A Green Ultrasound Synthesis, Characterization and Antibacterial Evaluation of 1,4-Disubstituted 1,2,3-Triazoles Tethering Bioactive Benzothiazole Nucleus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
Antimicrobial Activity
3. Experimental Section
3.1. General
3.2. General Procedure for the Synthesis of 2-Bromo-N-(6-un/substitutedbenzo[d]thiazol-2-yl)acetamide 2a–c
3.3. General Procedure for the Synthesis of Azido Benzothiazole Derivatives 3a–c
3.4. General Procedures for the Click Synthesis of 1,2,3-Triazoles 5a–r
3.5. Antimicrobial Activity
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Xie, F.; Sivakumar, K.; Zeng, Q.; Bruckman, M.A.; Hodges, B.; Wang, Q. A fluorogenic ‘click’ reaction of azidoanthracene derivatives. Tetrahedron 2008, 64, 2906–2914. [Google Scholar] [CrossRef]
- Aher, N.G.; Pore, V.S.; Mishra, N.N.; Kumar, A.; Shukla, P.K.; Sharma, A.; Bhat, M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett. 2009, 19, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Shankaraiah, N.; Devaiah, V.; Reddy, K.L.; Juvekar, A.; Sen, S.; Kurian, N.; Zingde, S. Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click’ chemistry: DNA-binding affinity and anticancer activity. Bioorg. Med. Chem. Lett. 2008, 18, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Yadav, A.K.; Kumar, B.; Gaikwad, A.N.; Sinha, S.K.; Chaturvedi, V.; Tripathi, R.P. Preparation and reactions of sugar azides with alkynes: Synthesis of sugar triazoles as antitubercular agents. Carbohydr. Res. 2008, 343, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Guantai, E.M.; Ncokaji, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, Synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem. 2010, 18, 8243–8256. [Google Scholar] [CrossRef] [PubMed]
- Shafi, S.; Alam, M.M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A.M.; Pallu, R.; Alam, M.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem. 2012, 49, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, D.G.; Balzarini, J.; Glowacka, I.E. Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a 1,2,3-triazole linker. Eur. J. Med. Chem. 2012, 47, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, J.; Hernandez, P.; Insuasty, B.; Abonıa, R.; Cobo, J.; Sanchez, A.; Nogueras, M.; Low, J.N. Control of the reaction between 2-aminobenzothiazoles and Mannich bases. Synthesis of pyrido[2,1-b][1,3]benzothiazoles versus [1,3]benzothiazolo[2,3-b]quinazolines. J. Chem. Soc. Perkin Trans. I 2002, 1, 555–559. [Google Scholar] [CrossRef]
- Kok, S.H.L.; Chui, C.H.; Lam, W.S.; Chen, J.; Lau, F.Y.; Wong, R.S.M.; Cheng, G.Y.M.; Lai, P.B.S.; Leung, R.W.T.; Tang, J.C.O.; et al. Synthesis and structure evaluation of a novel cantharimide and its cytotoxicity on SK-Hep-1 hepatoma cells. Bioorg. Med. Chem. Lett. 2007, 17, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Kok, S.H.L.; Chui, C.H.; Lam, W.S.; Chen, J.; Lau, F.Y.; Wong, R.S.M.; Cheng, G.Y.M.; Tang, W.K.; Teo, I.T.N.; Cheung, F.; et al. Apoptogenic activity of a synthetic cantharimide in leukaemia: Implication on its structural activity relationship. Int. J. Mol. Med. 2006, 18, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Ajmera, N.; Gautam, N.; Sharma, R.; Gauatam, D. Novel synthesis and biological activity study of pyrimido [2,1-b] benzothiazoles. Ind. J. Chem. 2009, 48B, 853–858. [Google Scholar]
- Kumbhare, R.M.; Ingle, V.N. Synthesis of novel benzothiozole and benzisoxazole functionalized unsymmetrical alkanes and study of their antimicrobial activity. Ind. J. Chem. 2009, 48B, 996–1000. [Google Scholar] [CrossRef]
- Murthi, Y.; Pathak, D. Synthesis and Antimicrobial screening of Substituted 2-Mercaptobenzothiazoles. J. Pharm. Res. 2008, 7, 153–155. [Google Scholar]
- Rajeeva, B.; Srinivasulu, N.; Shantakumar, S. Synthesis and Antimicrobial activity of some new 2-substituted benzothiazole derivatives. J. Chem. 2009, 6, 775–779. [Google Scholar]
- Maharan, M.; William, S.; Ramzy, F.; Sembel, A. Synthesis and in vitro Evaluation of new benzothiazolederivaties as schistosomicidal agents. Molecules 2007, 12, 622–633. [Google Scholar] [CrossRef]
- Kini, S.; Swain, S.; Gandhi, A. Synthesis and Evaluation of novel Benzothiazole Derivates against Human Cervical Cancer cell lines. Ind. J. Pharm. Sci. 2007, 46–50. [Google Scholar] [CrossRef]
- Stanton, H.L.K.; Gambari, R.; Chung, H.C.; Johny, C.O.T.; Filly, C.; Albert, S.C.C. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem. 2008, 16, 3626–3631. [Google Scholar]
- Wang, M.; Gao, M.; Mock, B.; Miller, K.; Sledge, G.; Hutchins, G.; Zheng, Q. Synthesis of C-11 labelled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agent. Bioorg. Med. Chem. 2006, 14, 8599–8607. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Moorthi, N.; Sanyal, U. Synthesis, cytotoxic evaluation, in silico pharmacokinetic and QSAR study of some benzothiazole derivatives. Ind. J. Pharmacy Pharm. Sci. 2010, 2, 57–62. [Google Scholar]
- Sreenivasa, M.; Jaychand, E.; Shivakumar, B.; Jayrajkumar, K.; Vijaykumar, J. Synthesis of bioactive molecule flurobenzothiazole comprising potent heterocylic moieties for anthelmintic activity. Arch. Pharm. Sci. Res. 2009, 1, 150–157. [Google Scholar]
- Pattan, S.; Suresh, C.; Pujar, V.; Reddy, V.; Rasal, V.; Koti, B. Synthesis and antidiabetic activity of 2-amino[5″(4-sulphonylbenzylidine)-2,4-thiazolidinenone]-7-chloro-6-flurobenzothiazole. Ind. J. Chem. 2005, 44B, 2404–2408. [Google Scholar]
- Cella, R.; Stefani, H.L.A. Ultrasound in heterocycles chemistry. Tetrahedron 2009, 65, 2619–2641. [Google Scholar] [CrossRef]
- Alissa, S.A. Ultrasound Synthesis of Five-Membered Heterocycles. Chem. Sci. Rev. Lett. 2014, 3, 1219–1236. [Google Scholar]
- Zbancioc, G.; Mangalagiu, I.I.; Moldoveanu, C. Ultrasound assisted synthesis of imidazolium salts: an efficient way to ionic liquids. Ultrason. Sonochem. 2015, 23, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Ameta, G.; Kumar Pathak, A.; Ameta, C.; Ameta, R.; Punjabi, P.B. Sonochemical synthesis and characterization of imidazolium based ionic liquids: A green pathway. J. Mol. Liq. 2015, 211, 934–937. [Google Scholar] [CrossRef]
- Aouad, M.R.; Rezki, N.; Kasmi, M.; Aouad, L.; Rezki, M.A. Synthesis, characterization and evaluation of antimicrobial activity of some novel 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazole nuclues. Heterocycles 2012, 85, 1141–1154. [Google Scholar] [CrossRef]
- Aouad, M.R.; Messali, M.; Rezki, N.; Ali, A.A.; Lesimple, A. Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents. Acta Pharm. 2015, 65, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Rezki, N.; Al-Yahyawi, A.M.; Bardaweel, S.K.; Al-Blewi, F.F.; Aouad, M.R. Synthesis of Novel 2,5-Disubstituted-1,3,4-thiadiazoles Clubbed 1,2,4-Triazole, 1,3,4-Thiadiazole, 1,3,4-oxadiazole and/or Schiff Base as Potential Antimicrobial and Antiproliferative Agents. Molecules 2015, 20, 16048–16067. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Fokin, V.V.; Garella, D.; Binello, A.; Boffa, L.; Barge, A. Ultrasound-Promoted Copper-Catalyzed Azide-Alkyne Cycloaddition. J. Comb. Chem. 2010, 12, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Cintas, P.; Barge, A.; Tagliapietra, S.; Boffa, L.; Cravotto, G. Alkyne–azide click reaction catalyzed by metallic copper under ultrasound. Nat. Protoc. 2010, 5, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, X.; Qu, L.; Wang, J.; Yuan, J.; Chen, S.; Li, X.; Qu, C. Ultrasonic-assisted synthesis of chrysin derivatives linked with 1,2,3-triazoles by 1,3-dipolar cycloaddition reaction. Ultrason. Sonochem. 2011, 18, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Cintas, P.; Palmisano, G.; Cravotto, G. Power ultrasound in metal-assisted synthesis: From classical Barbier-like reactions to click chemistry. Ultraso. Sonochem. 2011, 18, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Mady, M.F.; Awad, G.E.A.; Jørgensen, K.B. Ultrasound-assisted synthesis of novel 1,2,3-triazoles coupled diaryl sulfone moieties by the CuAAC reaction, and biological evaluation of them as antioxidant and antimicrobial agents. Eur. J. Med. Chem. 2014, 84, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Akella, S.S.; Kilambi, N.; Lakshmanan, M.; Sriram, R.; Thangapazham, S.; Gaddam, R. Preparation of Acylated Piperazines as Histone Deacetylase (HDAC) Inhibitors for Treating Cancer, Psoriasis and Related Diseases. US Patent 20070088043, 19 April 2007. [Google Scholar]
- Zhang, X.; He, Y.; Liu, S.; Yu, Z.; Jiang, Z.-X.; Yang, Z.; Dong, Y.; Nabinger, S.C.; Wu, L.; Gunawan, A.M.; et al. Salicylic Acid Based Small Molecule Inhibitor for the Oncogenic Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2). J. Med. Chem. 2010, 53, 2482–2493. [Google Scholar]
- Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilutionEuropean. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard M7-A5, 5th ed.; NCCLS: Wayne, PA, USA, 2000. [Google Scholar]
- Sample Availability: Samples of the compounds are not available from the author.
Compound No. | R | Classical Method CM | Ultrasound Method US | ||
---|---|---|---|---|---|
Time (h) | Yield (%) | Time (h) | Yield (%) | ||
2a | H | 2 | 88 | 1 | 92 |
2b | CH3 | 2 | 86 | 1 | 91 |
2c | CH3SO2 | 3 | 83 | 1 | 89 |
3a | H | 24 | 92 | 2 | 96 |
3b | CH3 | 24 | 91 | 2 | 96 |
3c | CH3SO2 | 24 | 88 | 3 | 94 |
Compound No | Structure | Classical Method CM | Ultrasound Method US | ||
---|---|---|---|---|---|
Time (h) | Yield (%) | Time (h) | Yield (%) | ||
5a | 6 | 90 | 3 | 96 | |
5b | 8 | 88 | 4 | 94 | |
5c | 7 | 89 | 4 | 96 | |
5d | 9 | 85 | 5 | 90 | |
5e | 8 | 87 | 3 | 93 | |
5f | 8 | 87 | 3 | 92 | |
5g | 6 | 89 | 3 | 96 | |
5h | 8 | 88 | 4 | 93 | |
5i | 7 | 88 | 4 | 95 | |
5j | 10 | 84 | 5 | 89 | |
5k | 8 | 87 | 3 | 92 | |
5l | 8 | 87 | 4 | 92 | |
5m | 8 | 81 | 4 | 92 | |
5n | 9 | 84 | 5 | 89 | |
5o | 8 | 85 | 5 | 91 | |
5p | 10 | 81 | 6 | 87 | |
5q | 9 | 83 | 4 | 89 | |
5r | 9 | 82 | 5 | 88 |
Compound No | Gram-Positive Organisms | Gram-Negative Organisms | Fungi | |||||
---|---|---|---|---|---|---|---|---|
Sp | Bs | Sa | Pa | Ec | Kp | Af | Ca | |
2a | 31.25 | 31.25 | 16 | 31.25 | 16 | 31.25 | 125 | 62.5 |
2b | 31.25 | 31.25 | 16 | 16 | 16 | 31.25 | 125 | 125 |
2c | 16 | 31.25 | 16 | 16 | 16 | 16 | 125 | 62.5 |
3a | 31.25 | 16 | 16 | 16 | 16 | 31.25 | 62.5 | 31.25 |
3b | 31.25 | 16 | 16 | 16 | 16 | 31.25 | 31.25 | 31.25 |
3c | 16 | 16 | 16 | 16 | 16 | 16 | 31.25 | 31.25 |
5a | 16 | 16 | 16 | 16 | 16 | 16 | 31.25 | 31.25 |
5b | 16 | 16 | 16 | 16 | 16 | 16 | 31.25 | 31.25 |
5c | 16 | 8 | 8 | 16 | 8 | 16 | 16 | 16 |
5d | 16 | 16 | 8 | 8 | 8 | 16 | 31.25 | 31.25 |
5e | 8 | 8 | 8 | 8 | 8 | 16 | 16 | 16 |
5f | 8 | 8 | 8 | 8 | 8 | 16 | 16 | 16 |
5g | 16 | 16 | 16 | 16 | 16 | 16 | 31.25 | 31.25 |
5h | 16 | 16 | 16 | 16 | 16 | 16 | 31.25 | 31.25 |
5i | 8 | 8 | 8 | 16 | 8 | 8 | 16 | 16 |
5g | 16 | 8 | 8 | 8 | 8 | 8 | 31.25 | 31.25 |
5k | 8 | 8 | 8 | 8 | 8 | 8 | 16 | 16 |
5l | 8 | 8 | 8 | 8 | 8 | 8 | 16 | 16 |
5m | 8 | 8 | 16 | 8 | 8 | 16 | 16 | 16 |
5n | 8 | 16 | 8 | 8 | 8 | 16 | 16 | 16 |
5o | 8 | 8 | 4 | 4 | 8 | 8 | 8 | 8 |
5p | 8 | 8 | 8 | 16 | 8 | 8 | 16 | 8 |
5q | 4 | 4 | 8 | 4 | 4 | 8 | 4 | 4 |
5r | 4 | 4 | 8 | 4 | 4 | 8 | 4 | 4 |
Ciprofloxacin | ≤4 | ≤1 | ≤4 | ≤4 | ≤1 | ≤1 | - | - |
Fluconazole | - | - | - | - | - | - | ≤1 | ≤1 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezki, N. A Green Ultrasound Synthesis, Characterization and Antibacterial Evaluation of 1,4-Disubstituted 1,2,3-Triazoles Tethering Bioactive Benzothiazole Nucleus. Molecules 2016, 21, 505. https://doi.org/10.3390/molecules21040505
Rezki N. A Green Ultrasound Synthesis, Characterization and Antibacterial Evaluation of 1,4-Disubstituted 1,2,3-Triazoles Tethering Bioactive Benzothiazole Nucleus. Molecules. 2016; 21(4):505. https://doi.org/10.3390/molecules21040505
Chicago/Turabian StyleRezki, Nadjet. 2016. "A Green Ultrasound Synthesis, Characterization and Antibacterial Evaluation of 1,4-Disubstituted 1,2,3-Triazoles Tethering Bioactive Benzothiazole Nucleus" Molecules 21, no. 4: 505. https://doi.org/10.3390/molecules21040505
APA StyleRezki, N. (2016). A Green Ultrasound Synthesis, Characterization and Antibacterial Evaluation of 1,4-Disubstituted 1,2,3-Triazoles Tethering Bioactive Benzothiazole Nucleus. Molecules, 21(4), 505. https://doi.org/10.3390/molecules21040505