Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior
Abstract
:1. Introduction
2. Discussion
2.1. Synthesis of 1,3-Phenylenebis(1,2,4-triazol-1-yl)methanone (1)
2.2. Synthesis and Characterization of Coordination Polymers (CPs)
2.2.1. Infrared Spectroscopy
2.2.2. Thermal Analysis
2.2.3. X-Ray Diffraction Studies
2.2.4. Molecular Modeling
2.2.5. ε-Caprolactone Polymerization
3. Materials and Methods
3.1. General Information
3.2. Synthesis of 1,3-Phenylenebis(1,2,4-triazole-1-yl)methanone (1)
3.3. Synthesis of Catena-Poly[chlorocobalt-di-μ-chloro-cobalt-μ-[1,3-Phenylenebis(1,2,3-triazole-1-yl)-methanone-O:N,O’:N’]] (2)
3.4. Synthesis of Catena-Poly[chlorocopper-di-μ-chloro-copper-μ-[1,3-Phenylenebis(1,2,3-triazole-1-yl)-methanone-O:N,O’:N’]] (3)
3.5. Synthesis of Catena-Poly[chlorozinc-di-μ-chloro-zinc-μ-[1,3-Phenylenebis(1,2,3-triazole-1-yl)-methanone-O:N,O’:N’]] (4)
3.6. Synthesis of Catena-Poly[chloronickel-di-μ-chloro-nickel-μ-[1,3-Phenylenebis(1,2,3-triazole-1-yl)-methanone-O:N,O’:N’]] (5)
3.7. Polymerization of ε-Caprolactone
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Whitehorne, T.J.J.; Schaper, F. Lactide, β-butyrolactone, δ-valerolactone, and ε-caprolactone polymerization with copper diketiminate complexes. Can. J. Chem. 2013, 92, 206–214. [Google Scholar] [CrossRef]
- Platel, R.H.; Hodgson, L.M.; Williams, C.K. Biocompatible Initiators for Lactide Polymerization. Polym. Rev. 2008, 48, 11–63. [Google Scholar] [CrossRef]
- Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar] [CrossRef] [PubMed]
- D’auria, I.; Mazzeo, M.; Pappalardo, D.; Lamberti, M.; Pellecchia, C. Ring-opening polymerization of cyclic esters promoted by phosphido-diphosphine pincer group 3 complexes. J. Polym. Sci. Part Polym. Chem. 2011, 49, 403–413. [Google Scholar] [CrossRef]
- Hurtado, J.; Rojas, R.; Valderrama, M. Ytrium(III) pincer complexes as catalysts in ring-opening polymerization of ε-caprolactone. Rev. Investig. Univ. Quindío 2013, 24, 10–18. [Google Scholar]
- Appavoo, D.; Omondi, B.; Guzei, I.A.; Van Wyk, J.L.; Zinyemba, O.; Darkwa, J. Bis(3,5-dimethylpyrazole) copper(II) and zinc(II) complexes as efficient initiators for the ring opening polymerization of ε-caprolactone and d,l-lactide. Polyhedron 2014, 69, 55–60. [Google Scholar] [CrossRef]
- Ojwach, S.O.; Okemwa, T.T.; Attandoh, N.W.; Omondi, B. Structural and kinetic studies of the polymerization reactions of ε-caprolactone catalyzed by (pyrazol-1-ylmethyl)pyridine Cu(II) and Zn(II) complexes. Dalton Trans. 2013, 42, 10735–10745. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, N.; Fujiki, M.; Nomura, K. Ring-opening polymerization of various cyclic esters by Al complex catalysts containing a series of phenoxy-imine ligands: Effect of the imino substituents for the catalytic activity. J. Mol. Catal. Chem. 2008, 292, 67–75. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, L.; Hu, Y.; He, Y.; Wei, J.; Li, S. Enzymatic degradation of block copolymers obtained by sequential ring opening polymerization of l-lactide and ε-caprolactone. Polym. Degrad. Stab. 2007, 92, 1769–1777. [Google Scholar] [CrossRef]
- Barakat, I.; Dubois, P.; Jerome, R.; Teyssie, P. Living polymerization and selective end functionalization of iε-caprolactone using zinc alkoxides as initiators. Macromolecules 1991, 24, 6542–6545. [Google Scholar] [CrossRef]
- Li, J.; Deng, Y.; Jie, S.; Li, B.G. Zinc complexes supported by (benzimidazolyl)pyridine alcohol ligands as highly efficient initiators for ring-opening polymerization of ε-caprolactone. J. Organomet. Chem. 2015, 797, 76–82. [Google Scholar] [CrossRef]
- Nuñez-Dallos, N.; Posada, A.F.; Hurtado, J. Coumarin salen-based zinc complex for solvent-free ring opening polymerization of ε-caprolactone. Tetrahedron Lett. 2017, 58, 977–980. [Google Scholar] [CrossRef]
- Hurtado, J.; Ibarra, L.; Yepes, D.; García-Huertas, P.; Macías, M.; Triana-Chavez, O.; Nagles, E.; Suescun, L.; Muñoz-Castro, A. Synthesis, crystal structure, catalytic and anti-Trypanosoma cruzi activity of a new chromium(III) complex containing bis(3,5-dimethylpyrazol-1-yl)methane. J. Mol. Struct. 2017, 1146, 365–372. [Google Scholar] [CrossRef]
- Arbaoui, A.; Redshaw, C. Metal catalysts for ε-caprolactone polymerisation. Polym. Chem. 2010, 1, 801–826. [Google Scholar] [CrossRef]
- Sarazin, Y.; Howard, R.H.; Hughes, D.L.; Humphrey, S.M.; Bochmann, M. Titanium, zinc and alkaline-earth metal complexes supported by bulky O,N,N,O-multidentate ligands: Syntheses, characterisation and activity in cyclic ester polymerisation. Dalton Trans. 2006, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Barba, L.F.; Garcés, A.; Fajardo, M.; Alonso-Moreno, C.; Fernández-Baeza, J.; Otero, A.; Antiñolo, A.; Tejeda, J.; Lara-Sánchez, A.; López-Solera, M.I. Well-Defined Alkyl Heteroscorpionate Magnesium Complexes as Excellent Initiators for the ROP of Cyclic Esters. Organometallics 2007, 26, 6403–6411. [Google Scholar] [CrossRef]
- Mahha, Y.; Atlamsani, A.; Blais, J.-C.; Tessier, M.; Brégeault, J.-M.; Salles, L. Oligomerization of ε-caprolactone and δ-valerolactone using heteropolyacid initiators and vanadium or molybdenum complexes. J. Mol. Catal. Chem. 2005, 234, 63–73. [Google Scholar] [CrossRef]
- Kazhemekaite, M.; Yuodvirshis, A.; Vektarene, A. Preparation of the pure sodium salt of 1H-1,2,4-triazole. Chem. Heterocycl. Compd. 1998, 34, 252–253. [Google Scholar] [CrossRef]
- Hurtado, J.; Mac-Leod Carey, D.; Muñoz-Castro, A.; Arratia-Pérez, R.; Quijada, R.; Wu, G.; Rojas, R.; Valderrama, M. Chromium(III) complexes with terdentate 2,6-bis(azolylmethyl)pyridine ligands: Synthesis, structures and ethylene polymerization behavior. J. Organomet. Chem. 2009, 694, 2636–2641. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Chichester, UK, 2004; p. 39. ISBN1 10:0470093072. ISBN2 13:9780470093078. [Google Scholar]
- Hurtado, J.; Ugarte, J.; Rojas, R.; Valderrama, M.; Carey, D.M.L.; Muñoz-Castro, A.; Arratia-Pérez, R.; Fröhlich, R. New bis(azolylcarbonyl)pyridine chromium(III) complexes as initiators for ethylene polymerization. Inorg. Chim. Acta 2011, 378, 218–223. [Google Scholar] [CrossRef]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Z. Krist. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Boultif, A.; Louër, D. Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 2004, 37, 724–731. [Google Scholar] [CrossRef]
- Le Bail, A.; Duroy, H.; Fourquet, J.L. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull. 1988, 23, 447–452. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Li, K.; Mohlala, M.S.; Segapelo, T.V.; Shumbula, P.M.; Guzei, I.A.; Darkwa, J. Bis(pyrazole)- and bis(pyrazolyl)-palladium complexes as phenylacetylene polymerization catalysts. Polyhedron 2008, 27, 1017–1023. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, Z.-G.; Li, H.-X.; Zhang, W.-H.; Chen, J.-X.; Zhang, Y.; Lang, J.-P. Syntheses, crystal structures and luminescent properties of two one-dimensional coordination polymers [CuX(dmpzm)]n(X=CN, NCS; dmpzm=bis(3,5-dimethylpyrazolyl)methane). J. Mol. Struct. 2006, 782, 150–156. [Google Scholar] [CrossRef]
- Sandoval-Rojas, A.P.; Ibarra, L.; Cortés, M.T.; Hurtado, M.; Macías, M.; Hurtado, J.J. Synthesis and characterization of a new copper(II) polymer containing a thiocyanate bridge and its application in dopamine detection. Inorg. Chim. Acta 2017, 459, 95–102. [Google Scholar] [CrossRef]
- Hurtado, J.; Rojas, R.S.; Pérez, E.G.; Valderrama, M. Palladium complex bearing 3,5-bis(benzotriazol-1-ylmethyl)toluene ligand catalyzes oxidative amination of allyl butyl ether. J. Chil. Chem. Soc. 2013, 58, 1534–1536. [Google Scholar] [CrossRef]
- Guzei, I.A.; Li, K.; Bikzhanova, G.A.; Darkwa, J.; Mapolie, S.F. Benzenedicarbonyl and benzenetricarbonyl linker pyrazolyl complexes of palladium(II): Synthesis, X-ray structures and evaluation as ethylene polymerisation catalysts. Dalton Trans. 2003, 715–722. [Google Scholar] [CrossRef]
- Saravanamoorthy, S.; Velmathi, S. Transition metal complexes of tridentate Schiff base ligand as efficient reusable catalyst for the synthesis of polycaprolactone and polylactide. Indian J. Chem. 2016, 55B, 344–352. [Google Scholar]
- Weinkauf, D.H.; Paul, D.R. Effects of Structural Order on Barrier Properties. ACS Symp. Ser. 1990, 423, 60–91. [Google Scholar] [CrossRef]
- Idage, B.B.; Idage, S.B.; Kasegaonkar, A.S.; Jadhav, R.V. Ring opening polymerization of dilactide using salen complex as catalyst. Mater. Sci. Eng. B 2010, 168, 193–198. [Google Scholar] [CrossRef]
- MOPAC, version 2012; Stewart Computational Chemistry; Colorado Springs: Colorado, CO, USA, 2012.
- Maia, J.D.C.; Urquiza Carvalho, G.A.; Mangueira, C.P.; Santana, S.R.; Cabral, L.A.F.; Rocha, G.B. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations. J. Chem. Theory Comput. 2012, 8, 3072–3081. [Google Scholar] [CrossRef] [PubMed]
- Allouche, A.-R. Gabedit—A graphical user interface for computational chemistry softwares. J. Comput. Chem. 2011, 32, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam Density Functional (ADF 2016) Code; Vrije Universiteit: Amsterdam, The Netherlands, 2016.
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Mol. Opt. Phys. 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Grimme, S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011, 1, 211–228. [Google Scholar] [CrossRef]
- Oudhuis, A.A.; Thiewes, J.H.; van-Hutten, P.F.; ten-Brinke, G. A comparison between the morphology of semicrystalline polymer blends of poly(-caprolactone)/poly(vinyl methyl ether) and poly(-caprolactone)/(styrene-acrylonitrile). Polymer 1994, 35, 3936–3942. [Google Scholar] [CrossRef]
Sample Availability: Samples of all the compounds are available from the authors. |
Compound | Wavenumber ν/cm−1 | ||||
---|---|---|---|---|---|
ν(C–H) | ν(C=O) | ν(N–N) | ν(C–N) | ν(M–N) | |
1 | 3121 s | 1710 vs | 1429 m | 1217 m | -- |
2 | 3126 s | 1700 m | 1427 m | 1211 m | 419 w |
3 | 3135 s | 1708 vs | 1422 m | 1215 m | 417 w |
4 | 3118 s | 1691 vs | 1418 m | 1223 w | 420 w |
5 | 3134 s | 1629 m | 1427 m | 1132 m | 309 m |
Compound (Formula) | TG Range/°C | DTGmax/°C | n | Mass Loss | Total Mass Loss | Assignment | Metallic Residue |
---|---|---|---|---|---|---|---|
Estimated (calcd.)/% | |||||||
2 (C12H8Cl2CoN6O2) | 25–319 | 226 | 1 | 29.46 (30.53) | 78.95 (78.29) | loss of C2H2N3 | CoCl |
319–500 | 395, 432, 444 | 3 | 30.59 (32.34) | loss of C6H4 + CO + HCl | |||
500–695 | 631 | 1 | 18.84 (15.42) | loss of C2NH3 | |||
3 (C12H8Cl2CuN6O2) | 25–216 | 190 | 1 | 13.83 (15.76) | 87.07 (84.22) | loss of HCl + CO | Cu |
216–368 | 287, 312, 320 | 3 | 53.15 (52.06) | loss of C9H7N3O + HCl | |||
368–697 | 598 | 1 | 20.09 (16.40) | loss of C2N3 | |||
4 (C12H8Cl2N6O2Zn) | 21–221 | 211 | 1 | 26.49 (24.70) | 88.52 (83.84) | loss of 2HCl + CO | Zn |
221-300 | 281 | 1 | 31.62 (35.64) | loss of C2HN3 + C6H5 | |||
300–436 | 403 | 1 | 14.77 (13.60) | loss of C2HN2O | |||
436–495 | 476 | 1 | 15.64 (9.90) | loss of CN2 | |||
5 (C12H8Cl2NiN6O2) | 37–411 | 291 | 1 | 34.24 (36.04) | 71.95 (74.95) | loss of C6H4 + CO + HCl | NiCl |
411–545 | 345 | 1 | 22.52 (22.99) | loss of C2H2N3 + CO | |||
545–695 | 111 | 1 | 14.22 (16.05) | loss of C2HN3 |
Complex | Co | Cu | Ni |
---|---|---|---|
a (Å) | 14.236 (19) | 14.171 (2) | 7.180 (2) |
b (Å) | 3.629 (4) | 3.6617 (5) | 3.5372 (5) |
c (Å) | 12.250 (16) | 12.232 (2) | 9.950 (3) |
β (°) | 94.36 (9) | 94.21 (2) | 90.65 (2) |
V (Å3) | 631 (1) | 633.0 (2) | 252.71 (15) |
Space Group | P21/m | P21/m | P2/m |
Rp | 2.76 | 4.56 | 3.88 |
wRp | 3.62 | 5.97 | 5.04 |
GOF | 1.02 | 1.19 | 1.13 |
Initiator | (%) Yield | Melting point a (°C) | Crystallization T (°C) | Crystallinity b (%) | Decomposition T (°C) |
---|---|---|---|---|---|
2 | 57 | 59.0 | 37.24 | 67 | 435 |
3 | 56 | 59.8 | 37.09 | 68 | 440 |
4 | 50 | 59.6 | 38.33 | 63 | 445 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello-Vieda, N.J.; Murcia, R.A.; Muñoz-Castro, A.; Macías, M.A.; Hurtado, J.J. Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior. Molecules 2017, 22, 1860. https://doi.org/10.3390/molecules22111860
Bello-Vieda NJ, Murcia RA, Muñoz-Castro A, Macías MA, Hurtado JJ. Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior. Molecules. 2017; 22(11):1860. https://doi.org/10.3390/molecules22111860
Chicago/Turabian StyleBello-Vieda, Nestor J., Ricardo A. Murcia, Alvaro Muñoz-Castro, Mario A. Macías, and John J. Hurtado. 2017. "Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior" Molecules 22, no. 11: 1860. https://doi.org/10.3390/molecules22111860
APA StyleBello-Vieda, N. J., Murcia, R. A., Muñoz-Castro, A., Macías, M. A., & Hurtado, J. J. (2017). Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior. Molecules, 22(11), 1860. https://doi.org/10.3390/molecules22111860