Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium adenophorum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis of the Products
2.2. Cytotoxicity Evaluation
2.3. Acute Oral Toxicity Studies
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of Different Chlorogenic Acid Products from E. adenophorum
3.3. Quantitative Analysis of Selected Phytochemical Constituents
3.3.1. HPLC Analysis of Mono-CQAs
3.3.2. HPLC Analysis of Sesquiterpenes
3.3.3. Quantification of Total Sugars Content
3.3.4. Quantification of Total Flavonoid Content
3.4. Study of Toxicity in Vitro
3.4.1. Cell Culture and Treatment
3.4.2. Cell Viability Assay
3.5. Study of Toxicity In Vivo
3.5.1. Animals
3.5.2. Acute Oral Toxicity
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Wan, F.H.; Liu, W.X.; Guo, J.; Qiang, S.; Li, B.P.; Wang, J.J.; Yang, G.Q.; Niu, H.B.; Gui, F.R.; Huang, W.K. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Sci. China Life Sci. 2010, 53, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q. The history and status of the study on crofton weed (Eupatorium adenophorum Spreng.) a worst worldwide weed. J. Wuhan Bot. Res. 1998, 16, 366–372. [Google Scholar]
- Awah, F.M.; Uzoegwu, P.N.; Ifeonu, P.; Oyugi, J.O.; Rutherford, J.; Yao, X.; Fehrmann, F.; Fowke, K.R.; Eze, M.O. Free radical scavenging activity, phenolic contents and cytotoxicity of selected Nigerian medicinal plants. Food Chem. 2012, 131, 1279–1286. [Google Scholar] [CrossRef]
- Ahluwalia, V.; Sisodia, R.; Walia, S.; Sati, O.P.; Kumar, J.; Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest. Sci. 2014, 87, 341–349. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, Y.W.; Wan, C.Y.; Wang, H.J.; Hou, L.Y.; Chang, J.Y.; Fan, K.; Xie, X.M. Immunomodulatory activity and protective effects of polysaccharide from Eupatorium adenophorum leaf extract on highly pathogenic H5N1 influenza infection. Evid. Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, K.; Zhang, G.L.; Ito, Y. Isolation of five bioactive components from Eupatorium adenophorum Spreng using stepwise elution by high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2505–2515. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Yang, R.; Song, L.; Ning, B.M.; Ouyang, C.B.; Cao, A.C.; He, L. Two new highly-oxygenated flavonoid glycosides from Eupatorium adenophorum Spreng. Phytochem. Lett. 2016, 16, 245–248. [Google Scholar] [CrossRef]
- Kurade, N.P.; Jaitak, V.; Kaul, V.K.; Sharma, O.P. Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm. Biol. 2010, 48, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Dong, B.T.; Yuan, X.F.; Kuang, Q.R.; Zhao, Q.S.; Yang, M.; Liu, J.; Zhao, B. Enrichment and separation of chlorogenic acid from the extract of Eupatorium adenophorum Spreng by macroporous resin. J. Chromatogr. B 2016, 1008, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Chagas-Paula, D.A.; de Oliveira, R.B.; da Silva, V.C.; Gobbo-Neto, L.; Gasparoto, T.H.; Campanelli, A.P.; Faccioli, L.H.; da Costa, F.B. Chlorogenic acids from tithonia diversifolia demonstrate better anti-inflammatory effect than indomethacin and its sesquiterpene lactones. J. Ethnopharmacol. 2011, 136, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.F.; Shi, L.P.; Ren, Y.D.; Liu, Q.F.; Liu, H.F.; Zhang, R.J.; Li, Z.; Zhu, F.H.; He, P.L.; Tang, W. Anti-hepatitis b virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir. Res. 2009, 83, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010, 48, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.C. Eucommia ulmoides as feed additives for animals-a brief summary. Inter. Symp. Eucommia ulmoides 2007, 1, 15–20. [Google Scholar] [CrossRef]
- Ouyang, C.B.; Liu, X.M.; Liu, Q.; Bai, J.; Li, H.Y.; Li, Y.; Wang, Q.X.; Yan, D.D.; Mao, L.G.; Cao, A.C. Toxicity assessment of cadinene sesquiterpenes from Eupatorium adenophorum in mice. Nat. Prod. Bioprospect. 2015, 5, 29–36. [Google Scholar] [CrossRef] [PubMed]
- He, Y.J.; Chen, W.H.; Hu, Y.C.; Luo, B.; Wu, L.; Qiao, Y.; Mo, Q.; Xu, R.G.; Zhou, Y.C.; Ren, Z.H. E. Adenophorum induces cell cycle and apoptosis of renal cells through mitochondrial pathway and caspase activation in saanen goat. PLoS ONE 2015, 10, e0138504. [Google Scholar] [CrossRef] [PubMed]
- Sani, Y.; Harper, P.; Cook, R.; Seawright, A.; Ng, J.; James, L.; Keeler, R.; Bailey, E.; Cheeke, P.; Hegarty, M. The toxicity of Eupatorium adenophorum for the liver of the mouse. In Proceedings of the Third International Symposium on Poisonous Plants, Logan, UT, USA, 23–29 July 1989.
- Katoch, R.; Sharma, O.P.; Dawra, R.K.; Kurade, N.P. Hepatotoxicity of Eupatorium adenophorum to rats. Toxicon 2000, 38, 309–314. [Google Scholar] [CrossRef]
- Kaushal, V.; Dawra, R.; Sharma, O.; Kurade, N. Hepatotoxicity in rat induced by partially purified toxins from Eupatorium adenophorum (Ageratina adenophora). Toxicon 2001, 39, 615–619. [Google Scholar] [CrossRef]
- Ouyang, C.B.; Liu, X.M.; Yan, D.D.; Li, Y.; Wang, Q.; Cao, A.C. Immunotoxicity assessment of cadinene sesquiterpenes from Eupatorium adenophorum in mice. J. Integr. Agric. 2016, 15, 60345–60347. [Google Scholar] [CrossRef]
- Singh, Y.; Ayub, M.S.A.M.; Tolenkhomba, T.; Ayub, S.M. Short-term toxicity studies of Eupatorium adenophorum in swiss albino mice. Int. J. Res. Phytochem. Pharmacol. 2011, 1, 165–171. [Google Scholar]
- Kundu, A.; Saha, S.; Walia, S.; Ahluwalia, V. Plant growth inhibitory terpenes from Eupatorium adenophorum leaves. J. Appl. Bot. Food Qual. 2013, 86, 33–36. [Google Scholar]
- Oelrichs, P.B.; Calanasan, C.A.; Macleod, J.K.; Seawright, A.A.; Ng, J.C. Isolation of a compound from Eupatorium adenophorum (Spreng.) (Ageratina adenophora (Spreng.)) causing hepatotoxicity in mice. Nat. Toxins 1995, 3, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Singh, A.; Sharma, O.P.; Dawra, R.K.; Kurade, N.P.; Mahato, S.B. Hepatotoxicity and cholestasis in rats induced by the sesquiterpene, 9-oxo-10,11-dehydroageraphorone, isolated from Eupatorium adenophorum. J. Biochem. Mol. Toxic. 2001, 15, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, A.; Singh, B.; Sharma, O.P. Evaluation of feeding value of Eupatorium adenophorum in combination with mulberry leaves. Livestockence 2011, 136, 175–183. [Google Scholar] [CrossRef]
- Rymer, C. The effect of wilting and soaking Eupatorium adenophorum on its digestibility in vitro and voluntary intake by goats. Anim. Feed Sci. Tech. 2008, 141, 49–60. [Google Scholar] [CrossRef]
- Liao, F.; Hu, Y.C.; Huang, Y.; Liu, X.; Tan, H.; Wang, Y.F.; Mo, Q.; Jiang, Z.R.; Deng, S.J. The influence on livestock industry and development prospect of Eupatorium adenophorum Spreng. J. Microb. Biochem. Technol. 2015, 7, 57–60. [Google Scholar]
- Liu, P.Y.; Liu, D.; Li, W.H.; Zhao, T.; Sauriol, F.; Gu, Y.C.; Shi, Q.W.; Zhang, M.L. Chemical constituents of plants from the genus Eupatorium (1904–2014). Chem. Biodivers. 2015, 12, 1481–1515. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.T.; Yue, J.; Feng, C. Application of preparative high-speed counter-current chromatography for separation of chlorogenic acid from Flos lonicerae. J. Chromatogr. A 2004, 1026, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Dong, G.L.; Gu, Y.X.; Yoichiro, I.; Yun, W. Separation of chlorogenic acid and concentration of trace caffeic acid from natural products by pH-zone-refining countercurrent chromatography. J. Sep. Sci. 2013, 36, 2210–2215. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.J.; Zhang, Z.H.; Liao, H.P.; Nie, L.H.; Yao, S.Z. Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase. J. Chromatogr. A 2005, 1098, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Scheers, E.; Ekwall, B.; Dierickx, P. In vitro long-term cytotoxicity testing of 27 meic chemicals on HepG2 cells and comparison with acute human toxicity data. Toxicol. In Vitro 2001, 15, 153–161. [Google Scholar] [CrossRef]
- Lv, G.; Meng, L.; Han, D.; Li, H.; Zhao, J.; Li, S. Effect of sample preparation on components and liver toxicity of Polygonum multiflorum. J. Pharm. Biomed. 2015, 109, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.B.; Luo, X.Z.; Guo, M.L.; Wu, J.G.; Yang, W.L.; Yu, R.Y.; Yao, S.Z. Determination of aristolochic acid i and its metabolites in cell culture with a hyphenated high-performance liquid chromatographic technique for cell toxicology. Talanta 2009, 78, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Qi, Y.T.; Diao, Q.Y.; Wu, L.M.; Du, X.; Li, Y.; Sun, L.P. Cytotoxicity of melittin and apamin in human hepatic L02 and HepG2 cells in vitro. Toxin Rev. 2013, 32, 60–67. [Google Scholar] [CrossRef]
- Knasmüller, S.; Parzefall, W.; Sanyal, R.; Ecker, S.; Schwab, C.; Uhl, M.; Mersch-Sundermann, V.; Williamson, G.; Hietsch, G.; Langer, T. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat. Res. 1998, 402, 185–202. [Google Scholar] [CrossRef]
- Yin, J.J.; Luo, Y.Q.; Deng, H.L.; Qin, S.M.; Tang, W.J.; Zeng, L.; Zhou, B.J. Hugan Qingzhi medication ameliorates hepatic steatosis by activating AMPK and PPARα pathways in L02 cells and HepG2 cells. J. Ethnopharmacol. 2014, 154, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Karani, L.; Tolo, F.; Karanja, S.; Khayeka, C. Safety of Prunus africana and Warburgia ugandensis in asthma treatment. S. Afr. J. Bot. 2013, 88, 183–190. [Google Scholar] [CrossRef]
- Bohlmann, F.; Gupta, R.K. Six cadinene derivatives from Ageratina adenophora. Phytochemistry 1981, 20, 1432–1433. [Google Scholar] [CrossRef]
- Nong, X.; Li, S.H.; Chen, F.Z.; Wang, J.H.; Xie, Y.; Fang, C.L.; Liu, T.F.; He, R.; Gu, X.B.; Peng, X.R. Isolation and identification of acaricidal compounds in Eupatorium adenophorum petroleum ether extract and determination of their acaricidal activity against Psoroptes cuniculi. Vet. Parasitol. 2014, 203, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Weyerstahl, P.; Marschall, H.; Seelmann, I.; Kaul, V.K. Constituents of the flower essential oil of Ageratina adenophora (Spreng.) K. Et R. from India. Flavour. Frag. J. 1997, 12, 387–396. [Google Scholar] [CrossRef]
- Shi, W.; Luo, S.H.; Li, S.H. Defensive sesquiterpenoids from leaves of Eupatorium adenophorum. Chin. J. Chem. 2012, 30, 1331–1334. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Zhang, J.; Hayat, K.; Zhang, X.; Tong, J.; Xia, S. Separation and purification of flavonoid from ginkgo extract by polyamide resin. Sep. Sci. Technol. 2010, 45, 2413–2419. [Google Scholar] [CrossRef]
- Wan, P.F.; Sheng, Z.L.; Han, Q.; Zhao, Y.L.; Cheng, G.D.; Li, Y.H. Enrichment and purification of total flavonoids from Flos populi extracts with macroporous resins and evaluation of antioxidant activities in vitro. J. Chromatogr. B 2014, 945, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the products are available from the authors.
Product | 3-CQA (%) | Chlorogenic Acid (%) | 4-CQA (%) | Total Sugars (%) | Total Flavonoids (%) | 9-oxo-10,11-Dehydroageraphorone (mg/g) | 10Hα-9-oxo-Ageraphorone (mg/g) | 10Hβ-9-oxo-Ageraphorone (mg/g) |
---|---|---|---|---|---|---|---|---|
EA-1 | 1.70 | 6.11 | 0.68 | 10.26 | 15.25 | 4.01 | 2.27 | 2.59 |
EA-2 | 4.32 | 22.17 | 2.10 | 4.09 | 33.73 | 0.24 | – | – |
EA-3 | – 1 | 96.03 | – | – | – | – | – | – |
Group | Sex | Body Weight (g) | |||
---|---|---|---|---|---|
Initial | 1st Day | 7th Day | 14th Day | ||
EA-1 | Female (n = 10) | 24.94 ± 0.60 | 24.53 ± 0.60 | 25.79 ± 0.83 | 27.85 ± 1.53 |
Male (n = 10) | 27.54 ± 1.28 | 27.75 ± 1.43 | 31.08 ± 2.10 | 34.98 ± 2.91 | |
EA-2 | Female (n = 10) | 25.58 ± 0.70 | 24.91 ± 1.01 | 25.85 ± 0.83 | 27.79 ± 1.22 |
Male (n = 10) | 26.92 ± 1.49 | 27.82 ± 1.38 | 31.08 ± 1.80 | 33.66 ± 1.94 | |
EA-3 | Female (n = 10) | 26.54 ± 0.92 | 25.36 ± 0.60 | 27.83 ± 1.46 | 30.02 ± 1.68 |
Male (n = 10) | 32.86 ± 1.60 | 32.73 ± 1.42 | 36.88 ± 1.75 | 38.37 ± 2.36 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Cao, L.; Zhang, L.; Yuan, X.; Zhao, B. Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium adenophorum. Molecules 2017, 22, 67. https://doi.org/10.3390/molecules22010067
Liu B, Cao L, Zhang L, Yuan X, Zhao B. Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium adenophorum. Molecules. 2017; 22(1):67. https://doi.org/10.3390/molecules22010067
Chicago/Turabian StyleLiu, Boyan, Lili Cao, Lijun Zhang, Xiaofan Yuan, and Bing Zhao. 2017. "Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium adenophorum" Molecules 22, no. 1: 67. https://doi.org/10.3390/molecules22010067
APA StyleLiu, B., Cao, L., Zhang, L., Yuan, X., & Zhao, B. (2017). Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium adenophorum. Molecules, 22(1), 67. https://doi.org/10.3390/molecules22010067