Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus Cinnabarinus (Boisduval))
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Thyme Oil
2.2. Toxicities of Thyme Oil and Individual Constituents
2.3. Comparative Toxicities of Individual Constituents and Blends
2.4. Synergistic Toxic Effect of Active Compounds
3. Discussion
3.1. Constituents and Toxicity of Thyme Oil
3.2. Contribution of Individual Compounds to Overall Activity
3.3. Synergy among Constituents
4. Materials and Methods
4.1. Chemicals
4.2. Test Mites
4.3. Bioassays
4.4. Gas Chromatography-Mass Spectrometry Analysis
4.5. Comparative Toxicities of Individual Thyme Oil Constitutions
4.6. Combined Toxic Effect of the Active Compounds
4.7. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cakmak, I.; Başpinar, H.; Madanlar, N. Control of the carmine spider mite Tetranychus cinnabarinus Boisduval by the predatory mite Phytoseiulus persimilis (Athias-Henriot) in protected strawberries in Aydın, Turkey. Turk. J. Agric. For. 2005, 29, 259–265. [Google Scholar]
- Sut, S.; Pavela, R.; Kolarčik, V.; Cappellacci, L.; Petrelli, R.; Maggi, F.; Dall’Acqua, S.; Benelli, G. Identification of Onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules 2017, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.B.; Zalom, F.G.; Shaw, D.V.; Larson, K.D. Yield reduction caused by two spotted spider mite feeding in an advanced-cycle strawberry breeding population. J. Am. Soc. Hort. Sci. 2002, 127, 230–237. [Google Scholar]
- Ding, L.J.; Ding, W.; Zhang, Y.Q.; Luo, J.X. Bioguided fractionation and isolation of esculentoside P from Phytolacca americana L. Ind. Crop. Prod. 2013, 44, 534–541. [Google Scholar] [CrossRef]
- He, L.; Gao, X.; Wang, J.; Zhao, Z.; Liu, N. Genetic analysis of abamectin resistance in Tetranychus cinnabarinus. Pestic. Biochem. Physiol. 2009, 95, 147–151. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, Z.Q.; Zhao, Z. Pesticide resistance of Tetranychus cinnabarinus (Acari: Tetranychidae) in China: A review. Syst. Appl. Acarol. 1998, 3, 3–7. [Google Scholar] [CrossRef]
- He, L.; Xue, C.H.; Wang, J.J.; Li, M.; Lu, W.C.; Zhao, Z.M. Resistance selection and biochemical mechanism of resistance to two Acaricides in Tetranychus cinnabarinus (Boiduval). Pestic. Biochem. Physiol. 2009, 93, 47–52. [Google Scholar]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Lima, D.B.; Monteiro, V.B.; Guedes, R.N.C.; Siqueira, H.A.A.; Pallini, A.; Gondim, M.G.C., Jr. Acaricide toxicity and synergism of fenpyroximate to the coconut mite predator Neoseiulus baraki. Biocontrol 2013, 58, 595–605. [Google Scholar] [CrossRef]
- Nauen, R.; Stumpf, N.; Elbert, A.; Zebitz, C.P.; Kraus, W. Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest. Manag. Sci. 2001, 57, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural products as sources for new pesticides. J. Nat. Prod. 2012, 75, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Isman, M.B. Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Cell Mol. Life Sci. 1995, 51, 831–833. [Google Scholar] [CrossRef]
- Matias, E.F.F.; Alves, E.F.; Silva, M.K.N.; Carvalho, V.R.A.; Figueredo, F.G.; Ferreira, J.V.A.; Coutinhob, H.D.M.; Silva, J.M.F.L.; Ribeiro, F.J.; Costa, J.G.M. Seasonal variation, chemical composition and biological activity of the essential oil of Cordia verbenacea DC (Boraginaceae) and the sabinene. Ind. Crops Prod. 2016, 87, 45–53. [Google Scholar] [CrossRef]
- Isman, M.B.; Wilson, J.A.; Bradbury, R. Insecticidal Activities of Commercial Rosemary Oils (Rosmarinus officinalis.) Against Larvae of Pseudaletia unipuncta. and Trichoplusia ni in Relation to Their Chemical Compositions. Pharm. Biol. 2008, 46, 82–87. [Google Scholar] [CrossRef]
- Wang, C.F.; Yang, K.; You, C.X.; Zhang, W.J.; Guo, S.S.; Geng, Z.F.; Du, S.S.; Wang, Y.Y. Chemical composition and insecticidal activity of essential oils from Zanthoxylum dissitum leaves and roots against three species of storage pests. Molecules 2015, 20, 7990–7999. [Google Scholar] [CrossRef] [PubMed]
- Yeom, H.J.; Kang, J.S.; Kim, G.H.; Park, I.K. Insecticidal and acetylcholine esterase inhibition activity of Asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). J. Agric. Food Chem. 2015, 63, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, R.; He, J.; Ma, Z.; Zhang, X. Chemical Compositions of Ligusticum chuanxiong Oil and Lemongrass Oil and Their Joint Action against Aphis citricola Van Der Goot (Hemiptera: Aphididae). Molecules 2016, 21, 1359. [Google Scholar] [CrossRef] [PubMed]
- Tak, J.H.; Jovel, E.; Isman, M.B. Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest. Manag. Sci. 2016, 72, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.B.; Feng, J.T.; Jiang, Z.L.; Zhang, X. Fumigant activity of 6 selected essential oil compounds and combined effect of methyl salicylate and trans-cinnamaldehyde against Culex pipiens pallens. J. Am. Mosq. Control 2014, 30, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, W.J.; Huang, D.Y.; Wang, Y.; Wei, J.Y.; Li, Z.H.; Sun, J.S.; Bai, J.F.; Tian, Z.F.; Wang, P.J.; et al. Chemical compositions and insecticidal activities of Alpinia kwangsiensis Essential Oil against Lasioderma serricorne. Molecules 2015, 20, 21939–21945. [Google Scholar] [CrossRef] [PubMed]
- Miresmailli, S.; Bradbury, R.; Isman, M.B. Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest. Manag. Sci. 2006, 62, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.; Azaizeh, H.; Saad, B.; Tadmor, Y.; Abo-Moch, F.; Said, O. The potential of middle eastern flora as a source of new safe bio-acaricides to control Tetranychus cinnabarinus, the carmine spider mite. Phytoparasitica 2004, 32, 66–72. [Google Scholar] [CrossRef]
- Sertkaya, E.; Kaya, K.; Soylu, S. Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.)(Acarina: Tetranychidae). Ind. Crops Prod. 2010, 31, 107–112. [Google Scholar] [CrossRef]
- Ranger, C.M.; Reding, M.E.; Oliver, J.B.; Moyseenko, J.J.; Youssef, N.; Krause, C.R. Acute toxicity of plant essential oils to scarab larvae (Coleoptera: Scarabaeidae) and their analysis by gas chromatography-mass spectrometry. J. Econ. Entomol. 2013, 106, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Blenau, W.; Rademacher, E.; Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: What are the molecular targets? Apidologie 2012, 43, 334–347. [Google Scholar] [CrossRef]
- Seo, S.M.; Park, H.M.; Park, I.K. Larvicidal activity of ajowan (Trachyspermum ammi) and Peru balsam (Myroxylon pereira) oils and blends of their constituents against mosquito, Aedes aegypti, acute toxicity on water flea, Daphnia magna, and aqueous residue. J. Agric. Food Chem. 2012, 60, 5909–5914. [Google Scholar] [CrossRef] [PubMed]
- Tabari, M.A.; Youssefi, M.R.; Barimani, A.; Araghi, A. Carvacrol as a potent natural acaricide against Dermanyssus gallinae. Parasitol. Res. 2015, 114, 3801–3806. [Google Scholar] [CrossRef] [PubMed]
- Tak, J.H.; Jovel, E.; Isman, M.B. Contact, fumigant, and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. J. Pest. Sci. 2016, 89, 183–193. [Google Scholar] [CrossRef]
- Gaire, S.; O’Connell, M.; Holguin, F.O.; Amatya, A.; Bundy, S.; Romero, A. Insecticidal Properties of Essential Oils and Some of Their Constituents on the Turkestan Cockroach (Blattodea: Blattidae). J. Econ. Entomol. 2017, 110, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Guimarães, A.C.; Fronza, M.; Endringer, D.C.; Scherer, R. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Ind. Crops Prod. 2017, 95, 543–548. [Google Scholar] [CrossRef]
- Yang, N.N.; Huang, D.Y.; Zhu, Z.G.; Long, T.; Yao, J.W.; Cao, C.X. Toxicity Bioassay of Six Common Acaricides to Tetranychus cinnabarinus. Hubei Agric. Sci. 2015, 54, 6240–6241. [Google Scholar]
- Wang, W.; Cheng, J.; Bu, C.; Guo, Y.; Yu, T.; Shi, G. Determining Acaricidal Activity of Radix Stemonae Extracts Against Tetranychus cinnabarinus. J. Agric. 2013, 3, 13–17. [Google Scholar]
- Chen, Z.H. Bioactivities and Acaricidal Mechanism of Plant Essential Oils to Tetranychus cinnabarinus Boisduval (Acari: Tetranychidae). Ph.D. Thesis, Shanxi University, Shanxi, China, 2006. (In Chinese). [Google Scholar]
- Afshar, F.H.; Maggi, F.; Iannarelli, R.; Cianfaglione, K.; Isman, M.B. Comparative toxicity of Helosciadium nodiflorum essential oils and combinations of their main constituents against the cabbage looper, Trichoplusia ni (Lepidoptera). Ind. Crops Prod. 2017, 98, 46–52. [Google Scholar] [CrossRef]
- Jiang, Z.; Akhtar, Y.; Bradbury, R.; Zhang, X.; Isman, M.B. Comparative toxicity of essential oils of Litsea pungens and Litsea cubeba and blends of their major constituents against the cabbage looper, Trichoplusia ni. J. Agric. Food Chem. 2009, 57, 4833–4837. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Lee, H.R.; Jang, M.J.; Jung, C.S.; Park, I.K. Fumigant toxicity of lamiaceae plant essential oils and blends of their constituents against adult rice weevil Sitophilus oryzae. Molecules 2016, 21, 361. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: A systematic review. Parasitol. Res. 2015, 114, 3201–3212. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, R.R.; Souto, R.N.; Bastos, C.N.; Da, S.M.; Maia, J.G. Chemical Variation in Piper aduncum and Biological Properties of Its Dillapiole-Rich Essential Oil. Chem. Biodivers. 2010, 6, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- Hummelbrunner, L.A.; Isman, M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Pennetier, C.; Corbel, V.; Hougard, J.M. Combination of a non-pyrethroid insecticide and a repellent: A new approach for controlling knockdown-resistant mosquitoes. Am. J. Trop. Med. Hyg. 2005, 72, 739–744. [Google Scholar]
- Xiao, X.Q. Study on the Bioactivities of Essential Oils and Their Mixtures with Acaridicides against Pest Mites. Ph.D. Thesis, Guangxi University, Guangxi, China, 2006. [Google Scholar]
- Wu, W.; Sun, H.X.; Wei, H.; Zhan, Z.X.; Wu, Z.Q. Effect of five essential oils on the toxicity of fipronil to 2nd instar larvae of diamondback moth (Plutella xylostella) and its penetration mechanism. Entomol. J. East China 2008, 17, 259–265. [Google Scholar]
- Tong, F.; Bloomquist, J.R. Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2013, 50, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Canale, A.; Cianfaglione, K.; Ciaschetti, G.; Conti, F.; Nicoletti, M.; Senthil, N.S.; Mehlhorn, H.; Maggi, F. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol. Int. 2017, 66, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Food Agriculture Organization of the United Nations (FAO). Resistance management and integrated parasites control in ruminants/guidelines. In Module1-Ticks: Acaricide Resistance, Diagnosis, Management and Prevention; Food and Agriculture Organization, Animal Production and Health Division: Rome, Italy, 2004; pp. 25–77. [Google Scholar]
- Agricultural Standard of the People’s Republic of China: Guideline for Laboratory Bioassay of Pesticides, Part 12, Slide-dip Method Immersion; NYT 1154.12–2008; Agriculture Press of China: Beijing, China, 2008.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corp: Carol Stream, IL, USA, 2001. [Google Scholar]
- Abbassy, M.A.; Abdelgaleil, S.A.M.; Rabie, R.Y.A. Insecticidal and synergistic effects of Majorana hortensis essential oil and some of its major constituents. Entomol. Exp. Appl. 2009, 131, 225–232. [Google Scholar] [CrossRef]
- Ma, X.M.; Liu, X.X.; Ning, X.; Zhang, B.; Han, F.; Guan, X.M.; Tan, Y.F.; Zhang, Q.W. Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera: Crambidae). J. Invertebr. Pathol. 2008, 99, 123–128. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Constituent | Retention Time (min) | RI a | Proportion (%, w/w) | Mortality (%) | |
---|---|---|---|---|---|
A | B | ||||
Thyme oil | — | — | — | 95.5 ± 3.3 A | 95.5 ± 3.3 a |
α-Thujene | 4.1 | 906 | 0.3 | — | — |
Benzoic acid | 4.3 | 928 | 1.2 | 0 D | 19.5 ± 4.3 d |
α-Pinene | 5.2 | 932 | 1.4 | 0 D | 20.6 ± 2.4 d |
Camphene | 5.7 | 943 | 0.2 | — | — |
p-Cymene | 6.8 | 1018 | 30.8 | 11.9 ± 5.1 C | 32.6 ± 3.4 c |
Terpinene | 7.4 | 1065 | 15.6 | 6.6 ± 3.9 C | 34.5 ± 4.5 c |
Camphor | 8.3 | 1096 | 0.3 | — | — |
Linalool | 8.4 | 1102 | 9.4 | 3.6 ± 2.9 C | 39.8 ± 3.7 c |
Borneol | 9.6 | 1165 | 0.2 | — | — |
Thymol | 11.4 | 1294 | 34.6 | 42.5 ± 4.8 B | 78.6 ± 4.5 b |
Carvacrol | 15.4 | 1306 | 2.5 | 0 D | 32.5 ± 3.4 c |
Ethyl gallate | 28.3 | 1430 | 1.3 | 0 D | 13.3 ± 2.4 d |
Others | — | — | 2.2 | — | — |
Test Reagents | Regression Equation | LC50 (mg/L) | 95% Confidence Limit (mg/L) |
---|---|---|---|
Thyme oil | Y = 0.4632 + 1.5742x | 762.1 | 621.7–934.1 |
Thymol | Y = 1.9906 + 2.2746x | 1183.9 | 968.1–1447.9 |
The Combinations | OM a | EM b | CTF |
---|---|---|---|
Thymol + Terpinene | 79.4 ± 5.4 | 63.1 | 25.8 |
Thymol + Carvacrol | 65.7 ± 6.3 | 57.0 | 15.3 |
Thymol + Linalool | 74.3 ± 6.5 | 61.7 | 20.4 |
Terpinene + Linalool | 69.6 ± 6.2 | 59.9 | 16.2 |
Terpinene + Carvacrol | 59.9 ± 5.2 | 53.3 | 12.4 |
Thymol + p-Cymene | 65.8 ± 5.5 | 58.8 | 11.9 |
Linalool + p-Cymene | 61.5 ± 5.6 | 56.8 | 8.3 |
Terpinene + p-Cymene | 57.2 ± 5.8 | 56.2 | 1.8 |
p-Cymene + Carvacrol | 44.6 ± 5.3 | 54.6 | −18.3 |
Linalool + Carvacrol | 42.3 ± 5.7 | 58.6 | −27.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Huo, X.; Zhou, X.; Zhao, D.; He, W.; Liu, S.; Liu, H.; Feng, T.; Wang, C. Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus Cinnabarinus (Boisduval)). Molecules 2017, 22, 1873. https://doi.org/10.3390/molecules22111873
Wu L, Huo X, Zhou X, Zhao D, He W, Liu S, Liu H, Feng T, Wang C. Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus Cinnabarinus (Boisduval)). Molecules. 2017; 22(11):1873. https://doi.org/10.3390/molecules22111873
Chicago/Turabian StyleWu, Lipeng, Xin Huo, Xiaolong Zhou, Duoyong Zhao, Weizhong He, Shenghong Liu, Hejiang Liu, Ting Feng, and Cheng Wang. 2017. "Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus Cinnabarinus (Boisduval))" Molecules 22, no. 11: 1873. https://doi.org/10.3390/molecules22111873
APA StyleWu, L., Huo, X., Zhou, X., Zhao, D., He, W., Liu, S., Liu, H., Feng, T., & Wang, C. (2017). Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus Cinnabarinus (Boisduval)). Molecules, 22(11), 1873. https://doi.org/10.3390/molecules22111873