Synthesis and Antimicrobial Activity of Some New Thiadiazoles, Thioamides, 5-Arylazothiazoles and Pyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidines
Abstract
:1. Introduction
2. Results and Discussion
3. Antimicrobial Activity
- Candida albicans and Pseudomonas aeruginosa were resistant to compounds 9a, 9b, 9c, 9d, 10a, 10b, 10c, 10d, and 14f.
- Aspergillus fumigatus was susceptible to compounds 13b, 14b, 15b, and 15c when compared to the Amphotericin B standard.
- Candida albicans was susceptible to compound 13b when compared to the Amphotericin B standard.
- Streptococcus pneumoniae was susceptible to compounds 13b, and 14b when compared to the Ampicillin standard.
- Bacillus subtilis was susceptible to compounds 13b, 14b, and 15b when compared to the Ampicillin standard.
- Pseudomonas aeruginosa was susceptible to compounds 13b, 15a, and 26d when compared to their standard Gentamicin.
- Escherichia coli was susceptible to compounds 10a, 13b, 14b, 15f, and 28a when compared to the Gentamicin standard.
4. Experimental Section
4.1. General Information
4.1.1. General Procedure for the Synthesis of Thiadiazoles 9a–c and 10a–c
4.1.2. General Procedure for the Synthesis of Chalcones 12a–f
4.1.3. Synthesis of Carbothioamide Derivatives 13a–f
4.1.4. 5-Arylazothiazole Derivatives 14a–f and 15a–f
Method A
Method B
4.1.5. (2-Phenylhydrazono)thiazol-4(5H)-one Derivatives 18a–e
Method A
Method B
4.1.6. General Procedure for the Synthesis of Compounds 20 and 27
4.1.7. General procedure for the Synthesis of Hexahydropyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidine Derivatives 26a–c and 28a,d
4.2. Antimicrobial Activity Assay
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shawali, A.S.; Abdelhamid, A.O. Synthesis of Spiro-heterocycles via 1,3-Dipolar Cycloadditions of Nitrilimines to Exoheterocyclic Enones. Site-, Regio- and Stereo-Selectivities. Curr. Org. Chem. 2012, 16, 2673–2689. [Google Scholar]
- Abdelhamid, A.O.; Gomha, S.M.; Shawali, A.S. Utility of N-aryl 2-aroylhydrazono propanehydrazonoyl chlorides as precursors for synthesis of new functionalized 1,3,4-thiadiazoles with potential antimicrobial activity. J. Adv. Res. 2015, 6, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Padmavathi, V.; Reddy, G.S.; Padmaja, A.; Kondaiah, P.; Shazia, A. Synthesis, antimicrobial and cytotoxic activities of 1,3,4-oxadiazoles,1,3,4-thiadiazoles and 1,2,4-triazoles. Eur. J. Med. Chem. 2009, 44, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem. 2013, 70, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, M.; Matysiak, J.; Szeliga, M.; Pozarowski, P.; Rzeski, W. 2-Amino-1,3,4-thiadiazole derivative (FABT) inhibits the extracellular signal-regulated kinase pathway and induces cell cycle arrest in human non-small lung carcinoma cells. Bioorg. Med. Chem. Lett. 2012, 22, 5466–5469. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ali, S.; Hameed, S.; Rama, N.H.; Hussain, M.T.; Wadood, A.; Uddin, R.; Ul-Haq, Z.; Khan, A.; Ali, S.; et al. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 5200–5207. [Google Scholar] [CrossRef] [PubMed]
- Jubie, S.; Ramesh, P.N.; Dhanabal, P.; Kalirajana, R.; Murugananthamb, N.; Antonyc, A.S. Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues. Eur. J. Med. Chem. 2012, 54, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Dawood, K.M.; Abdel-Gawad, H.; Ragab, E.A.; Ellithey, M.; Mohamed, H.A. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorg. Med. Chem. 2006, 14, 3672–3680. [Google Scholar] [CrossRef] [PubMed]
- Harish, K.P.; Mohana, K.N.; Mallesha, L. Synthesis of indazole substituted-1,3,4-thiadiazoles and their anticonvulsant activity. Drug Invent. Today 2013, 5, 92–99. [Google Scholar] [CrossRef]
- Hasui, T.; Matsunaga, N.; Ora, T.; Nishigaki, N.; Imura, Y.; Igata, Y.; Matsui, H.; Motoyaji, T.; Tanaka, T.; Habuka, N.; et al. Identification of Benzoxazin-3-one Derivatives as Novel, Potent, and Selective Nonsteroidal Mineralocorticoid Receptor Antagonists. J. Med. Chem. 2011, 54, 8616–8631. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, A.; Matysiak, J.; Karpinska, M.M.; Niewiadomy, A. Enzyme Inhib. Med. Chem. 2013, 28, 816–823. [Google Scholar]
- Skrzypek, A.; Matysiak, J.; Niewiadomy, A.; Bajda, M.; Szymanski, P. Synthesis and biological evaluation of 1,3,4-thiadiazole analogues as novel AChE and BuChE inhibitors. Eur. J. Med. Chem. 2013, 62, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr.; Connolly, C.J.C.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A.; et al. Structure-activity relationships of a series of 2-amino-4-thiazole containing renin inhibitors. J. Med. Chem. 1992, 35, 2562–2572. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: An analogue-based drug design approach. J. Enzym. Inhib. Med. Chem. 2009, 24, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzner, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: A novel class of compounds with central dopamine agonist properties. J. Med. Chem. 1990, 33, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, K.; Ishikawa, H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. Bioorg. Med. Chem. Lett. 1994, 4, 1601–1606. [Google Scholar] [CrossRef]
- Bell, F.W.; Cantrell, A.S.; Hogberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordon, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr.; Noreen, R.; et al. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem. 1995, 38, 4929–4936. [Google Scholar] [CrossRef] [PubMed]
- Ergenc, N.; Capan, G.; Gunay, N.S.; Ozkirimli, S.; Gungor, M.; Ozbey, S.; Kendi, E. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch. Pharm. Pharm. Med. Chem. 1999, 332, 343–347. [Google Scholar] [CrossRef]
- Carter, J.S.; Kramer, S.; Talley, J.J.; Penning, T.; Collins, P.; Graneto, M.J.; Seibert, K.; Koboldt, C.; Masferrer, J.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 1999, 9, 1171–1174. [Google Scholar] [CrossRef]
- Badorc, A.; Bordes, M.F.; de Cointet, P.; Savi, P.; Bernat, A.; Lale, A.; Petitou, M.; Maffrand, J.P.; Herbert, J.M. New orally active non-peptide fibrinogen receptor (GpIIb-IIIa) antagonists: Identification of ethyl 3-[N-[4-[4-amino[(ethoxycarbonyl)imino]methyl]phenyl]-1,3-thiazol-2-yl]-N-[1-(ethoxycarbonyl)methyl]piperid-4-yl]amino]propionate (SR 121787) as a potent and long-acting antithrombotic agent. J. Med. Chem. 1997, 40, 3393–3401. [Google Scholar] [PubMed]
- Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.; Geschke, F.U. seco-Cyclothialidines: New concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. J. Med. Chem. 2001, 44, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Fares, M.; Abou-Seri, S.M.; Abdel-Aziz, H.A.; Abbas, S.E.S.; Youssef, M.M.; Eladwy, R.A. Synthesis and antitumor activity of pyrido[2,3-d]pyrimidine and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G(1) cell-cycle arrest. Eur. J. Med. Chem. 2014, 83, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Astakhov, A.V.; Chernyshev, V.M. Molecular structure of 3-amino[1,2,4]-triazolo-[4,3-a]pyrimidin-5-one in various tautomeric forms: Investigation by DFT and QTAIM methods. Chem. Heterocycl. Compd. 2014, 50, 319–326. [Google Scholar] [CrossRef]
- Liu, X.H.; Sun, Z.H.; Yang, M.Y.; Tan, C.X.; Weng, J.Q.; Zhang, Y.G.; Ma, Y. Microwave assistant one pot synthesis, crystal structure, antifungal activities and 3D-QSAR of novel 1,2,4-triazolo[4,3-a]pyridines. Chem. Biol. Drug Des. 2014, 84, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Farghaly, T.A.; Hassaneen, H.M.E. Synthesis of pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5- ones as potential antimicrobial agents. Arch. Pharm. Res. 2013, 36, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Gomha, S.M. A facile one-pot synthesis of 6,7,8,9-tetrahydrobenzo-[4,5]thieno[2,3-d]-1,2,4-triazolo[4,5-a]pyrimidin-5-ones. Monatsh. Chem. 2009, 140, 213–220. [Google Scholar] [CrossRef]
- Gomha, S.M.; Badrey, M.G. Ecofriendly regioselective one-pot synthesis of chromeno[4,3-d][1,2,4]triazolo[4,3-a]pyrimidine. Eur. J. Chem. 2013, 4, 180–184. [Google Scholar] [CrossRef]
- Abdelhamid, A.O.; Sayed, I.E.; Hussein, M.Z.; Mangoud, M.M. Synthesis and Antimicrobial Activity of Some New 1,3,4-Thiadiazoles and 3-(Furan-2-yl)-5-(3-(furan-2-yl)-4,5-dihydro-1-phenyl-1H-pyrazol-4-yl)-4,5-dihydropyrazole-1-carbothioamide. World J. Pharm. Sci. 2016, 8, 1654–1663. [Google Scholar]
- Abdelhamid, A.O.; Zohdi, H.; Rateb, N. Reactions with hydrazonoyl halides part 21. Reinvestigation of the reactions of hydrazonoyl bromides with 1,1-dicyanothioacetanilide. J. Chem. Res. (S) 1999, 184–185. [Google Scholar] [CrossRef]
- Butler, R.N. Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds.; Pergamon Press: New York, NY, USA, 1996; Volume 4, pp. 621–678. [Google Scholar]
- Huisgen, R.; Grashey, R.; Seidel, M.; Knupfer, H.; Schmidt, R. 1.3-Dipolare additionen, III. Umsetzungen des diphenylnitrilimins mit carbonyl und thiocarbonyl-verbindungen. Justus. Liebig’s Ann. Chem. 1962, 658, 169–180. [Google Scholar] [CrossRef]
- Yadav, R.C.; Sharma, P.K.; Singh, J. Synthesis and biological activity of 4”-substituted-2-(4’-formyl-3’-phenylpyrazole)-4-phenylthiazole. J. Chem. Pharm. Res. 2013, 5, 78–84. [Google Scholar]
- Mosselhi, M.A.N. A convenient synthesis of novelderivatives of pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine-5,6-dione. Monatsh Chem. 2002, 133, 1297–1304. [Google Scholar] [CrossRef]
- Smania, J.A.; Monache, F.D.; Smania, E.F.A.; Cuneo, R.S. Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) fruit body. Int. J. Med. Mushr. 1999, 1, 325–330. [Google Scholar] [CrossRef]
- Turnidge, J.D.; Ferraro, M.J.; Jorgensen, J.H. Susceptibility tEst Methods: General Considerations. In American Society of Clinical Microbiology Murray, 8th ed.; Murray, P.R., Baron, E.J., Jorgensen, J.H., Pfaller, M.A., Yolken, R.H., Eds.; Manual of Clinical Microbiology: Washington, DC, USA, 2003; p. 1103. [Google Scholar]
- Saini, K.R.K.; Choudhary, S.A.; Joshi, Y.C.; Joshi, P. Solvent free synthesis of chalcones and their antibacterial activities. E-J. Chem. 2005, 2, 224–227. [Google Scholar] [CrossRef]
- Bhuiyan, M.M.H.; Hossain, M.I.; Mahmud, M.M.; Al-Amin, M. Microwave-assisted efficient synthesis of chalcones as probes for antimicrobial activities. Chem. J. 2011, 1, 21–28. [Google Scholar]
- Shawali, A.S.; Osman, A. Synthesis and reactions of phenylcarbamoyl-arylhydrazidic chlorides. Tetrahedron 1971, 27, 2517–2528. [Google Scholar] [CrossRef]
- Shawali, A.S.; Abdelhamid, A.O. Reaction of dimethylphenacylsulfonium bromide with N-nitrosoacetarylamides and reactions of the products with nucleophiles. Bull. Soc. Chem. Jpn. 1976, 49, 321–324. [Google Scholar] [CrossRef]
- Eweiss, N.F.; Osman, A. Synthesis of heterocycles. Part II. New routes to acetylthiadiazolines and alkylazothiazoles. J. Heterocycl. Chem. 1980, 17, 1713–1717. [Google Scholar] [CrossRef]
- Asiri, A.M.; Zayed, M.E.M.; Ng, S.W. Ethyl 2-chloro-2-(2-phenylhydrazin-1-ylidene)acetate. Acta Cryst. 2011, 67, o1962. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Jiang, S.M.; Chen, Z.H.; Ye, B.J.; Piao, H.R. Synthesis and anti-bacterial activity of some heterocyclic chalcone derivatives bearing thiofuran, furan, and quinoline moieties. Arch. Pharm. Chem. Life Sci. 2011, 344, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.K.; Kumar, S.; Kumar, P.; Kaushik, P.; Kaushik, D.; Dhingra, Y.; Aneja, K.R. Synthesis and biological evaluation of some pyrazolylpyrazolines as anti-inflammatory–antimicrobial agents. Eur. J. Med. Chem. 2010, 45, 2650–2655. [Google Scholar] [CrossRef] [PubMed]
- Rateb, N.M.; Zohdi, H.F. Atom-efficient, solvent-free, green synthesis of chalcones by grinding. Synth. Commun. 2009, 39, 2789–2794. [Google Scholar] [CrossRef]
- Nasr, M.N.; Said, S.A. Novel 3,3a,4,5,6,7-hexahydroindazole and arylthiazolylpyrazoline derivatives as anti-inflammatory agents. Arch. Pharm. Pharm. Med. Chem. 2003, 336, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, F.; Maccioni, E.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F.; et al. Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1H)-pyrazole derivatives. J. Med. Chem. 2005, 48, 7113–7122. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the synthesized compounds are available from the authors.
Compound | Aspergillus fumigatus (Fungus) | Candida albicans (Fungus) | Streptococcus pneumoniae (Gram +ve Bact.) | Bacillus subtilis (Gram +ve Bact.) | Pseudomonas aeruginosa (Gram −ve Bact.) | Escherichia coli (Gram −ve Bact.) |
---|---|---|---|---|---|---|
9a | 0 | 0 | 0 | 0 | 0 | 0 |
9b | 15.7 | 0 | 16.2 | 19.8 | 0 | 16.3 |
9c | 15.6 | 0 | 19.6 | 19.3 | 0 | 14.9 |
10a | 16.3 | 0 | 18.9 | 21.3 | 0 | 19.9 |
10b | 18.8 | 0 | 17.3 | 18.2 | 0 | 17.9 |
10c | 18.6 | 0 | 20.6 | 20 | 0 | 15.9 |
13b | 23.7 | 25.4 | 23.8 | 32.4 | 17.3 | 19.9 |
13c | 14.6 | 16.9 | 10.2 | 9.8 | 0 | 11.2 |
13f | 13.6 | 11.7 | 15.6 | 15.3 | 0 | 9.4 |
14a | 15.9 | 15.1 | 17.3 | 13.3 | 11.9 | 11.6 |
14b | 25.3 | 17.6 | 22.6 | 33.7 | 13.1 | 19.3 |
14c | 10.3 | 11.3 | 8.3 | 10.9 | 0 | 8.8 |
14e | 15.6 | 12.5 | 17.3 | 13.3 | 10.3 | 10.9 |
14f | 0 | 0 | 12.6 | 11.2 | 0 | 9.6 |
15a | 16.9 | 18.3 | 17.3 | 13.4 | 15.1 | 13.2 |
15b | 22.3 | 16.5 | 19.5 | 30.8 | 12.3 | 17.6 |
15c | 20.8 | 18.9 | 19.4 | 14.9 | 13.6 | 11.8 |
15e | 15.4 | 12.9 | 19.6 | 13.9 | 9.7 | 8.9 |
15f | 21.3 | 17.2 | 18.2 | 20.3 | 0 | 20.3 |
18a | 17.1 | 11.1 | 13.9 | 14.2 | 11.7 | 10.3 |
20 | 15.4 | 14.8 | 10.9 | 12.9 | 11.3 | 11.6 |
26a | 14.7 | 10.9 | 12.2 | 14.9 | 11.8 | 14.7 |
26c | 13.9 | 15.6 | 17.3 | 20.6 | 12.5 | 14.8 |
26d | 14.9 | 10.4 | 21.8 | 23.3 | 15.3 | 19.1 |
27 | 16.2 | 14.9 | 15.6 | 15.6 | 11.7 | 10.8 |
28a | 16.3 | 13.4 | 17.5 | 20.8 | 0 | 18.9 |
28b | 18.6 | 15.4 | 13.3 | 12.7 | 0 | 8.5 |
Amphotericin B | 23.7 | 25.4 | - | - | - | - |
Ampicillin | - | - | 23.8 | 32.4 | - | - |
Gentamicin | - | - | - | - | 17.3 | 19.9 |
Compound | Aspergillus fumigatus (Fungus) | Candida albicans (Fungus) | Streptococcus pneumoniae (Gram +ve Bact.) | Bacillus subtilis (Gram +ve Bact.) | Pseudomonas aeruginosa (Gram −ve Bact.) | Escherichia coli (Gram −ve Bact.) |
---|---|---|---|---|---|---|
9d | 7.81 | 0 | 3.9 | 1.95 | 0 | 15.63 |
10a | 31.25 | 0 | 3.9 | 3.9 | 0 | 3.9 |
10b | 7.81 | 0 | 31.25 | 7.81 | 0 | 15.63 |
10c | 3.9 | 0 | 3.9 | 3.9 | 0 | 31.25 |
13b | 12.5 | 62.5 | 3.9 | 3.9 | 12.5 | 15.63 |
14b | 25 | 12.5 | 15.63 | 7.95 | 50 | 31.25 |
15f | 12.5 | 62.5 | 3.9 | 1.95 | 25 | 15.63 |
28a | 25 | 50 | 62.5 | 62.5 | 0 | 25 |
Amphotericin B | 0.49 | 0.49 | - | - | - | - |
Ampicillin | - | - | 0.49 | 0.24 | - | - |
Gentamicin | - | - | - | - | 15.63 | 3.9 |
Compound | Aspergillus fumigatus (Fungus) | Syncephalastrum racemosum (Fungus) | Geotrichum candidum (Fungus) | Candida albicans (Fungus) | Streptococcus pneumoniae (Gram +ve Bact.) | Bacillus subtillis (Gram +ve Bact.) | Pseudomonas aeruginosa (Gram −ve Bact.) | Escherichia coli (Gram −ve Bact.) |
---|---|---|---|---|---|---|---|---|
9d | 43.21 | 36.28 | 18.24 | 0 | 17.52 | 15.63 | 0 | 27.34 |
10a | 64.31 | 34.28 | 31.17 | 0 | 31.25 | 18.24 | 0 | 31.56 |
10b | 42.63 | 33.42 | 19.63 | 0 | 76.34 | 37.25 | 0 | 28.37 |
10c | 35.24 | 27.58 | 24.63 | 0 | 25.12 | 22.41 | 0 | 34.25 |
Amphotericin B | 11.24 | 16.84 | 9.32 | 12.68 | - | - | - | - |
Ampicillin | - | - | - | - | 10.58 | 5.29 | - | - |
Gentamicin | - | - | - | - | - | - | 17.96 | 16.24 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhamid, A.O.; El Sayed, I.E.; Hussein, M.Z.; Mangoud, M.M. Synthesis and Antimicrobial Activity of Some New Thiadiazoles, Thioamides, 5-Arylazothiazoles and Pyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidines. Molecules 2016, 21, 1072. https://doi.org/10.3390/molecules21081072
Abdelhamid AO, El Sayed IE, Hussein MZ, Mangoud MM. Synthesis and Antimicrobial Activity of Some New Thiadiazoles, Thioamides, 5-Arylazothiazoles and Pyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidines. Molecules. 2016; 21(8):1072. https://doi.org/10.3390/molecules21081072
Chicago/Turabian StyleAbdelhamid, Abdou O., Ibrahim E. El Sayed, Mohamed Z. Hussein, and Mangoud M. Mangoud. 2016. "Synthesis and Antimicrobial Activity of Some New Thiadiazoles, Thioamides, 5-Arylazothiazoles and Pyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidines" Molecules 21, no. 8: 1072. https://doi.org/10.3390/molecules21081072
APA StyleAbdelhamid, A. O., El Sayed, I. E., Hussein, M. Z., & Mangoud, M. M. (2016). Synthesis and Antimicrobial Activity of Some New Thiadiazoles, Thioamides, 5-Arylazothiazoles and Pyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidines. Molecules, 21(8), 1072. https://doi.org/10.3390/molecules21081072