Effects of Chitooligosaccharide Coating Combined with Selected Ionic Polymers on the Stimulation of Ornithogalum saundersiae Growth
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Attributes
2.2. Photosynthetic Pigment Contents
2.3. l-Ascorbic Acid, Total Polyphenols and Antioxidant Activity
2.4. Leaf Nutrient Concentrations
2.5. Discussion
3. Experimental
3.1. Preparation of Chitooligosaccharide
3.2. Plant Material and Experimental Design
- control (non-coated bulbs)
- COS + alginic acid sodium salt from brown alga (COS + A)
- COS + carrageenan iota (COS + C)
- COS + gellan gum (COS + G)
- COS + xanthan gum (COS + X)
3.3. Growing Conditions
3.4. Measurement of Growth Characteristics
3.5. Plant Analyses
3.5.1. Pigments Assay
3.5.2. Determination of l-Ascorbic Acid
3.5.3. Determination of Total Polyphenol
3.5.4. Determination of Antioxidant Activity
3.5.5. Nutrient Analysis
3.5.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cabrera, J.C.; Wégria, G.; Onderwater, R.C.A.; González, G.; Nápoles, M.C.; Falcón-Rodríguez, A.B.; Costales, D.; Rogers, H.J.; Diosdado, E.; González, S.; et al. Practical use of oligosaccharins in agriculture. Acta Hortic. 2013, 1009, 195–212. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Hadwiger, L.A. Plant science review: Multiple effects of chitosan on plant systems: Solid science or hype. Plant Sci. 2013, 208, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 2016, 17, 996. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, D.; Hemantaranjan, A.; Singh, B. Chitosan as a promising natural compound to enhance potential physiological responses in plant: A review. Indian J. Plant Physiol. 2015, 20, 1–9. [Google Scholar] [CrossRef]
- Pichyangkura, R.; Chadchawan, S. Biostimulant activity of chitosan in horticulture. Sci. Hortic. 2015, 196, 49–65. [Google Scholar] [CrossRef]
- Pospieszny, H.; Chirkov, S.; Atabekov, J. Induction of antiviral resistance in plants by chitosan. Plant Sci. 1991, 79, 63–68. [Google Scholar] [CrossRef]
- Wiśniewska-Wrona, M.; Niekraszewicz, A.; Ciechańska, D.; Pospieszny, H.; Orlikowski, L.B. Biological properties of chitosan degradation products. Pol. Chitin Soc. Monogr. 2007, 12, 149–156. [Google Scholar]
- Luan, L.Q.; Ha, V.T.T.; Nagasawa, N.; Kume, T.; Yoshii, F.; Nakanishi, T.M. Biological effect of irradiated chitosan on plants in vitro. Biotechnol. Appl. Biochem. 2005, 41, 49–57. [Google Scholar]
- Salachna, P.; Zawadzińska, A. Effect of chitosan on plant growth, flowering and corms yield of potted freesia. J. Ecol. Eng. 2014, 15, 97–102. [Google Scholar]
- Lodhi, G.; Kim, Y.-S.; Hwang, J.-W.; Kim, S.-K.; Jeon, Y.-J.; Je, J.-Y.; Ahn, C.-B.; Park, P.-J. Chitooligosaccharide and its derivatives: Preparation and biological applications. Biomed. Res. Int. 2014, 2014, 65491. [Google Scholar] [CrossRef] [PubMed]
- Nge, K.L.; Nwe, N.; Chandrkrachang, S.; Stevens, W.F. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci. 2006, 170, 1185–1190. [Google Scholar] [CrossRef]
- Winkler, A.J.; Dominguez-Nuñez, J.A.; Aranaz, I.; Poza-Carrión, C.; Ramonell, K.; Somerville, S.; Berrocal-Lobo, M. Short-chain chitin oligomers: Promoters of plant growth. Mar. Drugs 2017, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y.; Wei, H. Chitosan oligosaccharide addition affects current-year shoot of post-transplant Buddhist pine (Podocarpus macrophyllus) seedlings under contrasting photoperiods. IFOREST 2017, 10, 715. [Google Scholar] [CrossRef]
- Zou, P.; Li, K.; Liu, S.; Xing, R.; Qin, Y.; Yu, H.; Zhou, M.; Li, P. Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydr. Polym. 2015, 126, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Dzung, N.A.; Khanh, V.T.P.; Dzung, T.T. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr. Polym. 2011, 84, 751–755. [Google Scholar] [CrossRef]
- Zou, P.; Tian, X.; Dong, B.; Zhang, C. Size effects of chitooligomers with certain degrees of polymerization on the chilling tolerance of wheat seedlings. Carbohydr. Polym. 2017, 160, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Castro, J.; Vera, J.; Moenne, A. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J. Plant Growth Regul. 2013, 32, 443–448. [Google Scholar] [CrossRef]
- Sarfaraz, A.; Naeem, M.; Nasir, S.; Idrees, M.; Aftab, T.; Hashmi, N.; Khan, M.A.A.; Varshney, M.; Varshney, L. An evaluation of the effects of irradiated sodium alginate on the growth, physiological activities and essential oil production of fennel (Foeniculum vulgare Mill.). J. Med. Plants Res. 2011, 5, 15–21. [Google Scholar]
- Aftab, T.; Khan, M.M.A.; Idrees, M.; Naeem, M.; Hashmi, N.; Varshney, L. Enhancing the growth, photosynthetic capacity and artemisinin content in Artemisia annua L. by irradiated sodium alginate. Radiat. Phys. Chem. 2011, 80, 833–836. [Google Scholar] [CrossRef]
- Bi, F.; Iqbal, S.; Arman, M.; Ali, A.; Hassan, M.-U. Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J. Saudi Chem. Soc. 2011, 15, 269–273. [Google Scholar] [CrossRef]
- Naeem, M.; Idrees, M.; Aftab, T.; Khan, M.M.A.; Moinuddin, L.; Varshney, L. Depolymerised carrageenan enhances physiological activities and menthol production in Mentha arvensis. Carbohydr. Polym. 2012, 87, 1211–1218. [Google Scholar] [CrossRef]
- Hashmi, N.; Khan, M.M.A.; Moinuddin Idrees, M.; Khan, Z.H.; Ali, A.; Varshney, L. Depolymerized carrageenan ameliorates growth, physiological attributes, essential oil yield and active constituents of Foeniculum vulgare Mill. Carbohydr. Polym. 2012, 90, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Contreras, R.A.; Moenne, A. Oligo-carrageenans enhance growth and contents of cellulose, essential oils and polyphenolic compounds in Eucalyptus globulus trees. Molecules 2013, 18, 8740–8751. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, V.; Patanè, C.; Cosentino, S.L.; Di Silvestro, I.; Copani, V. Optimizing in vitro large scale production of giant reed (Arundo donax L.) by liquid medium culture. Biomass Bioenergy 2014, 69, 21–27. [Google Scholar] [CrossRef]
- Masondo, N.A.; Aremu, A.O.; Finnie, J.F.; Van Staden, J. Growth and phytochemical levels in micropropagated Eucomis autumnalis subspecies autumnalis using different gelling agents, explant source, and plant growth regulators. In Vitro Cell. Dev. Biol. Plant 2015, 51, 102–110. [Google Scholar] [CrossRef]
- Jain, R.; Babbar, S.B. Xanthan gum: An economical substitute for agar in plant tissue culture media. Plant Cell Rep. 2006, 25, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Bartkowiak, A.; Startek, L.; Salachna, P.; Zurawik, P. Method of Hydrogel Coating Formation on the Surface of Plant Organs. Patent No. PL 197101, 29 February 2008. [Google Scholar]
- Bartkowiak, A.; Hunkeler, D. New microcapsules based on oligoelectrolyte complexation. Ann. N. Y. Acad. Sci. 1999, 875, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Soból, M.; Bartkowiak, A.; de Haan, B.; de Vos, P. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules. J. Biomed. Mater. Res. A 2013, 101, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Startek, L.; Bartkowiak, A.; Salachna, P.; Kaminska, M.; Mazurkiewicz-Zapalowicz, K. The influence of new methods of corm coating on freesia growth, development and health. Acta Hortic. 2005, 673, 611–616. [Google Scholar] [CrossRef]
- Salachna, P.; Zawadzińska, A.; Wilas, J. The use of natural polysaccharides in Eucomis autumnalis (Mill.) Chitt. propagation by twin-scale cuttings. Acta Hortic. 2015, 1104, 225–227. [Google Scholar] [CrossRef]
- Benschop, M.; Kamenetsky, R.; Le Nard, M.; Okubo, H.; De Hertogh, A. The global flower bulb industry: Production, utilization, research. Hort. Rev. 2010, 36, 1–115. [Google Scholar]
- Salachna, P.; Zawadzińska, A. The effects of flurprimidol concentrations and application methods on Ornithogalum saundersiae Bak. grown as a pot plant. Afr. J. Agric. Res. 2013, 8, 6625–6628. [Google Scholar]
- Salachna, P.; Zawadzińska, A.; Podsiadło, C. Response of Ornithogalum saundersiae Bak. to salinity stress. Acta Sci. Pol.-Hortorum Cultus 2016, 15, 123–134. [Google Scholar]
- Morzycki, J.; Wojtkielewicz, A. Synthesis of a highly potent antitumor saponin OSW-1 and its analogues. Phytochem. Rev. 2005, 4, 259–277. [Google Scholar] [CrossRef]
- Iguchi, T.; Kuroda, M.; Naito, R.; Watanabe, T.; Matsuo, Y.; Yokosuka, A.; Mimaki, Y. Structural characterization of cholestane rhamnosides from Ornithogalum saundersiae bulbs and their cytotoxic activity against cultured tumor cells. Molecules 2017, 22, 1243. [Google Scholar] [CrossRef] [PubMed]
- Salachna, P.; Wilas, J.; Zawadzińska, A. The effect of chitosan coating of bulbs on the growth and flowering of Ornithogalum saundersiae. Acta Hortic. 2015, 1104, 115–118. [Google Scholar] [CrossRef]
- Barrera Necha, L.L.; Bautista-Baños, S. Prospects for the use of chitosan and other alternatives in ornamental conservation. In Chitosan in the Preservation of Agricultural Commodities; Bautista-Baños, S., Romanazzi, G., Jiménez-Aparicio, A., Eds.; Academic Press, Elsevier: Cambridge, MA, USA, 2016; pp. 221–249. ISBN 9780128027578. [Google Scholar]
- Ma, L.; Li, Y.; Yu, C.; Wang, Y.; Li, X.; Chen, Q.; Bu, N. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma 2012, 249, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Bot, J.L.; Benard, C.; Robin, C.; Bourgaud, F.; Adamowicz, S. The ‘trade-off’ between synthesis of primary and secondary compounds in young tomato leaves is altered by nitrate nutrition: Experimental evidence and model consistency. J. Exp. Bot. 2009, 60, 4301–4314. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Kastell, A.; Mewis, I.; Knorr, D.; Smetanska, I. Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult. 2012, 108, 401–409. [Google Scholar] [CrossRef]
- Hadwiger, L.A. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. Front. Plant Sci. 2015, 12, 373. [Google Scholar] [CrossRef] [PubMed]
- Salachna, P.; Byczyńska, A.; Jeziorska, I.; Udycz, E. Plant growth of Verbena bonariensis L. after chitosan, gellan gum or iota-carrageenan foliar applications. World Sci. News 2017, 62, 111–123. [Google Scholar]
- Chevreau, E.; Mourgues, F.; Neveu, M.; Chevalier, M. Effect of gelling agents and antibiotics on adventitious bud regeneration from in vitro leaves of pear. In Vitro Cell. Dev. Biol. Plant 1997, 33, 173–179. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Smith, D.R. Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol. Plant. 1997, 100, 949–957. [Google Scholar] [CrossRef]
- Tetsumura, T.; Tsukuda, K.; Kawase, K. Micropropagation of Shinano walnut (Juglans regia L.). J. Jpn. Soc. Hortic. Sci. 2002, 71, 661–663. [Google Scholar] [CrossRef]
- Scherer, P.A.; Müller, E.; Lippert, H.; Wolff, G. Multielement analysis of agar and gelrite impurities investigated by inductively coupled plasma emission spectrometry as well as physical properties of tissue culture media prepared with agar or the gellan gum gelrite. Acta Hortic. 1988, 226, 655–658. [Google Scholar] [CrossRef]
- Hadrami, E.; Housti, F.; Miehaux-Ferriere, N.; Carron, M.P.; D’Auzac, J. Effects of gelling agents and liquid medium on embryogenie potential, polyamines and enzymatic factors in browning in Hevea brasiliensis calli. J. Plant Physiol. 1993, 141, 230–233. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1990.
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Rossi, M.; Giussani, E.; Morelli, R.; Scalzo, R.; Nani, R.C.; Torreggiani, D. Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Res. Int. 2003, 36, 999–1005. [Google Scholar] [CrossRef]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analyzing and Assessing the Properties of Soil and Plants; Inst. Ochr. Środ.: Warsaw, Poland, 1991; pp. 1–333. (In Polish) [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Parameters | Coating Type | ||||
---|---|---|---|---|---|
Control | COS + A | COS + C | COS + G | COS + X | |
Leaf length (cm) | 69.0 ± 2.0 d | 73.8 ± 1.25c | 84.8 ± 0.65 b | 88.5 ± 0.50 a | 75.1 ± 1.55 c |
Number of leaves | 6.25 ± 0.05 d | 7.83 ± 0.28 b | 8.00 ± 0.26 a,b | 8.50 ± 0.50 a | 7.00 ± 0.10 c |
Days to anthesis | 80.2 ± 2.05 a | 74.3 ± 0.98 c | 72.0 ± 2.26 c | 68.0 ± 1.60 d | 77.2 ± 1.10 b |
Scape length (cm) | 109 ± 5.51 d | 142 ± 2.25 b | 146 ± 4.04 a | 149 ± 5.50 a | 129 ± 5.51 c |
Number of florets | 65.7 ± 1.52 c | 71.7 ± 1.52 b | 80.6 ± 5.85 a | 78.3 ± 1.53 a | 69.0 ± 1.00 b,c |
Bulbs fresh weight (g) | 156 ± 6.13 d | 189 ± 8.14 c | 226 ± 9.51 b | 272 ± 7.54 a | 191 ± 5.20 c |
Number of bulbs | 1.17 ± 0.31 c | 1.59 ± 0.42 b | 1.70 ± 0.45 b | 2.78 ± 0.68 a | 1.42 ± 0.11 b,c |
Nutrients | Coating Type | ||||
---|---|---|---|---|---|
Control | COS + A | COS + C | COS + G | COS + X | |
N | 21.1 ± 0.91 b | 24.0 ± 1.10 a | 24.5 ± 0.90 a | 25.1 ± 0.73 a | 23.9 ± 0.70 a |
P | 3.40 ± 0.10 c | 5.01 ± 0.41 b | 5.14 ± 0.80 b | 5.60 ± 0.30 a | 4.93 ± 1.30 b |
K | 30.9 ± 2.27 d | 42.9 ± 2.91 b,c | 45.4 ± 2.56 b | 49.9 ± 1.73 a | 40.7 ± 3.74 c |
Ca | 12.7 ± 1.63 a | 13.9 ± 1.67 a | 12.3 ± 0.61 a | 15.3 ± 0.97 a | 13.4 ± 0.65 a |
Mg | 2.70 ± 0.20 a | 2.70 ± 0.41 a | 2.61 ± 0.10 a | 2.53 ± 0.51 a | 2.80 ± 0.30 a |
Nutrients | Coating Type | ||||
---|---|---|---|---|---|
Control | COS + A | COS + C | COS + G | COS + X | |
B | 20.9 ± 0.64 b | 28.7 ± 0.35 a | 29.6 ± 0.42 a | 28.9 ± 1.18 a | 31.8 ± 0.76 a |
Cu | 2.32 ± 0.30 a | 2.45 ± 0.14 a | 2.38 ± 0.23 a | 2.35 ± 0.18 a | 2.49 ± 0.39 a |
Zn | 30.0 ± 2.05 b | 33.3 ± 2.83 a,b | 29.4 ± 0.64 b | 39.3 ± 3.04 a | 30.0 ± 3.82 b |
Mn | 14.3 ± 1.98 b | 16.5 ± 0.72 a,b | 15.8 ± 0.07 a,b | 18.1 ± 1.70 a | 14.8 ± 0.21 b |
Fe | 56.7 ± 5.04 a | 47.8 ± 4.69 a | 49.7 ± 6.70 a | 51.9 ± 5.04 a | 53.1 ± 5.74 a |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salachna, P.; Grzeszczuk, M.; Soból, M. Effects of Chitooligosaccharide Coating Combined with Selected Ionic Polymers on the Stimulation of Ornithogalum saundersiae Growth. Molecules 2017, 22, 1903. https://doi.org/10.3390/molecules22111903
Salachna P, Grzeszczuk M, Soból M. Effects of Chitooligosaccharide Coating Combined with Selected Ionic Polymers on the Stimulation of Ornithogalum saundersiae Growth. Molecules. 2017; 22(11):1903. https://doi.org/10.3390/molecules22111903
Chicago/Turabian StyleSalachna, Piotr, Monika Grzeszczuk, and Marcin Soból. 2017. "Effects of Chitooligosaccharide Coating Combined with Selected Ionic Polymers on the Stimulation of Ornithogalum saundersiae Growth" Molecules 22, no. 11: 1903. https://doi.org/10.3390/molecules22111903
APA StyleSalachna, P., Grzeszczuk, M., & Soból, M. (2017). Effects of Chitooligosaccharide Coating Combined with Selected Ionic Polymers on the Stimulation of Ornithogalum saundersiae Growth. Molecules, 22(11), 1903. https://doi.org/10.3390/molecules22111903