38 | 0.38 | 0% |
S. aureus 18 | 0.38 | 0.25 | −34% | 0.047 | 0.047 | 0% | 6 | 1 | −83% | 0.50 | 0.38 | −24% |
S. aureus 19 | 256 | 256 | 0% | 256 | 256 | 0% | 256 | 256 | 0% | 0.50 | 0.50 | 0% |
S. aureus 20 | 256 | 256 | 0% | 256 | 256 | 0% | 12 | 4 | −67% | 0.38 | 0.38 | 0% |
Median | 0.5 | 0.5 | 0 | 0.064 | 0.047 | 0 | 2 | 2 | 0 | 0.50 | 0.5 | 0 |
Q1 | 0.38 | 0.19 | 0 | 0.047 | 0.023 | 0 | 1.5 | 1,5 | 0 | 0.38 | 0.38 | −32 |
Q3 | 256 | 256 | 62 | 256 | 256 | 50 | 256 | 32 | 33 | 0.75 | 0.5 | 33 |
p | 0.009 | 0.006 | 0.064 | 0.605 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miklasińska, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Dziedzic, A.; Wąsik, T.J. Catechin Hydrate Augments the Antibacterial Action of Selected Antibiotics against Staphylococcus aureus Clinical Strains. Molecules 2016, 21, 244. https://doi.org/10.3390/molecules21020244
Miklasińska M, Kępa M, Wojtyczka RD, Idzik D, Dziedzic A, Wąsik TJ. Catechin Hydrate Augments the Antibacterial Action of Selected Antibiotics against Staphylococcus aureus Clinical Strains. Molecules. 2016; 21(2):244. https://doi.org/10.3390/molecules21020244
Chicago/Turabian StyleMiklasińska, Maria, Małgorzata Kępa, Robert D. Wojtyczka, Danuta Idzik, Arkadiusz Dziedzic, and Tomasz J. Wąsik. 2016. "Catechin Hydrate Augments the Antibacterial Action of Selected Antibiotics against Staphylococcus aureus Clinical Strains" Molecules 21, no. 2: 244. https://doi.org/10.3390/molecules21020244
APA StyleMiklasińska, M., Kępa, M., Wojtyczka, R. D., Idzik, D., Dziedzic, A., & Wąsik, T. J. (2016). Catechin Hydrate Augments the Antibacterial Action of Selected Antibiotics against Staphylococcus aureus Clinical Strains. Molecules, 21(2), 244. https://doi.org/10.3390/molecules21020244