Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys
Abstract
:1. Introduction
2. Analytical Methods for the Determination of the Phenolic Profile of Unifloral Honey
2.1. General Remarks
2.2. Extraction and Clean-Up
2.3. Analysis
2.4. Validation
3. Phenolic Profile as a Powerful Tool for Origin Classification and Evaluation of Health-Promoting Properties of Unifloral Honeys
3.1. Phenolic Compounds for the Classification of Botanical (or Geographical) Origin of Unifloral Honeys
3.2. Phenolic Compounds in the Health-Promoting Properties of Unifloral Honeys
4. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
HMF | 5-Hydroxymethyl-2-furaldehyde |
HPLC | High Pressure Liquid Chromatography |
SPE | Solid Phase Extraction |
p-HBA | para-HydroxyBenzoic Acid |
LLE | Liquid-Liquid Extraction |
TLC | Thin Layer Chromatography |
UHPLC | Ultra High Pressure Liquid Chromatography |
HESI | Heated ElectroSpray Interface |
MS | Mass Spectrometry |
DLLME | Dispersive Liquid-Liquid MicroExtraction |
UV | UltraViolet spectrophotometry detector |
DAD | Diode Array Detector |
TOF | Time Of Flight detector |
MWCNT | MultiWalled Carbon NanoTubes |
ECD | ElectroChemical Detector |
RSD | Relative Standard Deviation |
ASE | Accelerated Solvent Extraction |
RP | Reverse Phase |
MeOH | Methanol |
MeCN | Acetonitrile |
TFA | TriFluoroAcetic acid |
NIR | Near InfraRed spectroscopy |
FT-IR | Fourier Transform InfraRed spectroscopy |
ISO | International Organization for Standardization |
IEC | International Electrotechnical Commission |
EC | European Community |
FAO | Food and Agriculture Organization |
LOD | Limit Of Detection |
LOQ | limit Of Quantification |
CRM | Certificated Reference Material |
PCA | Principal Components Analysis |
DA | Discriminant Analysis |
PTR | Proton Transfer Reaction |
MANOVA | Multivariate Analysis Of the Variance |
FRAP | Ferric (ion) Reducing Antioxidant Power |
TPTZ | 2,4,6-tripyridyl-s-triazine |
DPPH | 2,2-diphenyl-1-picrylhydrazyl radical |
TEAC | Trolox equivalent antioxidant capacity |
ORAC | Oxygen Radical Absorbance Capacity |
QEAC | Quercetin Equivalent Antioxidant Content |
AEAC | Ascorbic acid Equivalent Antioxidant Content |
TBARS | ThioBArbituric Reactive Substances |
IC50 | 50% Inhibitory Concentration |
References
- Krell, R. Value-Added Products from Beekeeping; FAO Agricultural Service Bulletin No 124; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996; Available online: http://www.fao.org/docrep/w0076E/w0076E00.htm (accessed on 28 January 2016).
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Alvarez, J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 2008, 73, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Caravaca, A.M.; Gómez-Romero, M.; Arráez-Roman, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Advances in the analysis of phenolic compounds in products derived from bees. J. Pharm. Biomed. Anal. 2006, 41, 1220–1234. [Google Scholar] [CrossRef] [PubMed]
- Doner, L.W. The sugars of honey—A review. J. Sci. Food Agric. 1977, 28, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.R. The sugars of honey. Adv. Carbohydr. Chem. 1970, 25, 285–309. [Google Scholar]
- Anklam, E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 1998, 63, 549–562. [Google Scholar] [CrossRef]
- White, J.W., Jr. Honey. In Advances in Food Research; Academic Press: New York, NY, USA, 1978; Volume 24. [Google Scholar]
- Mato, I.; Huidobro, J.F.; Simal-Lozano, J.; Sancho, M.T. Rapid Determination of Nonaromatic Organic Acids in Honey by Capillary Zone Electrophoresis with Direct Ultraviolet Detection. J. Agric. Food Chem. 2006, 54, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Luque, S.; Mato, I.; Huidobro, J.F.; Simal-Lozano, J.; Sancho, M.T. Rapid determination of minority organic acids in honey by High-Performance Liquid Chromatography. J. Chromatogr. A. 2002, 955, 207–214. [Google Scholar] [CrossRef]
- Spano, N.; Ciulu, M.; Floris, I.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Salis, S.; Sanna, G. A direct RP-HPLC method for the determination of furanic aldehydes and acids in honey. Talanta 2009, 78, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Viňas, P.; Balsalobre, N.; Lòpez-Erroz, C.; Hernández-Còrdoba, M. Liquid chromatographic analysis of riboflavin vitamers in foods using fluorescence detection. J. Agric. Food Chem. 2004, 52, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Viňas, P.; Balsalobre, N.; Lopez-Erroz, C.; Hernandez-Cordoba, M. Determination of vitamin B6 compounds in foods using liquid chromatography with post-column derivatization fluorescence detection. Chromatographia 2004, 59, 381–386. [Google Scholar]
- Leon-Ruiz, V.; Vera, S.; Gonzalez-Porto, A.V.; San Andres, M.P. Vitamin C and sugar levels as simple markers for discriminating Spanish honey sources. J. Food Sci. 2011, C356–C361. [Google Scholar] [CrossRef] [PubMed]
- Ciulu, M.; Solinas, S.; Floris, I.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Spano, N.; Sanna, G. RP-HPLC determination of water-soluble vitamins in honey. Talanta 2011, 83, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Ciulu, M.; Spano, N.; Salis, S.; Pilo, M.; Floris, I.; Pireddu, L.; Sanna, G. Assay of B vitamins and other water soluble vitamins in honey. In Food and Nutritional Components in Focus” No. 4, “B Vitamins and Folate: Chemistry, Analysis, Function and Effects; Preedy, V.R., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2013; Chapter 13; pp. 173–194. [Google Scholar]
- Conte, L.S.; Miorini, M.; Giomo, A.; Bertacco, G.; Zironi, R. Evaluation of Some Fixed Components for Unifloral Honey Characterization. J. Agric. Food Chem. 1998, 46, 1844–1849. [Google Scholar] [CrossRef]
- Hermosin, I.; Chicón, R.M.; Cabezudo, M.D. Free amino acid composition and botanical origin of honey. Food Chem. 2003, 83, 263–268. [Google Scholar] [CrossRef]
- Cotte, J.F.; Casabianca, H.; Giroud, B.; Albert, M.; Lheritier, J.; Grenier-Loustalot, M.F. Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Anal. Bioanal. Chem. 2004, 378, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Nozal, M.J.; Bernal, J.L.; Toribio, M.L.; Diego, J.C.; Ruiz, A. Rapid and sensitive method for determining free amino acids in honey by gas chromatography with flame ionization or mass spectrometric detection. J. Chromatogr. A 2004, 1047, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Spano, N.; Piras, I.; Ciulu, M.; Floris, I.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Sanna, G. Reversed-Phase liquid chromatographic profile of free amino acids in strawberry-tree (Arbutus unedo L.) honey. J. AOAC Int. 2009, 92, S1145–S1156. [Google Scholar]
- Bogdanov, S.; Jurendic, T.; Sieber, S.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Nature and origin of the antibacterial substances in honey. Lebensm-Wiss. Technol. 1997, 30, 748–753. [Google Scholar] [CrossRef]
- Weston, R.J.; Mitchell, K.R.; Allen, K.L. Antibacterial phenolic components of New Zealand manuka honey. Food Chem. 1999, 64, 295–301. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef] [PubMed]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharm. Therap. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Kezić, J.; Gigić, M. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples. Molecules 2009, 14, 2717–2728. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; García-Viguera, C.; Tomás-Lorente, F.; Tomás-Barberán, F.A. Hesperetin: A marker of the floral origin of citrus honey. J. Sci. Food Agric. 1993, 61, 121–123. [Google Scholar] [CrossRef]
- Ferreres, F.; Tomás-Barberán, F.A.; Soler, C.; García-Viguera, C.; Ortiz, A.; Tomás-Lorente, F. A simple extractive technique for honey flavonoid HPLC analysis. Apidologie 1994, 25, 21–30. [Google Scholar] [CrossRef]
- Ferreres, F.; Giner, J.M.; Tomás-Barberán, F.A. A comparative study of hesperetin and methyl anthranilate as markers of the floral origin of citrus honey. J. Sci. Food Agric. 1994, 65, 371–372. [Google Scholar] [CrossRef]
- Ferreres, F.; Andrade, P.; Gil, M.I.; Tomás-Barberán, F.A. Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Z. Lebensm. Unters. For. 1996, 202, 40–44. [Google Scholar] [CrossRef]
- Andrade, P.; Ferreres, F.; Amaral, M.T. Analysis of honey phenolic acids by HPLC, its application to honey botanical characterization. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 2281–2288. [Google Scholar] [CrossRef]
- Andrade, P.; Ferreres, F.; Gil, M.I.; Tomás-Barberán, F.A. Determination of phenolic compounds in honeys with different floral origin by capillary zone electrophoresis. Food Chem. 1997, 60, 79–84. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Tuberoso, C.; Floris, I.; Reniero, F.; Guillou, C.; Ghelli, S. Homogentisic acid: A phenolic acid as a marker of strawberry-tree (Arbutus unedo) honey. J. Agric. Food Chem. 1999, 47, 4064–4067. [Google Scholar] [CrossRef] [PubMed]
- Martos, I.; Ferreres, F.; Tomás-Barberán, F.A. Identification of flavonoid markers for the botanical origin of Eucalyptus honey. J. Agric. Food Chem. 2000, 48, 1498–1502. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; Martos, I.; Ferreres, F.; Radovic, B.S.; Anklam, E. HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J. Sci. Food Agric. 2001, 81, 485–496. [Google Scholar] [CrossRef]
- Yao, L.; Datta, N.; Tomás-Barberán, F.A.; Ferreres, F.; Martos, I.; Singanusong, R. Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chem. 2003, 81, 159–168. [Google Scholar] [CrossRef]
- Scanu, R.; Spano, N.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Sanna, G.; Tapparo, A. Direct chromatographic methods for the rapid determination of homogentisic acid in strawberry tree (Arbutus unedo L.) honey. J. Chromatogr. A 2005, 1090, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Jiang, Y.; D’Arcy, B.; Singanusong, R.; Datta, N.; Caffin, N.; Raymont, K. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. J. Agric. Food Chem. 2004, 52, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Pyrzynska, K.; Biesaga, M. Analysis of phenolic acids and flavonoids in honey. Trends Anal. Chem. 2009, 28, 893–902. [Google Scholar] [CrossRef]
- Merken, H.M.; Beecher, G.R. Measurement of food flavonoids by high-performance liquid chromatography: A review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Kaškonienė, V.; Venskutonis, P.R. Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. [Google Scholar] [CrossRef]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1970, 51, 125–138. [Google Scholar] [CrossRef]
- Jeuring, H.J.; Kuppers, F.J.E.M. High performance liquid chromatography of furfural and hydroxymethylfurfural in spirits and honey. J. Assoc. Off. Agric. Chem. 1980, 63, 1215–1218. [Google Scholar]
- Spano, N.; Casula, L.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Scanu, R.; Tapparo, A.; Sanna, G. An RP-HPLC determination of 5-hydroxymethylfurfural in honey: The case of strawberry tree honey. Talanta 2006, 68, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Cao, W.; Chen, W.-Y.; Xiao, X.-H.; Zheng, J.-B. Simultaneous determination of four phenolic components in citrus honey by high performance liquid chromatography using electrochemical detection. Food Chem. 2009, 114, 1537–1541. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Wu, H.-L.; Wang, J.-Y.; Tu, D.-Z.; Kang, C.; Zhao, J.; Chen, Y.; Miu, X.-X.; Yu, R.-Q. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm. Food Chem. 2013, 138, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. Int. J. Food Sci. Technol. 2013, 48, 1899–1908. [Google Scholar] [CrossRef]
- Das, A.; Datta, S.; Mukherjee, S.; Bose, S.; Ghosh, S.; Dhar., P. Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. Food Sci. Technol. 2015, 61, 244–250. [Google Scholar] [CrossRef]
- Sarmento Silva, T.M.; Pereira dos Santos, F.; Evangelista-Rodrigues, A.; Sarmento da Silva, E.M.; Sarmento da Silva, G.; Santos de Novais, J.; Ribeiro dos Santos, F.A.; Amorim Camara, C. Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. J. Food Compos. Anal. 2013, 29, 10–18. [Google Scholar] [CrossRef]
- Truchado, P.; Vit, P.; Heard, T.A.; Tomàs-Barberàn, F.A.; Ferreres, F. Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to Tetragonula carbonaria honey from Australia. Rapid Commun. Mass Spectrom. 2015, 29, 948–954. [Google Scholar] [PubMed]
- Dimitrova, B.; Gevrenova, R.; Anklam, E. Analysis of Phenolic Acids in Honeys of Different Floral Origin by Solid-phase Extraction and High-performance Liquid Chromatography. Phytochem. Anal. 2007, 18, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Michalkiewicz, A.; Biesaga, M.; Pyrzynska, K. Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J. Chrom. A 2008, 1187, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, Y.; Wang, X.; Liang, X.; Liu, X. Preparation of an Al2O3/SiO2 core–shell composite material for solid phase extraction of flavonoids. Anal. Methods 2015, 7, 3486–3492. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Bifulco, E.; Jerkovic, I.; Caboni, P.; Cabras, P.; Floris, I. Methyl Syringate: A Chemical Marker of Asphodel (Asphodelus microcarpus Salzm. et Viv.) Monofloral Honey. J. Agric. Food Chem. 2009, 57, 3895–3900. [Google Scholar] [CrossRef] [PubMed]
- Kečkeš, S.; Gašić, U.; Ćirković Veličković, T.; Milojković-Opsenica, D.; Natić, M.; Tešic, Z. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Campone, L.; Piccinelli, A.L.; Pagano, I.; Carabetta, S.; Di Sanzo, R.; Russo, M.; Rastrelli, L. Determination of phenolic compounds in honey using dispersive liquid-liquid microextraction. J. Chrom. A 2014, 1334, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Campillo, N.; Viñas, P.; Férez-Melgarejo, G.; Hernández-Córdoba, M. Dispersive liquid-liquid microextraction for the determination of flavonoid aglycone compounds in honey using liquid chromatography with diode array detection and time-of-flight mass spectrometry. Talanta 2015, 131, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Badjah Hadj Ahmed, A.Y.; Obbed, M.S.; Wabaidur, S.M.; Al Othman, Z.A.; Al-Shaalan, N.H. High-Performance Liquid Chromatography Analysis of Phenolic Acid, Flavonoid, and Phenol Contents in Various Natural Yemeni Honeys Using Multi-walled Carbon Nanotubes as a Solid-Phase Extraction Adsorbent. J. Agric. Food Chem. 2014, 62, 5443–5450. [Google Scholar] [CrossRef] [PubMed]
- Wabaidur, S.M.; Ahmed, Y.B.H.; Alothman, Z.A.; Obbed, M.S.; Al-Harbi, N.M.; Al-Turki, T.M. Ultra high performance liquid-chromatography with mass spectrometry method for the simultaneous determination of phenolic constituents in honey from various floral sources using multiwalled carbon nanotubes as extraction sorbents. J. Separ. Sci. 2015, 38, 2597–2606. [Google Scholar] [CrossRef] [PubMed]
- Biesaga, M.; Pyrzyńska, K. Stability of bioactive polyphenols from honey during different extraction methods. Food Chem. 2013, 136, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Luque de Castro, M.D.; Priego-Capote, F. Ultrasound assistance to liquid-liquid extraction: A debatable analytical tool. Anal. Chim. Acta 2007, 583, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.M.; Al Meqbali, F.T.; Kamal, H.; Souka, U.D.; Ibrahim, W.H. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food Chem. 2014, 153, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, S.; Okuyama, Y.; Murase, M.; Ahn, M-R.; Nakamura, J.; Tatefuji, T. Antioxidant Activity in Honeys of Various Floral Origins: Isolation and Identification of Antioxidants in Peppermint Honey. Food Sci. Technol. Res. 2012, 18, 679–685. [Google Scholar] [CrossRef]
- Pichichero, E.; Canuti, L.; Canini, A. Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. J. Sci. Food Agric. 2009, 89, 609–616. [Google Scholar] [CrossRef]
- Gašić, U.; Natić, M.; Mišić, D.; Lušić, D.; Milojković-Opsenica, D.; Tešic, Z.; Lušić, D. Chemical markers for the authentication of unifloral Salvia officinalis L. honey. J. Food Compos. Anal. 2015, 44, 128–138. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Bifulco, E.; Caboni, P.; Sarais, G.; Cottiglia, F.; Floris, I. Lumichrome and Phenyllactic Acid as Chemical Markers of Thistle (Galactites tomentosa Moench) Honey. J. Agric. Food Chem. 2011, 59, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Bifulco, E.; Caboni, P.; Cottiglia, F.; Cabras, P.; Floris, I. Floral Markers of Strawberry Tree (Arbutus unedo L.) Honey. J. Agric. Food Chem. 2010, 58, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Biesaga, M.; Pyrzynska, K. Liquid chromatography/tandem mass spectrometry studies of the phenolic compounds in honey. J. Chrom. A 2009, 1216, 6620–6626. [Google Scholar] [CrossRef] [PubMed]
- Truchado, P.; Ferreres, F.; Tomas-Barberan, F.A. Liquid chromatography-tandem mass spectrometry reveals the widespread occurrence of flavonoid glycosides in honey, and their potential as floral origin markers. J. Chrom. A 2009, 1216, 7241–7248. [Google Scholar] [CrossRef] [PubMed]
- Petrus, K.; Schwartz, H.; Sontag, G. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 2555–2563. [Google Scholar] [CrossRef] [PubMed]
- Mannina, L.; Sobolev, A.P.; Di Lorenzo, A.; Vista, S.; Tenore, G.C.; Daglia, M. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula). J. Agric. Food Chem. 2015, 63, 5864–5874. [Google Scholar] [CrossRef] [PubMed]
- Oelschlaegel, S.; Gruner, M.; Wang, P.-N.; Boettcher, A.; Koelling-Speer, I.; Speer, K. Classification and Characterization of Manuka Honeys Based on Phenolic Compounds and Methylglyoxal. J. Agric. Food Chem. 2012, 60, 7229–7237. [Google Scholar] [CrossRef] [PubMed]
- Reza Hadjmohammadi, M.; Saman, S.; Nazari, S.J. Separation optimization of quercetin, hesperetin and chrysin in honey by micellar liquid chromatography and experimental design. J. Sep. Sci. 2010, 33, 3144–3151. [Google Scholar] [CrossRef] [PubMed]
- Kuś, P.M.; Jerković, I.; Tuberoso, C.I.G.; Marijanović, Z.; Congiu, F. Cornflower (Centaurea cyanus L.) honey quality parameters: Chromatographic fingerprints, chemical biomarkers, antioxidant capacity and others. Food Chem. 2014, 142, 12–18. [Google Scholar] [PubMed]
- Jerković, I.; Kuś, P.M.; Tuberoso, C.I.G.; Šarolić, M. Phytochemical and physical-chemical analysis of Polish willow (Salix spp.) honey: Identification of the marker compounds. Food Chem. 2014, 145, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kuś, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerković, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Jerković, I.; Tuberoso, C.I.G.; Baranović, G.; Marijanović, Z.; Kranjac, M.; Svečnjak, L.; Kuś, P.M. Characterization of Summer Savory (Satureja hortensis L.) Honey by Physico-Chemical Parameters and Chromatographic/Spectroscopic Techniques (GC-FID/MS, HPLC-DAD, UV/VIS and FTIR-ATR). Croat. Chem. Acta 2015, 88, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Jerković, I.; Tuberoso, C.I.G.; Kuś, P.M.; Marijanović, Z.; Kranjac, M. Screening of Coffea spp. honey by different methodologies: Theobromine and caffeine as chemical markers. RSC Adv. 2014, 4, 60557–60562. [Google Scholar] [CrossRef]
- Zhao, J.; Du, X.; Cheng, N.; Chen, L.; Xue, X.; Zhao, J.; Wu, L.; Cao, W. Identification of monofloral honeys using HPLC-ECD and chemometrics. Food Chem. 2016, 194, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Kuś, P.M.; van Ruth, S. Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT—Food Sci. Technol. 2015, 62, 69–75. [Google Scholar] [CrossRef]
- Jandric, Z.; Haughey, S.A.; Frew, R.D.; McComb, K.; Galvin-King, P.; Elliott, C.T.; Cannavan, A. Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chem. 2015, 189, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Sergiel, I.; Pohl, P.; Biesaga, M.; Mironczyk, A. Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles. Food Chem. 2014, 145, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Lenhardt, L.; Bro, R.; Zeković, I.; Dramićanin, T.; Dramićanin, M.D. Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chem. 2015, 175, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, B.; Örnemark, U. (Eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; 2014; Available online: http://www.eurachem.org (accessed on 28 January 2016).
- ISO/IEC 17025:2005. General Requirements for the Competence of Testing and Calibration Laboratories; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Council Directive 93/99/EEC on the Subject of Additional Measures Concerning the Official Control of Foodstuffs, O.J.; 1993, L290, 14–17, Brussels, Belgium. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31993L0099&from=EN (accessed on 28 January 2016).
- Procedural Manual of the Codex Alimentarius Commission, 10th ed.; FAO: Rome, Italy, 1997.
- AOAC International. AOAC Peer Verified Methods Program, Manual on Policies and Procedures; AOAC International: Arlington, VA, USA, 1998. [Google Scholar]
- Horwitz, W. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 1982, 54, 67A–76A. [Google Scholar] [CrossRef]
- Tenore, G.C.; Ritieni, A.; Campiglia, A.; Novellino, E. Nutraceutical potential of monofloral honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula). Food Chem. Toxicol. 2012, 50, 1955–1961. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, E.; Simonetti, A.; Garrisi, N.; Intaglietta, I.; Perna, A. Antioxidant properties and phenolic content of sulla (Hedysarum spp.) honeys from Southern Italy. Int. J. Food Sci. Technol. 2014, 49, 2260–2268. [Google Scholar] [CrossRef]
- Ruoff, K.; Karoui, R.; Dufour, E.; Luginbuhl, W.; Bosset, J.O.; Bogdanov, S.; Amado, R. Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study. J. Agric. Food Chem. 2005, 53, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.L.; Cossu, M.; Alamanni, M.C. Phenolic content, antioxidant and physico-chemical properties of Sardinian monofloral honeys. Int. J. Food Sci Technol. 2015, 50, 482–491. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Vavoura, M.V.; Badeka, A.; Kontakos, S.; Kontominas, M.G. Differentiation of Greek Thyme Honeys According to Geographical Origin Based on the Combination of Phenolic Compounds and Conventional Quality Parameters Using Chemometrics. Food Anal. Methods 2014, 7, 2113–2121. [Google Scholar] [CrossRef]
- Pasquini, B.; Goodarzi, M.; Orlandini, S.; Beretta, G.; Furlanetto, S.; Dejaegher, B. Geographical characterisation of honeys according to their mineral content and antioxidant activity using a chemometric approach. Int. J. Food Sci. Technol. 2014, 49, 1351–1359. [Google Scholar] [CrossRef]
- Wang, J.; Xue, X.; Du, X.; Cheng, N.; Chen, L.; Zhao, J.; Zhen, J.; Cao, W. Identification of Acacia Honey Adulteration with Rape Honey Using Liquid Chromatography-Electrochemical Detection and Chemometrics. Food Anal. Methods 2014, 7, 2003–2012. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Vidal, A.; Battino, M. Contribution Methodological Aspects about Determination of Phenolic Compounds and In Vitro Evaluation of Antioxidant Capacity in the Honey: A Review. Curr. Anal. Chem. 2009, 5, 293–302. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of honey in nutrition and human health: A review. Mediterr. J. Nutr. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Advances in the analytical methods for determining the antioxidant properties of honey: A review. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.L.; Tuberoso, C.I.G.; Vlachopoulou, G.; Atzei, A.; Mannu, A.; Zrirad, S.; Pintore, G. Volatiles, Color Characteristics and Other Physico-chemical Parameters of Commercial Moroccan Honeys. Nat. Prod. Res. 2016, 30, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Pasini, F.; Gardini, S.; Marcazzan, G.L.; Caboni, M.F. Buckwheat honeys: Screening of composition and properties. Food Chem. 2013, 141, 2802–2811. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Boban, M.; Bifulco, E.; Budimir, D.; Pirisi, F.M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem. 2013, 140, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Tuberoso, C.I.G.; Atzeri, A.; Melis, M.P.; Bifulco, E.; Dessì, M.A. Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress. Food Chem. 2011, 129, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Buratti, S.; Benedetti, S.; Cosio, M.S. Evaluation of the antioxidant power of honey, propolis and royal jelly by amperometric flow injection analysis. Talanta 2007, 71, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Silici, S.; Sagdic, O.; Ekici, L. Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chem. 2010, 121, 238–243. [Google Scholar] [CrossRef]
- Kucuk, M.; Kolayli, S.; Karaoglu, S. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem. 2007, 100, 526–534. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Marghitas, L.A.; Dezmirean, D.; Moise, A.; Bobisa, O.; Lasloa, L.; Bogdanov, S. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar]
- Bertoncelj, J.; Dobersek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; González-Paramás, A.M.; Santos-Buelga, C.; Battino, M. Antioxidant Characterization of Native Monofloral Cuban Honeys. J. Agric. Food Chem. 2010, 58, 9817–9824. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Tulipani, S.; Díaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bonpadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 2010, 48, 2490–2499. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Giampieri, F.; Damiani, E.; Astolfi, P.; Fattorini, D.; Regoli, F.; Quiles, J.L.; Battino, M. Radical-scavenging Activity, Protective Effect against Lipid Peroxidation and Mineral Contents of Monofloral Cuban Honeys. Plant Foods Hum. Nutr. 2012, 67, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Giampieri, F.; González-Paramás, A.M.; Damiani, E.; Astolfi, P.; Martinez-Sanchez, G.; Bonpadre, S.; Quiles, J.L.; Santos-Buelga, C.; Battino, M. Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food Chem. Toxicol. 2012, 50, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Ávila, M.; Crevillén, A.G.; González, M.C.; Escarpa, A.; Vela Hortigüela, L.; de Lorenzo Carretero, C.; Pérez Martín, R.A. Electroanalytical Approach to Evaluate Antioxidant Capacity in Honeys: Proposal of an Antioxidant Index. Electroanalysis 2006, 18, 1821–1826. [Google Scholar] [CrossRef]
- Gorjanovića, S.Z.; Alvarez-Suarez, J.M.; Novaković, M.M.; Pastor, F.M.; Pezo, L.; Battino, M.; Sužnjevića, D.Ž. Comparative analysis of antioxidant activity of honey of different floral sources using recently developed polarographic and various spectrophotometric assays. J. Food Compos. Anal. 2013, 30, 13–18. [Google Scholar] [CrossRef]
- Escuredo, O.; Seijo, M.C.; Salvador, J.; González-Martín, M.I. Near infrared spectroscopy for prediction of antioxidant compounds in the honey. Food Chem. 2013, 141, 3409–3414. [Google Scholar] [CrossRef] [PubMed]
Technique | Stationary Phase (Length, mm × id, mm × Particle Size, µm) | Mobile Phase a | Validation | Chemometrics | Floral/Geographical Origin of Honey | Analytes b | Ref. |
---|---|---|---|---|---|---|---|
HPLC-ECD | Zorbax SB-C18 (150 × 4.6 × 5) | A: 4% CH3COOH (aq) B: MeOH | y | Citrus honey from China | Caffeic acid, p-coumaric acid, ferulic acid, hesperetin | [46] | |
HPLC-DAD | Wonda-Sil C18 (150 × 4.6 × 5) | MeOH 43% (v/v) and HCOOH (aq), pH 2.54 (57%, v/v) | y | Multivariate calibration | Milk vetch, wild chrysanthemum, jujube flower and acacia honeys from China | Gallic acid, chlorogenic acid, protocatechuic acid, caffeic acid, p-hydroxybenzoic acid syringic acid, p-coumaric acid, ferulic acid, rutin | [47] |
HPLC-UV | Hypersil gold C18 (250 × 4.6 × 5) | A: KH2PO4 (aq), pH 2.92 B: MeOH | y | Chestnut, eucalyptus, citrus and sulla honeys from Italy | Gallic acid; gallocatechin; epicatechin; catechin; chlorogenic acid; caffeic acid;, benzoic acid; p-coumaric acid; ferulic acid; rutin; myricetin; quercetin | [48] | |
HPLC-UV | Nova-Pak C18, (150 × 3.9) | A: H3PO4 (aq) pH 2.5; B: MeCN | n | Sesamum indicum honey from Hooghly district, West Bengal | Rutin, quercetin, apigenin and myricetin, ferulic acid | [49] | |
HPLC-DAD | Shimpack CLC-ODS, (250 × 4.6 × 5) | A: 5% HCOOH (aq) B: MeOH | n | Jandaira honey from state of Paraiba, Brazil | Naringenin, quercetin, isorhamnetin, gallic acid, vanillic acid, 3,4-dihydroxybenzoic acid, cumaric acids, trans–trans abscisic acid, cis–trans abscisic acid | [50] | |
HPLC-DAD-MSn | LiChroCART RP-18 (250 × 4 × 5) | A: 1% HCOOH (aq) B: MeOH | n | Tetragonula carbonaria honey from Australia | O-glycosyl flavones | [51] | |
HPLC-UV | Spherisorb ODS-2 | A: phosphate buffer (pH 2.92) B: MeOH | y | Chestnut, acacia, lime, eucalyptus, lavender, rapeseed, sunflower, rosemary, orange, lemon, fior di sulla, Echium plantagineum, heather, bell heather and ling heather honey from Germany, Denmark, Italy, Spain, France, Netherlands, UK and Portugal | Benzoic acid, salicylic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, protocatechuic acid, gallic acid, syringic acid; vanillic acid; trans-cinnamic acid, o-; m- and p-coumaric acids, caffeic acid, ferulic acid, phenylacetic acid, l-β-phenyllactic acid, dl-p-hydroxy-phenyllactic acid | [52] | |
HPLC-MS/MS | Phenomenex Luna C-18 (150 × 2 × 3) | A: 0.2% HCOOH (aq) B: MeOH | n | Manuka and kanuka honeys from New Zealand | Gallic acid; syringic acid; 2-methoxybenzoic acid; phenyllactic acid; methyl syringate; abscisic acid; 4-methoxybenzoic acid; 4-methoxyphenyllactic acid (tentative identification); trimethoxybenzoic acid (tentative identification); structural isomer of syringic acid (tentative identification); 4-methoxyphenyllactic acid (tentative identification) | [53] | |
(1) HPLC-DAD (2) HPLC-MS/MS | Lichrocart Purosher Star RP-18e (250 × 4 × 5) | A: 0.2 M H3PO4 (aq) B: MeCN 2 Water:MeCN 60:40 (v/v) | n | Asphodel honey from Sardinia, Italy | Methyl syringate | [56] | |
UHPLC-HESI-MSn | Hypersil gold C18 (50 × 2.1 × 1.9) | A: 0.1% HCOOH (aq) B: 0.1% HCOOH (MeCN) | y | Analytical data are interpreted in terms of principal component analysis | Acacia, sunflower, linden, basil, buckwheat, oilseed rape and goldenrod honeys from Serbia | Gallic acid; protocatechuic acid; 3-o-caffeoylquinic acid; caffeic acid; quercetin-3-o-rutinoside; p-coumaric acid; luteolin; quercetin; 2-cis,4-trans-abscisic acid; apigenin; kaempferol; chrysin; pinocembrin; galangin | [57] |
UHPLC–UV | Chromolith FastGradient RP-18e (2 × 50 × 2) | A: 0.1% HCOOH (aq) B: 0.1% HCOOH (MeOH) | y | Acacia, sulla, thistle and citrus honeys from Calabria, Italy | (±)-cis,trans-abscisic acid, apigenin, caffeic acid, chrysin, ferulic acid, hesperetin, pinobanksin, p-coumaric acid, quercetin, syringic acid, vanillic acid, galangin, kaempferol, luteolin, myricetin, pinocembrin | [58] | |
HPLC-DAD-TOF-MS | Discovery HS PEG (150 × 4.6 × 5) | A: 0.1% HCOOH (aq) B: MeCN | y | Lavender, orange blossom, rosemary, heather, eucalyptus, chestnut and thyme honeys. No declaration of geographical origin of honey was provided. | Baicalein, hesperetin, fisetin, naringenin, chrysin, myricetin, quercetin, kaempferol | [59] | |
HPLC-DAD | Betasil C18 (150 × 4.6 × 3) | A: 1% HCOOH (aq) B: MeOH | y | Ziziphus Spina-Christi honey from Yemen | Gallic acid; clorogenic acid; 4-hydroxybenzoic acid; 4-hydroxyphenyl acetic acid; caffeic acid; vanillic acid; syringic acid; p-coumaric acid; phenol; ferulic acid; sinapic acid; naringin; myricetin; quercetin; naringenin; cinnamic acid; kaempferol; apigenin; chrysin; galangin; thymol; carvacrol | [60] | |
UHPLC-MS | Acquity UHPLC BEH C18 (150 × 2.1 × 1.7) | A: 0.1% HCOOH (aq) B: Methanol | y | Ziziphus Spina-Christi honey from Yemen | Gallic acid, 4-hydroxybenzoic acid, 4-hydroxyphenyl acetic acid, caffeic acid, chlorogenic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, phenol, myricetin, naringin, cinnamic acid, quercetin, naringenin, kaempferol, luteolin, apigenin, galangin, chrysin | [61] | |
HPLC-UV | Waters Xterra RP 18 (150 × 4.6 × 5) | A: 1% CH3COOH (aq) B: MeCN | n | Prosopis juliflora, Ziziphus Spina-Christi, Acacia tortilis and Leptospermum scoparium honeys from UAE, Oman, Yemen and New Zealand | Gallic acid 4-hydroxy-3-methoxybenzoic acid; syringic acid p-coumaric acid; ferulic acid cinnamic acid; catechin, epicatechin, rutin | [64] | |
HPLC-DAD | Shiseido Capcell Pak C18 UG120, (250 × 4.6 × 5) | A: TFA 0.1% (aq) B: TFA 0.1% (MeOH) | n | Peppermint honey from USA. | p-coumaric acid and kaempferol | [65] | |
HPLC-UV | Whatman ODS-2 column (250 × 4.6 × 5) | A: 87/3/10 (v/v/v) water/TFA/MeCN B: 40/50/10 (v/v/v) water/TFA/MeCN | n | Acacia, chestnut, savory, sulla, ailanthus, thymus and orange honeys from Italy | Gallic acid; chlorogenic acid; p-coumaric acid; caffeic acid; myricetin; quercetin; genistein; kaempferol; apigenin; chrysin; galangin | [66] | |
UHPLC-DAD MS/MS | Syncronis C18 column (100 × 1 x 1.7) | A: 0.1% HCOOH (aq) B: MeCN | n | Analytical data are interpreted in terms of principal component analysis. | Sage honey from Croatia | Gallic acid; gallocatechin; protocatechuic acid; epigallocatechin; gentisic acid; p-hydroxybenzoic acid; chlorogenic acid; catechin; caffeic acid; gallocatechin gallate; epicatechin; p-coumaric acid; ferulic acid; rosmarinic acid; epigallocatechin gallate; cis,trans-abscisic acid; resveratrol; kaempferol; pinobanksin; quercetin; chrysin; pinostrobin; pinocembrin; hesperetin; galangin | [67] |
HPLC-DAD | Phenomenex Gemini C18 110° (150 × 4.60 × 3) | A: 0.2 M H3PO4 (aq) B: MeCN | n | Thistle honey from Sardinia, Italy [68] | Phenyllactic acid [68] | [68] | |
HPLC-DAD HPLC-MS/MS | Phenomenex SynergiHydro-RP 80AC18 (150 × 4.60 × 4) Licrocart Purosher Star RP-18e | A: 0.2 M H3PO4 (aq) B: MeCN Water/MeCN 60:40 (v/v) | n | Strawberry tree honey from Sardinia, Italy | 2-cis,4-trans-abscisic acid; 2-trans,4-trans-abscisic acid | [69] | |
HPLC-ESI-MS/MS | Atlantis C-18 (50 × 2.1 × 3) | A: 2 mM HCOOH (aq) B: MeOH | y | Buckwheat honey. No declaration of geographical origin of honey was provided. | Gallic acid, p-hydroxyphenylacetic, acid, p-hydroxybenzoic acid, chlorogenic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, rutin, myricetin, naringin, naringenin, quercetin, apigenin | [70] | |
HPLC-DAD-ESI-MS/MS | C18 LiChroCART (250 × 4 × 5) | A: 1% CH3COOH (aq) B: MeOH | n | Canola, cherry blossom, eucalyptus, linden, lucerne, lavender, orange blossom, rapeseed, rhododendron, rosemary, sunflower, taraxacum and tilia honeys from Italy, Spain and Slovakia | Flavonoid glycosides | [71] | |
HPLC-CEADHPLC-ESI-MS | Nucleodur Sphinx RP (150 × 4.6 × 5) | c d | y | Acacia, buckwheat, maple, phacelia, pumpkin, raspberry, orange, cherry blossom, dandelion, melon, rhododendron, rosemary, citrus blossom, orange blossom, lavender, sage, thyme, pine tree and rape seed honeys from Italy, Austria, Croatia, Greece and Germany. | Quercetin, naringenin, hesperetin, luteolin, kaempferol, isorhamnetin, galangin | [72] | |
HPLC-DAD-MSn | Gemini C18 110 Å (150 × 2 × 5) | A: 0.1% HCOOH (aq) B: MeOH | n | Sulla, dill, lemon, orange, and medlar honeys from Sicily, Italy | 4-methoxyphenyllactic acid; citric acid; phenylalanine; phenyllactic acid; dehydrovomifoliol; 3-hydroxy-1-(2-methoxyphenyl)penta-1,4-dione; p-hydroxybenzoic acid; riboflavin; kynurenic acid; methyl syringate; quercetin hexosyl rutinoside; quercetin rhamnosyl-hexosyl-rhamnoside; lumichrome; quercetin rutinoside; abscisic acid; pinobanksin methyl ether; kaempferol rutinoside; pinobanksin; pinocembrin; caffeic acid isoprenyl ester; pinobanksin acetate; pinobanksin butyrate. | [73] | |
UPLC-DAD-MS/MS | Nucleodur C18 Pyramid (100 × 2.1 × 1.8) | A: 0.1% HCOOH (aq) B: 0.05% HCOOH (MeCN) | n | Manuka honeys from New Zealand | Gallic acid, caffeic acid, phenyllactic acid, 4-methoxyphenyllactic acid, kojic acid, 4-hydroxybenzoic acid, syringic acid, 2-methoxybenzoic acid, phenylacetic acid, benzoic acid, methyl syringate, 2-trans,4-trans-abscisic acid, 2-cis,4-trans-abscisic acid, luteolin | [74] | |
MLC-UV | Spherisorb C18 column (250 × 4.6 × 10) | 7.8%v/v EtOH and 5.0%v/v CH3COOH in water, [SDS] = 0.124 mol/L | y | Experimental design (CCD) was used to optimize the chromatographic separation | Citrus honey from Iran | Quercetin, hesperetin, chrysin | [75] |
HPLC-DAD | Phenomenex Gemini C18 110° (150 × 4.60 × 3) | A: 0.2 M H3PO4 (aq) B: MeCN | n | Cornflower honey from Poland [76] Willow honey from Poland [77] Black locust, rapeseed, lime, goldenrod, heather and buckwheat honeys from Poland [78] Summer Savory honey from Poland [79] | Methyl syringate: phenyllactic acid [76] Gallic acid, benzoic acid, p-coumaric acid, 4-hydroxybenzoic acid, kynurenic acid, methylbenzaldehyde, methyl syringate, vanillic acid, (±)-2-trans,4-trans-abscisic acid [77] p-hydroxybenzoic acid, methyl syringate, cis,trans-abscisic acid, gallic acid[78] Methyl syringate [79] | [76,77,78,79] | |
HPLC-DAD | Phenomenex Kinetex C18 (150 × 4.60 × 5) | A: 0.2 M H3PO4 (aq) B: MeCN | y | Two samples of Coffea spp. honey of different geographical origin | Kojic acid | [80] | |
HPLC-DAD | RP-LiChrosorb Hibar C18 (250 × 2.4 × 5) | A: 5% HCOOH (aq) B: MeOH | n | Analytical data are interpreted in terms of principal component analysis. | Jujube, longan and chaste honeys from China | Catechin, chlorogenic acid, syringic acid, p-hydroxycinnamic acid, ferulic acid, rutin, trans-cinnamic acid, quercetin, kaempferol, apigenin, galangin, pinocembrin, pinobanksin | [81] |
HPLC–ECD-DAD | Zorbax SB-C18 (250 × 4.6 × 5) | A: 1% CH3COOH (aq) B: MeOH | y | Honey classification has been accomplished by means of principal component analysis and discriminant analysis | Rapeseed, lime, heather, cornflower, buckwheat and black locust honeys from Poland | Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, chlorogenic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, sinapic acid, ellagic acid, rosmarinic acid, cinnamic acid | [82] |
Floral and Geographical Origin of Unifloral Honey | Antioxidant and Antiradical Properties | Ref. |
---|---|---|
Combretaceae Honeys from Burkina Faso | DPPH, IC50 (mg/mL ± SD): between 10.40 ± 0.50 and 17.97 ± 1.44 | [26] |
AEAC, (mg/100 g ± SD): between 16.34 ± 0.25 and 23.40 ± 0.74 | ||
QEAC, (mg/100 g ± SD): between 6.89 ± 2.02 and 11.31 ± 0.28 | ||
Acacia Honey from Burkina Faso | DPPH, IC50 (mg/mL ± SD): 10.40 ± 0.50 | |
AEAC, (mg/100 g ± SD): 23.40 ± 0.74 | ||
QEAC, (mg/100 g ± SD): 11.31 ± 0.28 | ||
Vitellaria Honeys from Burkina Faso | DPPH, IC50 (mg/mL ± SD): between 1.37 ± 0.03 and 2.43 ± 0.08 | |
AEAC, (mg/100 g ± SD): between 57.72 ± 0.00 and 65.86 ± 0.10 | ||
QEAC, (mg/100 g ± SD): between 31.01 ± 0.03 and 33.34 ± 0.21 | ||
Lannea Honey from Burkina Faso | DPPH, IC50 (mg/mL ± SD): 23.53 ± 0.40 | |
AEAC, (mg/100 g ± SD): 11.27 ± 0.02 | ||
QEAC, (mg/100 g ± SD): 5.35 ± 0.01 | ||
Amorpha fruticosa honey from unknown geographical origin a | DPPH, IC50 (mg/mL): 0.6 (data measured on pentane–diethyl ether (1:2, v/v) ultrasonic extracts from a 40% (w/w) aqueous solution of honey) | [27] |
Chestnut honey from Italy | DPPH, I% (% ± SD): 75.37 ± 7.87 | [48] |
Eucalyptus honey from Italy | DPPH, I% (% ± SD): 73.04 ± 7.52 | |
Citrus honey from Italy | DPPH, I% (% ± SD): 55.06 ± 7.04 | |
Sulla honey from Italy | DPPH, I% (% ± SD): 66.60 ± 12.71 | |
Sesamum indicum honey from Hooghly district, West Bengal | DPPH, IC50 (mg/mL): 39.5 ± 0.4 | [49] |
FRAP, (μmol Fe(II)/L): 2.75 × 106 | ||
Jandaíra honey from Brazil | DPPH, IC50 (mg/mL ± SD): between 10.6 ± 0.6 and 12.9 ± 0.3 | [50] |
ABTS, IC50 (mg/mL ± SD): between 6.1 ± 0.0 and 9.7 ± 0.1 | ||
Prosopis juliflora honeys from UAE b | DPPH, I%: ca. 6 | [64] |
ABTS, I%: ca. 74 | ||
FRAP, (μmol Fe(II)/100 g honey): ca. 800 | ||
Ziziphus Spina-Christi honeys from UAE, Oman, Yemen and Pakistanb | DPPH, I%: between ca. 3 and ca.14 | |
ABTS, I%: between ca. 75 and ca. 80 | ||
FRAP, (μmol Fe(II)/100 g honey): between ca. 600 and ca. 900 | ||
Acacia tortilis honeys from UAE, Oman and Yemen b | DPPH, I%: between ca.4 and ca.19 | |
ABTS, I%: between ca. 72 and ca. 80 | ||
FRAP, (μmol Fe(II)/100 g honey): between ca. 500 and ca. 700 | ||
Leptospermum scoparium honeys from New Zealand b | DPPH, I%: ca. 11 | |
ABTS, I%: ca. 79 | ||
FRAP, (μmol Fe(II)/100 g honey): ca. 600 | ||
23 unifloral honeys from worldwide | DPPH, I%, (% ± SD): between 4.7 ± 2.3 (Horse chestnut honey, Akita, Japan) and 51.9 ± 2.0 (Peppermint honey, USA) | [65] |
Acacia honey from Italy | DPPH, IC50 (mg/mL ± SD): 21.56 ± 1.08 | [66] |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.377 ± 0.068 | ||
Chestnut honey from Italy | DPPH, IC50 (mg/mL ± SD): 13.76 ± 0.82 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 2.056 ± 0.103 | ||
Sulla honey from Italy | DPPH, IC50 (mg/mL ± SD): 54.74 ± 3.28 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.299 ± 0.080 | ||
Ailanthus honey from Italy | DPPH, IC50 (mg/mL ± SD): 64.09 ± 2.56 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.268 ± 0.063 | ||
Thymus honey from Italy | DPPH, IC50 (mg/mL ± SD): 31.4 ± 1.57 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.834 ± 0.092 | ||
Orange honey from Italy | DPPH, IC50 (mg/mL ± SD): 25.87 ± 1.29 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.265 ± 0.063 | ||
Savory honey from Italy | DPPH, IC50 (mg/mL ± SD): 10.85 ± 0.43 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 3.702 ± 0.185 | ||
Cornflower honey from Poland | DPPH, (mmol TEAC/kg ± SD): 0.5 ± 0.2 | [76] |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.5 ± 0.7 | ||
Willow honey from Poland | DPPH, (mmol TEAC/kg ± SD): 2.1 ± 0.3 | [77] |
FRAP, (mmol Fe(II)/Kg honey ± SD): 0.5 ± 0.1 | ||
Black locust honey from Poland | DPPH, (mmol TEAC/kg ± SD): 0.3 ± 0.0 | [78] |
FRAP, (mmol Fe(II)/Kg honey ± SD): 0.6 ± 0.1 | ||
Rapeseed honey from Poland | DPPH, (mmol TEAC/kg ± SD): 0.4 ± 0.1 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.3 ± 0.3 | ||
Lime honey from Poland | DPPH, (mmol TEAC/kg ± SD): 0.4 ± 0.1 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.4 ± 0.4 | ||
Goldenrod honey from Poland | DPPH, (mmol TEAC/kg ± SD): 0.2 ± 0.1 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 1.0 ± 0.1 | ||
Heather honey from Poland | DPPH, (mmol TEAC/kg ± SD): 0.6 ± 0.1 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 2.1 ± 0.5 | ||
Buckwheat honey from Poland | DPPH, (mmol TEAC/kg ± SD): 1.2 ± 0.2 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 5.7 ± 0.9 | ||
Summer Savory honey from Poland | DPPH, (mmol TEAC/kg ± SD): 1.7 ± 0.2 | [79] |
FRAP, (mmol Fe(II)/Kg honey ± SD): 4.3 ± 0.6 | ||
Sulla honeys from Southern Italy | DPPH, (I% ± SD): between 47.06 ± 8.60 and 88.25 ± 9.85 | [93] |
FRAP, (μmol Fe(II)/100 g honey): between 98.26 ± 28.61 and 786.53 ± 91.28 | ||
Strawberry tree honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 51 | [95] |
FRAP, (mg TE/100 g honey): ca. 89 | ||
Asphodel honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 4.5 | |
FRAP, (mg TE/100 g honey): ca. 4 | ||
Cardoon honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 6 | |
FRAP, (mg TE/100 g honey): ca. 6 | ||
Eucalyptus honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 8 | |
FRAP, (mg TE/100 g honey): ca. 7 | ||
Thymus honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 4 | |
FRAP, (mg TE/100 g honey): ca. 3 | ||
Chestnut honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 6.5 | |
FRAP, (mg TE/100 g honey): ca. 8 | ||
Cistus honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 5.5 | |
FRAP, (mg TE/100 g honey): ca. 7 | ||
Lavender honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 5 | |
FRAP, (mg TE/100 g honey): ca. 4 | ||
Rosemary honey from Sardinia b | DPPH, (mg TE/100 g honey): ca. 7 | |
FRAP, (mg TE/100 g honey): ca. 5.5 | ||
Acacia honey from Morocco | DPPH, (mmol TE/Kg honey ± SD): 0.52 ± 0.01 | [102] |
FRAP, (mmol Fe(II)/Kg honey ± SD): 2.15 ± 0.21 | ||
Eucalyptus honey from Morocco | DPPH, (mmol TE/Kg honey ± SD): 0.68 ± 0.01 | |
FRAP, (mmol Fe(II)/Kg honey ± SD): 2.99 ± 0.09 | ||
Strawberry tree honey from Italy | DPPH, (mmol TE/Kg honey ± SD): 4.5 ± 1.1 | [104] |
ABTS, (mmol TE/Kg honey ± SD): 5.9 ± 1.5 | ||
FRAP, (mmol Fe(II)/kg honey ± SD): 12.0 ± 2.2 | ||
Strawberry tree honey from Italy b | DPPH, (mmol TE/Kg honey): ca. 4.7 | [105] |
FRAP, (mmol Fe(II)/kg honey): ca. 11.7 | ||
Heather honey from Italy b | DPPH, (mmol TE/Kg honey): ca. 1.45 | |
FRAP, (mmol Fe(II)/kg honey): ca. 4.9 | ||
Eucalyptus honey from Italy b | DPPH, (mmol TE/Kg honey ): ca. 0.45 | |
FRAP, (mmol Fe(II)/kg honey): ca. 3.0 | ||
Asphodel honey from Italy b | DPPH, (mmol TE/Kg honey): ca. 0.45 | |
FRAP, (mmol Fe(II)/kg honey): ca. 4.3 | ||
Citrus honey from Italy b | DPPH, (mmol TE/Kg honey): ca. 0.3 | |
FRAP, (mmol Fe(II)/kg honey): ca. 1.65 | ||
Acacia honey from Italy b | DPPH, (mmol TE/Kg honey): ca. 0.1 | |
FRAP, (mmol Fe(II)/kg honey): ca. 0.55 | ||
Citrus honey from Italy | DPPH, IC50 (mg/mL ± SD): between 5.0 ± 0.3 and 15.1 ± 0.4 | [106] |
Rhododendron honey from Italy | DPPH, IC50 (mg/mL ± SD): between 5.7 ± 0.3 and 15.5 ± 0.8 | |
Acacia honey from Italy | DPPH, IC50 (mg/mL ± SD): between 8± 1 and 12.0 ± 0.6 | |
Strawberry tree honey from Italy | FRAP, (μmol Fe(II)/Kg honey ± SD): 1501.4 ± 60.2 | [107] |
DPPH, IC50 (mmol TE/Kg honey ± SD): 1.63 ± 0.17 | ||
ORAC, (mmol TE/Kg honey ± SD): 21.07 ± 0.34 | ||
Buckwheat honey from Italy | FRAP, (μmol Fe(II)/Kg honey ± SD): 800.7 ± 23.8 | |
DPPH, IC50 (mmol TE/Kg honey ± SD): 4.00 ± 0.44 | ||
ORAC, (mmol TE/Kg honey ± SD): 11.60 ± 0.027 | ||
Chestnut honey from Italy | FRAP, (μmol Fe(II)/Kg honey ± SD): 388.6 ± 8.2 | |
DPPH, IC50 (mmol TE/Kg honey ± SD): 7.93 ± 0.04 | ||
ORAC, (mmol TE/Kg honey ± SD): 8.90 ± 0.45 | ||
Sulla honey from Italy | FRAP, (μmol Fe(II)/Kg honey ± SD): 155.2 ± 6.6 | |
DPPH, IC50 (mmol TE/Kg honey ± SD): 16.90 ± 0.11 | ||
ORAC, (mmol TE/Kg honey ± SD): 5.66 ± 0.13 | ||
Clover honey from Italy | FRAP, (μmol Fe(II)/Kg honey ± SD): 72.8±3.0 | |
DPPH, IC50 (mmol TE/Kg honey ± SD): 25.00 ± 0.01 | ||
ORAC, (mmol TE/Kg honey ± SD): 2.15 ± 0.02 | ||
Dandelion honeys from Italy | FRAP, (μmol Fe(II)/Kg honey ± SD): from 212.2±2.2 to 224.4±6.0 | |
DPPH, IC50 (mmol TE/Kg honey ± SD): from 24.39 ± 0.07 to 47.62 ± 0.39 | ||
ORAC, (mmol TE/Kg honey ± SD): from 2.00 ± 0.02 to 7.59 ± 0.60 | ||
Chicory honey from Italy | FRAP, (μmol Fe(II)/Kg honey ± SD): 209.5±2.8 | |
DPPH, IC50 (mmol TE/Kg honey ± SD): 5.81 ± 0.04 | ||
ORAC, (mmol TE/Kg honey ± SD): 6.72 ± 0.33 | ||
Acacia honey from Italy | FRAP, (μmol Fe(II)/Kg honey ± SD): 79.5±3.7 | |
DPPH, IC50 (mmol TE/Kg honey ± SD): 45.45 ± 0.04 | ||
ORAC, (mmol TE/Kg honey ± SD): 2.12 ± 0.01 | ||
Rosemary honey from Portugal | DPPH, IC50 (mg/mL ± SD): 168.94 ± 19.20 | [110] |
Viper’s bugloss honey from Portugal | DPPH, IC50 (mg/mL ± SD): 130.49 ± 1.38 | |
Heather honey from Portugal | DPPH, IC50 (mg/mL ± SD): 106.67 ± 2.48 | |
Acacia honey from Romania | DPPH, I%: between 35.80 and 45.27 | [111] |
Sunflower honey from Romania | DPPH, I%: between 36.60 and 40.91 | |
Lime honey from Romania | DPPH, I%: between 40.65 and 49.19 | |
Acacia honey from Slovenia | DPPH, IC50 (mg/mL): between 33.9 and 63.9 | [112] |
FRAP, (μmol Fe(II)/100 g honey): between 56.8 and 86.0 | ||
Lime honey from Slovenia | DPPH, IC50 (mg/mL): between 20.6 and 36.1 | |
FRAP, (μmol Fe(II)/100 g honey): between 94.6 and 155.1 | ||
Chestnut honey from Slovenia | DPPH, IC50 (mg/mL): between 7.8 and 14.0 | |
FRAP, (μmol Fe(II)/100 g honey): between 238.3 and 469.5 | ||
Fir honey from Slovenia | DPPH, IC50 (mg/mL): between 6.4 and 11.7 | |
FRAP, (μmol Fe(II)/100 g honey): between 320.8 and 582.2 | ||
Spruce honey from Slovenia | DPPH, IC50 (mg/mL): between 5.4 and 9.7 | |
FRAP, (μmol Fe(II)/100 g honey): between 277.5 and 495.4 | ||
Linen vine honey from Cuba | ORAC, (μmol of TE/g honey ± SD): 12.89 ± 0.28 | [113] |
ABTS, (μmol of TE/g honey ± SD): 2.94 ± 0.23 | ||
Morning glory honey from Cuba | ORAC, (μmol of TE/g honey ± SD): 9.26 ± 0.46 | |
ABTS, (μmol of TE/g honey ± SD): 2.01 ± 0.21 | ||
Singing bean honey from Cuba | ORAC, (μmol of TE/g honey ± SD): 8.12 ± 0.23 | |
ABTS, (μmol of TE/g honey ± SD): 1.95 ± 0.14 | ||
Black mangrove honey from Cuba | ORAC, (μmol of TE/g honey ± SD): 7.45 ± 0.37 | |
ABTS, (μmol of TE/g honey ± SD): 1.22 ± 0.24 | ||
Christmas vine honey from Cuba | ORAC, (μmol of TE/g honey ± SD): 4.59 ± 0.51 | |
ABTS, (μmol of TE/g honey ± SD): 1.03 ± 0.28 | ||
Linen vine honey from Cuba | AEAC, (mg/100 g honey ± SD): 29.54 ± 1.62 | [114] |
QEAC, (mg/100 g honey ± SD): 13.73 ± 1.32 | ||
DPPH, IC50 (mg/mL ± SD): 7.23 ± 1.17 | ||
TBARS, IC50 (mg/mL ± SD): 3.76 ± 0.42 | ||
Lipid hydroperoxides, (mmol ± SD): 32 ± 2.35 | ||
Morning glory honey from Cuba | AEAC, (mg/100 g honey ± SD): 16.14 ± 1.21 | |
QEAC, (mg/100 g honey ± SD): 7.34 ± 1.40 | ||
DPPH, IC50 (mg/mL ± SD): 15.88 ± 1.57 | ||
TBARS, IC50 (mg/mL ± SD): 6.47 ± 0.72 | ||
Lipid hydroperoxides, (mmol ± SD): 39 ± 3.26 | ||
Singing bean honey from Cuba | AEAC, (mg/100 g honey ± SD): 19.7 ± 0.86 | |
QEAC, (mg/100 g honey ± SD): 8.95 ± 0.49 | ||
DPPH, IC50 (mg/mL ± SD): 12.44 ± 1.56 | ||
TBARS, IC50 (mg/mL ± SD): 7.17 ± 0.52 | ||
Lipid hydroperoxides, (mmol ± SD): 46 ± 3.82 | ||
Black mangrove honey from Cuba | AEAC, (mg/100 g honey ± SD): 14.65 ± 1.03 | |
QEAC, (mg/100 g honey ± SD): 6.65 ± 0.52 | ||
DPPH, IC50 (mg/mL ± SD): 15.53 ± 1.11 | ||
TBARS, IC50 (mg/mL ± SD): 7.28 ± 1.03 | ||
Lipid hydroperoxides, (mmol ± SD): 43 ± 2.48 | ||
Christmas vine honey from Cuba | AEAC, (mg/100 g honey ± SD): 10.85 ± 1.47 | |
QEAC, (mg/100 g honey ± SD): 4.93 ± 0.74 | ||
DPPH, IC50 (mg/mL ± SD): 18.53 ± 1.92 | ||
TBARS, IC50 (mg/mL ± SD): 9.94 ± 1.31 | ||
Lipid hydroperoxides, (mmol ± SD): 51 ± 3.26 | ||
Pine honey from Greece | FRAP, (mmol TE/Kg honey ± SD): 4.05 ± 0.03 | [117] |
ORAC, (mmol TE/Kg honey ± SD): 11.6 ± 0.2 | ||
TEAC, (mmol TE/Kg honey ± SD): 5.06 ± 0.02 | ||
DPPH, IC50 (mmol TE/Kg honey ± SD): 1.18 ± 0.03 | ||
Dead nettle honey from Serbia | FRAP, (mmol TE/Kg honey ± SD): 2.03 ± 0.03 | |
ORAC, (mmol TE/Kg honey ± SD): 10.2 ± 0.3 | ||
TEAC, (mmol TE/Kg honey ± SD): 3.70 ± 0.04 | ||
DPPH, IC50 (mmol TE/Kg honey ± SD): 0.49 ± 0.01 | ||
Linden honey from Serbia | FRAP, (mmol TE/Kg honey ± SD): 0.61 ± 0.02 | |
ORAC, (mmol TE/Kg honey ± SD): 9.5 ± 0.1 | ||
TEAC, (mmol TE/Kg honey ± SD): 2.04 ± 0.06 | ||
DPPH, IC50 (mmol TE/Kg honey ± SD): 0.25 ± 0.01 | ||
Acacia honey from Serbia | FRAP, (mmol TE/Kg honey ± SD): from 0.20 ± 0.00 to 0.26 ± 0.01 | |
ORAC, (mmol TE/Kg honey ± SD): from 5.9 ± 0.1 to 6.5 ± 0.3 | ||
TEAC, (mmol TE/Kg honey ± SD): from 1.00 ± 0.02 to 1.02 ± 0.03 | ||
DPPH, IC50 (mmol TE/Kg honey ± SD): 0.00 ± 0.00 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciulu, M.; Spano, N.; Pilo, M.I.; Sanna, G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules 2016, 21, 451. https://doi.org/10.3390/molecules21040451
Ciulu M, Spano N, Pilo MI, Sanna G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules. 2016; 21(4):451. https://doi.org/10.3390/molecules21040451
Chicago/Turabian StyleCiulu, Marco, Nadia Spano, Maria I. Pilo, and Gavino Sanna. 2016. "Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys" Molecules 21, no. 4: 451. https://doi.org/10.3390/molecules21040451
APA StyleCiulu, M., Spano, N., Pilo, M. I., & Sanna, G. (2016). Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules, 21(4), 451. https://doi.org/10.3390/molecules21040451