Amaranth Protein Hydrolysates Efficiently Reduce Systolic Blood Pressure in Spontaneously Hypertensive Rats
Abstract
:1. Introduction
2. Results
2.1. Protein Extraction
2.2. Response Surface Optimization for Enzymatic Hydrolysis
2.3. Bioavailability Test
2.4. Effect on Blood Pressure
3. Discussion
4. Materials and Methods
4.1. Extraction and Concentration of Protein
4.2. Optimization of Hydrolysis with Alcalase
4.3. Degree of Hydrolysis
4.4. Animals
4.5. Bioavailability Assay
4.6. Effect of Supplementation on Blood Pressure
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kokubo, Y.; Matsumoto, C. Hypertension is a risk factor for several types of heart disease: Review of prospective studies. Adv. Exp. Med. Biol. 2017, 956, 419–426. [Google Scholar] [PubMed]
- Qureshi, A.I.; Suri, M.F.K.; Kirmani, J.F.; Divani, A.A.; Mohammad, Y. Is prehypertension a risk factor for cardiovascular diseases? Stroke 2005, 36, 1859–1863. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Puchalska, P.; Esteve, C.; Marina, M. Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 2013, 106, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Li-Chan, E.C. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. [Google Scholar] [CrossRef]
- Silva-Sánchez, C.; de La Rosa, A.B.; León-Galván, M.; De Lumen, B.; de León-Rodríguez, A.; de Mejía, E.G. Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J. Agric. Food Chem. 2008, 56, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Vecchi, B.; Rinaldi, G.; Añón, M.C. Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chem. 2011, 126, 878–884. [Google Scholar] [CrossRef]
- He, H.-L.; Liu, D.; Ma, C.-B. Review on the angiotensin-i-converting enzyme (ACE) inhibitor peptides from marine proteins. Appl. Biochem. Biotechnol. 2013, 169, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Maqueda, D.; Miralles, B.; Recio, I.; Hernández-Ledesma, B. Antihypertensive peptides from food proteins: A review. Food Funct. 2012, 3, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Blácido, D.R.; Sobral, P.J.; Menegalli, F.C. Potential of amaranthus cruentus BRS alegria in the production of flour, starch and protein concentrate: Chemical, thermal and rheological characterization. J. Sci. Food Agric. 2010, 90, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Escudero, N.; De Arellano, M.; Luco, J.; Giménez, M.; Mucciarelli, S. Comparison of the chemical composition and nutritional value of amaranthus cruentus flour and its protein concentrate. Plant Foods Hum. Nutr. 2004, 59, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Popovici, R.; Alexa, I.; Novac, O.; Vrinceanu, N.; Popovici, E.; Lupusoru, C.; Voicu, V. Pharmacokinetics study on mesoporous silica-captopril controlled release systems. Dig. J. Nano 2011, 6, 1619–1630. [Google Scholar]
- Tovar-Pérez, E.; Guerrero-Legarreta, I.; Farrés-González, A.; Soriano-Santos, J. Angiotensin i-converting enzyme-inhibitory peptide fractions from albumin 1 and globulin as obtained of amaranth grain. Food Chem. 2009, 116, 437–444. [Google Scholar] [CrossRef]
- Soriano, S.J.; Tovar, P.E.G. Método de Obtención de Hidrolizados de Proteínas del Grano de Amaranto con Actividad Antihipertensiva. 2010. Available online: https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2010071391 (accessed on 30 September 2017).
- Ottesen, M.; Svendsen, I. [11] the subtilisins. Methods Enzymol. 1970, 19, 199–215. [Google Scholar]
- Sánchez-Rivera, L.; Ares, I.; Miralles, B.; Gómez-Ruiz, J.A.; Recio, I.; Martínez-Larrañaga, M.R.; Anadón, A.; Martínez, M.A. Bioavailability and kinetics of the antihypertensive casein-derived peptide hlplp in rats. J. Agric. Food Chem. 2014, 62, 11869–11875. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rivera, L.; Santos, P.F.; Miralles, B.; Carrón, R.; Montero, M.J.; Recio, I. Peptide fragments from β-casein f (134–138), HLPLP, generated by the action of rat blood plasma peptidases show potent antihypertensive activity. Food Res. Int. 2016, 88, 348–353. [Google Scholar] [CrossRef]
- Amir, S.; Brown, Z.W.; Amit, Z. The role of endorphins in stress: Evidence and speculations. Neurosci. Biobehav. Rev. 1980, 4, 77–86. [Google Scholar] [CrossRef]
- Antonaccio, M.J. Angiotensin converting enzyme (ACE) inhibitors. Annu. Rev. Pharmacol. Toxicol. 1982, 22, 57–87. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Matsumoto, K. Antihypertensive peptides from natural resources. Adv. Phytomed. 2006, 2, 255–271. [Google Scholar]
- Li, B.; Qiao, L.; Li, L.; Zhang, Y.; Li, K.; Wang, L.; Qiao, Y. A novel antihypertensive derived from adlay (coix larchryma-jobi l. Var. Ma-yuen stapf) glutelin. Molecules 2017, 22, 123. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol. 2017, 174, 1378–1394. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990.
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 1979, 27, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Tiengo, A.; Faria, M.; Netto, F. Characterization and ACE-inhibitory activity of amaranth proteins. J. Food Sci. 2009, 74, H121–H126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yiming, W.; Ma, H.; Mamat, G.; Umar, A. Anti-hypertensive effect of total flavonoids of cydonia oblonga leaves and its mechanism based on anti-inflammatory function. J. Chin. Med. Mater. 2015, 38, 2134–2138. [Google Scholar]
- Isogai, S.; Kameyama, M.; Iso, K.; Yoshino, G. Protective effects of a small dose of captopril on the reduction of glomerular basement membrane anionic sites in spontaneously hypertensive rats with streptozotocin-induced diabetes. J. Diabetes Complic. 1998, 12, 170–175. [Google Scholar] [CrossRef]
- Zhou, W.; Abdusalam, E.; Abliz, P.; Reyim, N.; Tian, S.; Aji, Q.; Issak, M.; Iskandar, G.; Moore, N.; Umar, A. Effect of cydonia oblonga mill. Fruit and leaf extracts on blood pressure and blood rheology in renal hypertensive rats. J. Ethnopharmacol. 2014, 152, 464–469. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds amaranth hydrolysate are available from the authors. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Torres, G.; Ontiveros, N.; Lopez-Teros, V.; Ibarra-Diarte, J.A.; Reyes-Moreno, C.; Cuevas-Rodríguez, E.O.; Cabrera-Chávez, F. Amaranth Protein Hydrolysates Efficiently Reduce Systolic Blood Pressure in Spontaneously Hypertensive Rats. Molecules 2017, 22, 1905. https://doi.org/10.3390/molecules22111905
Ramírez-Torres G, Ontiveros N, Lopez-Teros V, Ibarra-Diarte JA, Reyes-Moreno C, Cuevas-Rodríguez EO, Cabrera-Chávez F. Amaranth Protein Hydrolysates Efficiently Reduce Systolic Blood Pressure in Spontaneously Hypertensive Rats. Molecules. 2017; 22(11):1905. https://doi.org/10.3390/molecules22111905
Chicago/Turabian StyleRamírez-Torres, Giovanni, Noé Ontiveros, Verónica Lopez-Teros, Jesús Aurelio Ibarra-Diarte, Cuauhtémoc Reyes-Moreno, Edith Oliva Cuevas-Rodríguez, and Francisco Cabrera-Chávez. 2017. "Amaranth Protein Hydrolysates Efficiently Reduce Systolic Blood Pressure in Spontaneously Hypertensive Rats" Molecules 22, no. 11: 1905. https://doi.org/10.3390/molecules22111905
APA StyleRamírez-Torres, G., Ontiveros, N., Lopez-Teros, V., Ibarra-Diarte, J. A., Reyes-Moreno, C., Cuevas-Rodríguez, E. O., & Cabrera-Chávez, F. (2017). Amaranth Protein Hydrolysates Efficiently Reduce Systolic Blood Pressure in Spontaneously Hypertensive Rats. Molecules, 22(11), 1905. https://doi.org/10.3390/molecules22111905