Two New Cinnamyl Isovalerate Derivatives from Sabina gaussenii
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of New Compounds
2.2. Cytotoxicity Assay
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Spectroscopic Data
3.5. Bioassay
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Editorial Committee of Flora Reipublicae Popularis Sinicae. Florae Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1978; Volume 7, pp. 347–348. [Google Scholar]
- Wang, W.S.; Feng, J.C.; Lu, P. The researches on the terpenoids from Juniperus. J. Cent. Univ. Natly. (Nat. Sci. Ed.) 2008, 17, 53–58. [Google Scholar]
- Xu, J.F.; Tan, N.H.; Zhang, Y.M.; Yang, Y.B.; Bai, J.X. The chemical constituents from Sabina gaussenii. Chinese Tradit. Herb. Med. 2006, 37, 838–876. Available online: http://www.tiprpress.com/zcy/ch/reader/create_pdf.aspx?file_no=20060616&year_id=2006&quarter_id=6&falg=1 (accessed on 27 April 2016). [Google Scholar]
- Zhang, Y.M.; Tan, N.H.; Lu, Y.; Chang, Y.; Jia, R.R. Chamobtusin A, a novel skeleton diterpenoid alkaloid from Chamaecyparis obtusa cv. Tetragon. Org. Lett. 2007, 9, 4579–4581. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zeng, G.Z.; Liu, Y.M.; Chen, K.L.; Sun, Z.H.; Zhang, Y.M.; Tan, N.H. Sesquiterpenoids and diterpenes from Chamaecyparis obtusa var. breviramea f. crippsii. Z. Naturforsch. 2014, 69b, 362–368. [Google Scholar]
- He, W.J.; Fu, Z.H.; Zeng, G.Z.; Zhang, Y.M.; Han, H.J.; Yan, H.; Ji, C.J.; Chu, H.B.; Tan, N.H. Terpene and lignan glycosides from the twigs and leaves of an endangered conifer, Cathaya argyrophylla. Phytochemistry 2012, 83, 63–69. [Google Scholar] [CrossRef] [PubMed]
- He, W.J.; Chu, H.B.; Zhang, Y.M.; Han, H.J.; Yan, H.; Zeng, G.Z.; Fu, Z.H.; Olubanke, O.; Tan, N.H. Antimicrobial, cytotoxic lignans and terpenoids from the twigs of Pseudolarix kaempferi. Planta Med. 2011, 77, 1924–1931. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, A.S.; Medarde, M.; Lopez, L.J.; Corral, J.M.M.D.; Barrero, A.F. Two new cinnamyl isovalerate derivatives from Juniperus thurifera leaves. J. Nat. Prod. 1986, 49, 677–679. [Google Scholar] [CrossRef]
- Mohammad, I.; Waterman, P.G.; Thomas, D.W. Chemistry in the Annonaceae, XVII. Phenylpropenes from Uvariodendron connivens seeds. J. Nat. Prod. 1985, 48, 328–329. [Google Scholar] [CrossRef]
- Takaku, N.; Choi, D.H.; Mikame, K.; Okunishi, T.; Suzuki, S.; Ohashi, H.; Umezawa, T.; Shimada, M. Lignans of Chamaecyparis obtusa. J. Wood Sci. 2001, 47, 476–482. [Google Scholar] [CrossRef]
- Fonseca, S.F.; Rúvedaa, E.A.; McChesney, J.D. 13C-NMR analysis of podophyllotoxin and some of its derivatives. Phytochemistry 1980, 19, 1527–1530. [Google Scholar] [CrossRef]
- Ying, C.G.; Peng, W.X.; Yan, D.C.; Jun, Z.; Ri, H.C.; Ping, S.X.; Xin, Z.Q. Chemical constituents in the roots of Calophyllummem branaceum Gardn. Acta Sci. Nat. Univ. Sunyatseni 2009, 48, 52–56. [Google Scholar]
- Shi, J.; Yang, J.Z.; Li, C.J.; Zhang, D.M. Chemical constituents from Hydrangea paniculata. China J. Chin. Mater. Med. 2010, 35, 3007–3009. [Google Scholar]
- Comte, G.; Allais, D.P.; Chulia, A.J.; Vercauteren, J.; Pinaud, N. Three phenylpropanoids from Juniperus phcenicea. Phytochemistry 1997, 44, 1169–1173. [Google Scholar] [CrossRef]
- Moujir, L.M.; Seca, A.M.; Araujo, L.; Silva, A.M.; Barreto, M.C. A new natural spiro heterocyclic compound and the cytotoxic activity of the secondary metabolites from Juniperus brevifolia leaves. Fitoter 2011, 82, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Dama, A.; Venkata, S.K. A new sesquiterpene alcohol from Pterocarpus marsupium. Phytochemistry 1982, 21, 1083–1085. [Google Scholar]
- Su, W.C.; Fang, J.M.; Cheng, Y.S. Sesquiterpenes from leaves of Cryptomeria japonica. Phytochemistry 1995, 39, 603–607. [Google Scholar]
- Mata, R.; Navarrete, A.; Alvarez, L.; Pereda-Miranda, R.; Delgado, G.; Romo de Vivar, A. Chemical studies on Mexican plants used in traditional medicine. Part I. Flavonoids and terpenoids of Chenopodium graveolens. Phytochemistry 1987, 26, 191–193. [Google Scholar] [CrossRef]
- Sisido, K.; Nozaki, H.; Imagawa, T. Structure of thujopsene and hinokiic Acid. J. Org. Chem. 1961, 26, 1964–1967. [Google Scholar] [CrossRef]
- Ozgen, U.; Sevindik, H.; Kazaz, C.; Yigit, D.; Kandemir, A.; Secen, H.; Calis, I. A new sulfated alpha-ionone glycoside from Sonchus erzincanicus Matthews. Molecules 2010, 15, 2593–2599. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.M.; Chen, Y.C.; Wang, B.W.; Cheng, Y.S. Terpenes from heartwood of Juniperus chinensis. Phytochemistry 1996, 41, 1361–1365. [Google Scholar]
- Liu, C.M.; Zhou, H.B.; Zhang, W.D. Terpenoids from stems and leaves of Cupressus gigantea. Chin. J. Nat. Med. 2010, 8, 405–410. [Google Scholar] [CrossRef]
- Greca, M.D.; Monaco, P.; Previtera, L. Stigmasterols from Typha latifolia. J. Nat. Prod. 1990, 53, 1430–1435. [Google Scholar] [CrossRef]
- Fan, J.T.; Kuang, B.; Zeng, G.Z.; Zhao, S.M.; Ji, C.J.; Zhang, Y.M.; Tan, N.H. Biologically active arborinane-type triterpenoids and anthraquinones from Rubia yunnanensis. J. Nat. Prod. 2011, 74, 2069–2080. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds 1–20 are available from the authors.
No. | 1 | 2 | ||
---|---|---|---|---|
δH | δC | δH | δC | |
1 | 4.72 (dd, 6.5, 1.0, 2H) | 64.9 | 4.72 (dd, 6.5, 1.0, 2H) | 64.9 |
2 | 6.21 (dt, 15.7, 6.5, 1H) | 122.9 | 6.21 (dt, 15.7, 6.5, 1H) | 122.8 |
3 | 6.57 (d, 15.7, 1H) | 134.2 | 6.58 (d, 15.7, 1H) | 134.2 |
1’ | 132.0 | 131.9 | ||
2’ | 6.61 (s, 1H) | 103.6 | 6.61 (s, 1H) | 103.5 |
3’ | 153.3 | 153.3 | ||
4’ | 138.0 | 138.0 | ||
5’ | 153.3 | 153.3 | ||
6’ | 6.61 (s, 1H) | 103.5 | 6.61 (s, 1H) | 103.5 |
3’-OMe | 3.87 (s, 3H) | 56.1 | 3.87 (s, 3H) | 56.0 |
4’-OMe | 3.84 (s, 3H) | 61.0 | 3.84 (s, 3H) | 60.9 |
5’-OMe | 3.87 (s, 3H) | 56.1 | 3.87 (s, 3H) | 56.0 |
1” | 173.8 | 174.0 | ||
2” | 2.35 (t, 7.6 Hz, 2H) | 34.3 | 2.35 (m, 2H) | 32.1 |
3” | 1.65 (m, 2H) | 24.7 | 1.70 (m, 1H) 1.46 (m, 1H) | 31.4 |
4” | 1.31 (m, 2H) | 31.4 | 1.34 (m, 1H) | 34.0 |
5” | 1.31 (m, 2H) | 22.4 | 1.34 (m, 1H) 1.16 (m, 1H) | 29.1 |
6” | 0.89 (t, 7.0 Hz, 3H) | 14.0 | 0.87 (m, 3H) | 18.8 |
7” | 0.87 (m, 3H) | 11.3 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.-H.; Tan, N.-H.; Zeng, G.-Z.; Zhang, Y.-M. Two New Cinnamyl Isovalerate Derivatives from Sabina gaussenii. Molecules 2016, 21, 571. https://doi.org/10.3390/molecules21050571
Sun Z-H, Tan N-H, Zeng G-Z, Zhang Y-M. Two New Cinnamyl Isovalerate Derivatives from Sabina gaussenii. Molecules. 2016; 21(5):571. https://doi.org/10.3390/molecules21050571
Chicago/Turabian StyleSun, Zhang-Hua, Ning-Hua Tan, Guang-Zhi Zeng, and Yu-Mei Zhang. 2016. "Two New Cinnamyl Isovalerate Derivatives from Sabina gaussenii" Molecules 21, no. 5: 571. https://doi.org/10.3390/molecules21050571
APA StyleSun, Z. -H., Tan, N. -H., Zeng, G. -Z., & Zhang, Y. -M. (2016). Two New Cinnamyl Isovalerate Derivatives from Sabina gaussenii. Molecules, 21(5), 571. https://doi.org/10.3390/molecules21050571