Anti-Inflammatory Oleanolic Triterpenes from Chinese Acorns
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Identification of Triterpenes
2.2. Anti-Inflammatory Activities
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction, Isolation, and Purification Procedures of Triterpenes from Acorns
3.4. Characterization of 2α,3β,19α-Trihydroxy-24-oxo-olean-12-en-28-oic acid (1)
3.5. Measurement of LPS-Induced Nitric Oxide (NO) Production and Cell Viability
3.6. IL-6 and IL-8 Assays
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgement
Author Contributions
Conflicts of Interest
References
- Hogan, C. Oak. Available online: http://www.eoearth.org/view/article/161730 (accessed on 1 March 2016).
- Michael, H.C. Oak. In Encyclopedia of Earth; Arthur, D., Ed.; National Council for Science and the Environment: Washington, DC, USA, 2012. [Google Scholar]
- Bainbridge, D.A. Use of acorns for food in California: Past, present and future. In Proceedings of the Symposium on Multiple-use Management of California’s Hardwoods, San Luis Obispo, CA, USA, 12–14 November 1986.
- Cantos, E.; Espín, J.C.; López-Bote, C.; de la Hoz, L.; Ordóñez, J.A.; Tomás-Barberán, F.A. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. J. Agric. Food Chem. 2003, 51, 6248–6255. [Google Scholar] [CrossRef] [PubMed]
- Rakić, S.; Povrenović, D.; Tešević, V.; Simić, M.; Maletić, R. Oak acorn, polyphenols and antioxidant activity in functional food. J. Food Eng. 2006, 74, 416–423. [Google Scholar] [CrossRef]
- Tejerina, D.; García-Torres, S.; Cabeza de Vaca, M.; Vázquez, F.M.; Cava, R. Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the “Montanera” feeding of Iberian pig: Intra- and inter-annual variations. Food Chem. 2011, 124, 997–1004. [Google Scholar] [CrossRef]
- Xin, Y.; Jia, L.Y.; Sun, Q.S. Research on the chemical components and pharmacological activities of Quercus spp. In Proceedings of the 75th Annual Meeting of the Abstract Assembly of Botanical Society of China (1933–2008); Higher Education Press: Beijing, China, 2008; pp. 399–400. [Google Scholar]
- Sheu, S.Y.; Tsuang, Y.H.; Hsu, F.L.; Lu, F.J.; Chiang, H.C. Superoxide anion scavenge effect of Quercus glauca Thunb. in whole blood of patients with ankylosing spondylitis. Am. J. Chin. Med. 1997, 25, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Park, S.M.; Zhao, R.J.; Lee, C.; Chun, W.J.; Son, Y.H.; Kim, S.H.; Jung, J.Y.; Jegal, K.H.; Cho, I.J.; et al. Hederagenin, a major component of Clematis mandshurica Ruprecht root, attenuates in flammatory responses in RAW 264.7 cell. Int. Immunopharmacol. 2015, 29, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.M.; Fang, H. Analysis of adverse drug reaction reports in our hospital. China Pharmacy 2015, 11, 1509–1513. [Google Scholar]
- Wu, J.Y.; Liu, X.H. Gastrointestinal damage related to non-steroidal anti-inflammatory drugs and its treatment and prevention. Chin. J. Pract. Int. Med. 2008, 2, 141–143. [Google Scholar]
- Paul, A.S.; Andrzej, S.K.; David, E.K.; Jay, H.H.; Andrew, S.; Robert, J.F.; Mark, W.R. Liver injury from nonsteroidal anti-inflammatory drugs in the United States. Liver Int. 2016, 36, 603–609. [Google Scholar]
- Kumari, A.; Kakkar, P. Lupeol protects against acetaminophen-induced oxidative stress and cell death in rat primary hepatocytes. Food Chem. Toxicol. 2012, 50, 1781–1789. [Google Scholar] [CrossRef] [PubMed]
- Deyrup, S.T.; Asghar, K.B.; Chacko, A.; Hebert, J.M.; Samson, E.; Talone, C.J. Chemical investigation of the medicinal and ornamental plant Angelonia angustifolia Benth. reveals therapeutic quantities of lupeol. Fitoterapia 2014, 98, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, D.K.; Liu, M.; Wang, P.B. The pharmacological effects and structural modification of oleanolic acid. Zhongcaoyao 2009, 40, 21–23. [Google Scholar]
- Terreaux, C.; Mahabir, M.P.; Gupta, M.P.; Hostettmann, K. Triterpenes and triterpene glycosides from Paradrymonia macrophylla. Phytochemistry 1996, 42, 495–499. [Google Scholar] [CrossRef]
- Zhang, D.L.; Li, X.Q.; Li, C. Study on triterpenoid constituents in the leaves of Paulownia fortunei. Chin. Pharm. J. 2011, 46, 504–506. [Google Scholar]
- Luo, H.F.; Lin, C.Z.; Zhao, Z.X.; Xiong, T.Q.; Zhu, C.C. Triterpenoids from barks of Ilex rotunda (I). Zhongcaoyao 2011, 42, 1945–1947. [Google Scholar]
- Li, E.N.; Zhou, G.D.; Kong, L.Y. Chemical constituents from the leaves of Eriobotrya japonica. Chin. J. Nat. Med. 2009, 7, 190–192. [Google Scholar] [CrossRef]
- Honda, T.; Murae, T.; Tsuyuki, T.; Takahashi, T.; Sawai, M. Arjungenin, Arjunglucoside I, and Arjunglucoside II. A new triterpene and new triterpene glucosides from Terminalia arjuna. Bull. Chem. Soc. Jpn. 1976, 49, 3213–3218. [Google Scholar] [CrossRef]
- Jossang, A.; Seuleiman, M.; Maidou, E.; Bodo, B. Pentacyclic triterpenes from Combretum nigricans. Phytochemistry 1996, 41, 591–594. [Google Scholar] [CrossRef]
- Conrad, J.; Vogler, B.; Klaiber, I.; Guse, J.; Roos, G.; Wolfgang, K. Vanillic acid 4-O-β-d-(6′-O-galloyl) glucopyranoside and other constituents from the bark of Terminalia macroptera Guill. Et Perr. Nat. Prod. Lett. 2006, 15, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.; Park, S.Y.; Kim, J. A-ring contracted triterpenoid from Rosa multiflora. Phytochemistry 1998, 48, 1399–1401. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, W.C.; Yin, Z.Q.; Zhao, S.X. Triterpene saponins from Adinandra nitida. Yaoxue Xuebao 2008, 43, 504–508. [Google Scholar]
- Kazuma, K.; Noda, N.; Suzuki, M. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 2003, 62, 229–237. [Google Scholar] [CrossRef]
- Jiang, K.; Chen, L.; Wang, S.; Wang, Y.; Li, Y.; Gao, K. Anti-inflammatory terpenoids from the leaves and twigs of Dysoxylum gotadhora. J. Nat. Prod. 2015, 78, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- He, X.J.; Liu, R.H. Triterpenoids isolated from apple peels may be responsible for their anticancer activity. J. Agric. Food Chem. 2007, 55, 4366–4370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.D.; Shi, Y.B.; Tan, W.F.; Wang, F. Effect of triptolide on the changes of VEGF and MMP-9 levels in the rheumatoid arthritis fibroblast-like synoviocyte line, MH7A. Acta Univ. Med. Nanjing 2008, 28, 902–905. [Google Scholar]
- Qiu, J.M.; Yu, L.J.; Zhang, X.X.; Wu, Q.C.; Wang, D.; Wang, X.Z.; Xia, C.; Feng, H.H. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κF signaling pathay. Int. Immunopharmacol. 2015, 26, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds 1–11 are available from the authors.
Position | Compound 1 | |
---|---|---|
δH | δC | |
1 | 1.35, m; 2.33, ddd (12.0, 9.5, 4.6) | 47.2 |
2 | 4.60, td (11.3, 4.6) | 68.8 |
3 | 3.64, d (9.5) | 82.7 |
4 | 55.5 | |
5 | 1.31 | 57.7 |
6 | 1.50, d (9.3); 1.87, d (8.0) | 20.0 |
7 | 1.33, m; 1.47, m | 33.5 |
8 | 40.2 | |
9 | 1.99, s | 47.5 |
10 | 39.0 | |
11 | 2.02, m; 2.15, m | 25.1 |
12 | 5.56, t-like | 123.3 a |
13 | 145.3 | |
14 | 42.6 | |
15 | 2.13–2.11, m | 29.4 |
16 | 2.86–2.78, m | 28.7 |
17 | 46.4 | |
18 | 3.62, brs | 45.2 |
19 | 3.63, m b | 81.6 |
20 | 36.1 | |
21 | 1.13, m; 1.22, m | 29.5 |
22 | 2.12, m; 2.19, m | 33.5 |
23 | 1.58, s | 22.3 |
24 | 10.45, s | 207.7 |
25 | 0.95, s | 17.6 |
26 | 1.01, s | 17.7 |
27 | 1.64, s | 25.1 |
28 | 181.2 a | |
29 | 1.21, s | 29.1 |
30 | 1.13, s | 25.2 |
Compound | IC50 (μM) | Compound | IC50 (μM) |
---|---|---|---|
1 | 5.4 ± 1.2 | 7 | 20.1 ± 6.4 |
2 | 10.1 ± 0.8 | 8 | 8.9 ± 0.7 |
3 | 7.8 ± 2.4 | 9 | 17.2 ± 0.7 |
4 | 13.0 ± 0.2 | 10 | >100 |
5 | >100 | 11 | >100 |
6 | 4.0 ± 0.8 | Indomethacin a | 47.4 ± 4.5 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wang, Y.; Li, C.; Wang, X.; He, X. Anti-Inflammatory Oleanolic Triterpenes from Chinese Acorns. Molecules 2016, 21, 669. https://doi.org/10.3390/molecules21050669
Huang J, Wang Y, Li C, Wang X, He X. Anti-Inflammatory Oleanolic Triterpenes from Chinese Acorns. Molecules. 2016; 21(5):669. https://doi.org/10.3390/molecules21050669
Chicago/Turabian StyleHuang, Jie, Yihai Wang, Chuan Li, Xinluan Wang, and Xiangjiu He. 2016. "Anti-Inflammatory Oleanolic Triterpenes from Chinese Acorns" Molecules 21, no. 5: 669. https://doi.org/10.3390/molecules21050669
APA StyleHuang, J., Wang, Y., Li, C., Wang, X., & He, X. (2016). Anti-Inflammatory Oleanolic Triterpenes from Chinese Acorns. Molecules, 21(5), 669. https://doi.org/10.3390/molecules21050669