Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex
Abstract
:1. Introduction
2. Results
2.1. HPLC Method Validation
2.2. In Vivo Microdialysis Recovery
2.3. Blood Pharmacokinetics of Maleic Acid
2.4. Kidney Pharmacokinetics of Maleic Acid
3. Discussion
4. Experimental Section
4.1. Chemicals and Reagents
4.2. Experimental Animals
4.3. HPLC Instrumentation
4.4. Method Validation
4.5. Microdialysis Experiments
4.6. Recovery Assessment of Microdialysis Probes
4.7. Pharmacokinetics
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AUC | Area under the concentration versus time curve |
Cmax | The peak plasma concentration of a drug after administration |
T1/2 | Elimination half-life |
CL | Total body clearance |
MRT | Mean residence time |
Vd | Volume of distribution |
CE | Capillary electrophoresis |
LOD | The limit of detection |
LOQ | The limit of quantification |
AIC | Akaike’s information criterion |
HPLC-PDA | High performance liquid chromatography photodiode array |
IC | Ion chromatography |
References
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Final report of the Amended Safety Assessment of PVM/MA copolymer and its related salts and esters as used in cosmetics. Int. J. Toxicol. 2011, 30 (Suppl. 5), 128s–144s. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, S.A.; Collette, W., 3rd; Gukasyan, H.J.; Huang, W. An assessment of the ocular safety of excipient maleic acid following intravitreal injection in rabbits. Toxicol. Pathol. 2012, 40, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Ballal, N.V.; Rao, B.N.; Mala, K.; Bhat, K.S.; Rao, B.S. Assessment of genotoxic effect of maleic acid and EDTA: A comparative in vitro experimental study. Clin. Oral Investig. 2013, 17, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Everett, R.M.; Descotes, G.; Rollin, M.; Greener, Y.; Bradford, J.C.; Benziger, D.P.; Ward, S.J. Nephrotoxicity of pravadoline maleate (WIN 48098-6) in dogs: Evidence of maleic acid-induced acute tubular necrosis. Fundam. Appl. Toxicol. 1993, 21, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Castano, E.; Marzabal, P.; Casado, F.J.; Felipe, A.; Pastor-Anglada, M. Na+,K+-ATPase expression in maleic-acid-induced Fanconi syndrome in rats. Clin. Sci. (Lond., Engl. 1979) 1997, 92, 247–253. [Google Scholar] [CrossRef]
- Sawas-Dimopoulou, C.; Sigalas, I.; Margaritis, L. Induction of an experimental Fanconi syndrome in mice: Its effect on the glomerular filtration function studied by 99mTc-DTPA. Nucl. Med. Boil. 1996, 23, 807–812. [Google Scholar] [CrossRef]
- Shikano, N.; Nakajima, S.; Kotani, T.; Itoh, Y.; Nishii, R.; Yoshimoto, M.; Flores, L.G., 2nd; Saji, H.; Ishikawa, N.; Kawai, K. Detection of maleate-induced Fanconi syndrome by decreasing accumulation of 125I-3-iodo-alpha-methyl-l-tyrosine in the proximal tubule segment-1 region of renal cortex in mice: A trial of separate evaluation of reabsorption. Ann. Nucl. Med. 2006, 20, 175–181. [Google Scholar] [PubMed]
- Bergeron, M.; Mayers, P.; Brown, D. Specific effect of maleate on an apical membrane glycoprotein (gp330) in proximal tubule of rat kidneys. Am. J. Physiol. 1996, 271 (4 Pt 2), F908–F916. [Google Scholar] [PubMed]
- He, J.F.; Yang, W.Y.; Yao, F.J.; Zhao, H.; Li, X.J.; Yuan, Z.B. Determination of fumaric and maleic acids with stacking analytes by transient moving chemical reaction boundary method in capillary electrophoresis. J. Chromatogr. A 2011, 1218, 3816–3821. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.I.; Hsieh, L.Y.; Weng, T.H.; Ma, Y.C.; Kuo, S.C. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography. Anal. Chim. Acta 2008, 626, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Mazzo, D.J. Simultaneous determination of maleic acid and timolol by high-performance liquid chromatography. J. Chromatogr. 1984, 299, 503–507. [Google Scholar] [CrossRef]
- Suarez-Luque, S.; Mato, I.; Huidobro, J.F.; Simal-Lozano, J.; Sancho, M.T. Rapid determination of minority organic acids in honey by high-performance liquid chromatography. J. Chromatogr. A 2002, 955, 207–214. [Google Scholar] [CrossRef]
- Cartwright, A.J.; Jones, P.; Wolff, J.C.; Evans, E.H. Derivatisation of carboxylic acid groups in pharmaceuticals for enhanced detection using liquid chromatography with electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrum. RCM 2005, 19, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Gottardo, R.; Bortolotti, F.; Trettene, M.; De Paoli, G.; Tagliaro, F. Rapid and direct analysis of γ-hydroxybutyric acid in urine by capillary electrophoresis-electrospray ionization ion-trap mass spectrometry. J. Chromatogr. A 2004, 1051, 207–211. [Google Scholar] [CrossRef]
- Garrison, K.E.; Pasas, S.A.; Cooper, J.D.; Davies, M.I. A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics. Eur. J. Pharm. Sci. 2002, 17, 1–12. [Google Scholar] [CrossRef]
- Wesson, D.E.; Jo, C.H.; Simoni, J. Angiotensin II receptors mediate increased distal nephron acidification caused by acid retention. Kidney Int. 2012, 82, 1184–1194. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, C.S. In vivo microdialysis sampling: Theory and applications. Biomed. Chromatogr. BMC 1999, 13, 317–332. [Google Scholar] [CrossRef]
- Davies, M.I.; Cooper, J.D.; Desmond, S.S.; Lunte, C.E.; Lunte, S.M. Analytical considerations for microdialysis sampling. Adv. Drug Deliv. Rev. 2000, 45, 169–188. [Google Scholar] [CrossRef]
- Holmgaard, R.; Nielsen, J.B.; Benfeldt, E. Microdialysis sampling for investigations of bioavailability and bioequivalence of topically administered drugs: Current state and future perspectives. Skin Pharmacol. Physiol. 2010, 23, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H. Assaying protein unbound drugs using microdialysis techniques. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 797, 161–173. [Google Scholar] [CrossRef]
- Christenson, W.R.; Davis, M.E.; Berndt, W.O. Alterations in the renal function of male and female rats exposed to maleic acid, dichloromaleic acid, and both compounds. Toxicology 1989, 56, 229–238. [Google Scholar] [CrossRef]
- Eiam-Ong, S.; Spohn, M.; Kurtzman, N.A.; Sabatini, S. Insights into the biochemical mechanism of maleic acid-induced Fanconi syndrome. Kidney Int. 1995, 48, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.M.; Hou, M.L.; Lin, L.C.; Tsai, T.H. Development of a microdialysis system to monitor lamivudine in blood and liver for the pharmacokinetic application in herbal drug interaction and the gene expression in rats. J. Pharm. Biomed. Anal. 2014, 96, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds maleic acid are available from the authors.
Nominal Concentration (µg/mL) | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|
Observed Concentration (µg/mL) | Precision (% RSD) | Accuracy (% Bias) | Observed Concentration (µg/mL) | Precision (% RSD) | Accuracy (% Bias) | |
Plasma | ||||||
0.5 | 0.48 ± 0.01 | 1.13 | −4.21 | 0.52 ± 0.04 | 7.75 | 3.06 |
1 | 0.99 ± 0.01 | 1.15 | −0.83 | 1.00 ± 0.08 | 7.70 | 0.07 |
5 | 5.01 ± 0.02 | 0.41 | 0.11 | 5.06 ± 0.08 | 1.57 | 1.22 |
10 | 10.1 ± 0.04 | 0.38 | 0.92 | 9.88 ± 0.26 | 2.59 | −1.18 |
25 | 25.0 ± 0.01 | 0.05 | −0.15 | 25.0 ± 0.10 | 0.39 | 0.11 |
Kidney | ||||||
0.5 | 0.51 ± 0.03 | 6.37 | 1.47 | 0.51 ± 0.03 | 5.57 | 1.90 |
1 | 1.02 ± 0.04 | 3.84 | 1.83 | 0.99 ± 0.07 | 6.89 | −0.69 |
5 | 4.96 ± 0.04 | 0.81 | −0.73 | 5.03 ± 0.22 | 4.43 | 0.50 |
10 | 10.1 ± 0.15 | 1.47 | 0.71 | 9.94 ± 0.27 | 2.69 | −0.62 |
25 | 25.0 ± 0.04 | 0.16 | −0.04 | 25.0 ± 0.09 | 0.36 | 0.00 |
Concentration (µg/mL) | Recovery (%) |
---|---|
Blood | |
0.5 | 37.7 ± 0.74 |
5 | 31.6 ± 0.20 |
10 | 32.0 ± 2.12 |
Average | 33.8 ± 3.95 |
Kidney | |
0.5 | 31.5 ± 1.66 |
5 | 31.3 ± 3.08 |
10 | 29.8 ± 6.45 |
Average | 30.7 ± 4.51 |
Parameters | 10 mg/kg, i.v. | 30 mg/kg, i.v. |
---|---|---|
Blood | ||
AIC of one-compartment | 18 ± 2 | 46 ± 2 |
AIC of two-compartment | 25 ± 3 | 49 ± 2 |
AUC (min∙µg/mL) | 376 ± 33.4 | 1236 ± 124 |
Cmax (µg/mL) | 10.9 ± 1.08 | 32.1 ± 5.17 |
T1/2 (min) | 24.1 ± 1.19 | 28.4 ± 3.20 |
CL (mL/min/kg) | 27.4 ± 2.38 | 25.3 ± 2.54 |
MRT (min) | 34.7 ± 1.72 | 40.9 ± 4.62 |
Vd (mL/kg) | 975 ± 113 | 1050 ± 191 |
AUC/Dose | 37.6 | 41.2 |
Kidney | ||
Non-compartment | ||
AUC (min∙µg/mL) | 1997 ± 355 | 6784 ± 1538 |
Cmax (µg/mL) | 41.4 ± 5.04 | 134 ± 35.6 |
T1/2 (min) | 32.1 ± 5.69 | 22.3 ± 3.18 |
CL (mL/min/kg) | 5.45 ± 1.06 | 5.34 ± 1.15 |
MRT (min) | 31.8 ± 1.10 | 32.7 ± 2.16 |
Vd (mL/kg) | 209 ± 36.5 | 182 ± 41.9 |
AUC/Dose | 199.7 | 226.1 |
AUC ratio of (AUCkidney/AUCblood) | 5.31 | 5.49 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, M.-L.; Lu, C.-M.; Lin, C.-H.; Lin, L.-C.; Tsai, T.-H. Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex. Molecules 2016, 21, 367. https://doi.org/10.3390/molecules21030367
Hou M-L, Lu C-M, Lin C-H, Lin L-C, Tsai T-H. Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex. Molecules. 2016; 21(3):367. https://doi.org/10.3390/molecules21030367
Chicago/Turabian StyleHou, Mei-Ling, Chia-Ming Lu, Chi-Hung Lin, Lie-Chwen Lin, and Tung-Hu Tsai. 2016. "Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex" Molecules 21, no. 3: 367. https://doi.org/10.3390/molecules21030367
APA StyleHou, M. -L., Lu, C. -M., Lin, C. -H., Lin, L. -C., & Tsai, T. -H. (2016). Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex. Molecules, 21(3), 367. https://doi.org/10.3390/molecules21030367