Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey
Abstract
:1. Introduction
2. Results
2.1. The Headspace Chemical Profile
2.2. The Extracts Chemical Profile
3. Materials and Methods
3.1. Headspace Solid-Phase Microextraction (HS-SPME)
3.2. Ultrasonic Solvent Extraction (USE)
3.3. GC-FID and GC-MS Analyses
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sobolewska, D.; Podolak, I.; Makowska-Wąs, M. Allium ursinum: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2015, 14, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Kubec, R.; Svobodova, M.; Velisek, J. Distribution of S-alk(en)ylcysteine sulfoxides in some Allium species. Identification of a new flavour precursor: S-ethylcysteine sulfoxide (ethiin). J. Agric. Food Chem. 2000, 48, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Gođevac, D.; Vujisić, L.; Mojović, M.; Ignjatović, A.; Spasojević, I.; Vajs, V. Evaluation of antioxidant capacity of Allium ursinum L. volatile oil and its effect on membrane fluidity. Food Chem. 2008, 107, 1692–1700. [Google Scholar] [CrossRef]
- Błazewicz-Woźniak, M.; Michowska, A. The growth, flowering and chemical composition of leaves of three ecotypes of Allium ursinum L. Acta Agrobot. 2011, 64, 171–180. [Google Scholar] [CrossRef]
- Gîtin, L.; Dinicã, R.; Parnavel, R. The influence of extraction method on the apparent content of bioactive compounds in Romanian Allium spp. leaves. Not. Bot. Horti Agrobot. Cluj Napoca 2012, 40, 93–97. [Google Scholar]
- Sobolewska, D.; Janeczko, Z.; Kisiel, W.; Podolak, I.; Galanty, A.; Trojanowska, D. Steroidal glycosides from the underground parts of Allium ursinum L. and their cytostatic and antimicrobial activity. Acta Pol. Pharm. Drug Res. 2006, 63, 219–223. [Google Scholar]
- Sendl, A. Allium sativum and Allium ursinum: Part 1. Chemistry, analysis, history, botany. Phytomedicine 1995, 1, 323–329. [Google Scholar] [CrossRef]
- Farkas, Á.; Zajácz, E. Nectar production for the Hungarian honey industry. Eur. J. Plant Sci. Biotechnol. 2007, 1, 121–151. [Google Scholar]
- Farkas, Á.; Molnár, R.; Morschhauser, T.; Hahn, I. Variation in nectar volume and sugar concentration of Allium ursinum L. ssp. ucrainicum in three habitats. Sci. World J. 2012, 2012, 138579. [Google Scholar] [CrossRef]
- Jerković, I. Volatile benezene derivatives as honey biomarkers. Synllet 2013, 24, 2331–2334. [Google Scholar] [CrossRef]
- Jerković, I.; Kuś, P.M. Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Adv. 2014, 4, 31710–31728. [Google Scholar] [CrossRef]
- Jerković, I.; Kranjac, M.; Marijanović, Z.; Zekić, M.; Radonić, A.; Tuberoso, C.I.G. Screening of Satureja subspicata Vis. honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate derivatives as biomarkers. Molecules 2016, 21, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerković, I.; Prđun, S.; Marijanović, Z.; Zekić, M.; Bubalo, D.; Svečnjak, L.; Tuberoso, C.I.G. Traceability of Satsuma mandarin (Citrus unshiu Marc.) honey through nectar/honey-sac/honey pathways of the headspace, volatiles, and semi-volatiles: Chemical markers. Molecules 2016, 21, 1302. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Obradović, M.; Kuś, P.M.; Šarolić, M. Bioorganic diversity of rare Coriandrum sativum L. honey: Unusual chromatographic profiles containing derivatives of linalool/oxygenated methoxybenzene. Chem. Biodivers. 2013, 10, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Evaluation of four isolation techniques for honey aroma compounds. J. Sci. Food Agric. 2005, 85, 91–97. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Aroma investigation of unifloral Greek citrus honey using solid-phase microextraction coupled to gas chromatographic-mass spectrometric analysis. Food Chem. 2007, 100, 396–404. [Google Scholar] [CrossRef]
- Wilkins, A.L.; Tan, S.-T.; Molan, P.C. Extractable organic substances from New Zealand unifloral vipers bugloss (Echium vulgare) honey. J. Apicult. Res. 1995, 34, 73–78. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Tuberoso, C.I.G.; Bubalo, D.; Kezić, N. Molecular diversity of volatile compounds in rare willow (Salix spp.) honeydew honey: Identification of chemical biomarkers. Mol. Divers 2010, 14, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Jasicka-Misiak, I.; Poliwoda, A.; Dereń, M.; Kafarski, P. Phenolic compounds and abscisic acid as potential markers for the floral origin of two Polish unifloral honeys. Food Chem. 2012, 131, 1149–1156. [Google Scholar] [CrossRef]
- Rao, A.S. Isolation, absolute configuration and bioactivities of megastigmanes or C13 isonorterpinoides. Chem. Int. 2017, 3, 69–91. [Google Scholar]
- Tan, S.T.; Wilkins, A.L.; Holland, P.T. Isolation and X-ray crystal structure of (E)-4-(r-l′,t-2′,c-4′-trihydroxy-2′,6′,6′-trimethylcyclohexy1)but-3-en-2-one, a constituent of New Zealand thyme honey. Aust. J. Chem. 1989, 42, 1799–1804. [Google Scholar] [CrossRef]
- Kassi, E.; Chinou, I.; Spilioti, E.; Tsiapara, A.; Graikou, K.; Karabournioti, S.; Manoussakis, M.; Moutsatsou, P. A monoterpene, unique component of thyme honeys, inducesapoptosis in prostate cancer cells via inhibition of NF-κB activityand IL-6 secretion. Phytomedicine 2014, 21, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–153. [Google Scholar] [CrossRef]
Sample Availability: The honey sample is available from the authors for limited time. |
No. | Compound | RI 1 | RI 2 | % 3 | No | Compound | RI 1 | RI 2 | % 3 |
---|---|---|---|---|---|---|---|---|---|
1 | Dimethyl disulfide | <900 | 747 | 1.2 | 14 | Hotrienol | 1106 | 1110 | 12.7 |
2 | Butanoic acid | <900 | 763 | 0.7 | 15 | 2-Phenylethanol 4 | 1116 | 1116 | 3.0 |
3 | 3-Methylbut-2-enal * | <900 | 781 | 1.0 | 16 | Phenylacetonitrile | 1143 | 1141 | 1.9 |
4 | Octane | <900 | 800 | 0.1 | 17 | 4-Ketoisophorone | 1147 | 1147 | 2.8 |
5 | 3-Methylbutanoic acid | <900 | 888 | 1.7 | 18 | Octanoic acid 4 | 1176 | 1179 | 1.7 |
6 | Benzaldehyde 4 | 965 | 966 | 1.1 | 19 | Nonan-1-ol 4 | 1178 | 1171 | 1.4 |
7 | Hexanoic acid 4 | 980 | 982 | 0.9 | 20 | trans-Linalool oxide (pyran type) | 1183 | 1183 | 1.5 |
8 | (E)-Hex-3-enoic 4 acid | 991 | / | 0.7 | 21 | α-Terpineol 4 | 1194 | 1191 | 0.8 |
9 | (Z)-Hex-3-enoic acid | 1013 | 1013 | 0.8 | 22 | 5-Hydroxymethylfurfural 4 | 1230 | 1226 | 4.0 |
10 | Phenylacetaldehyde 4 | 1048 | 1049 | 1.7 | 23 | 4-Methoxybenzaldehyde 4 | 1256 | 1258 | 1.1 |
11 | cis-Linalool oxide (furan type) | 1076 | 1075 | 25.3 | 24 | Nonanoic acid 4 | 1273 | 1276 | 4.0 |
12 | trans-Linalool oxide (furan type) | 1091 | 1091 | 9.2 | 25 | 3,4,5-Trimethylphenol ** | 1336 | - | 3.2 |
13 | Linalool 4 | 1101 | 1101 | 5.8 | 26 | Hexadecanoic acid 4 | 1970 | 1977 | 1.7 |
No. | Compound | RI 1 | RI 2 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|
% 3 | % 3 | % 2 | % 3 | % 3 | % 3 | ||||
1 | 2-Furancarboxaldehyde | <900 | 835 | - | - | - | - | 0.6 | 0.1 |
2 | 4-Methyloctane | <900 | / | 0.1 | - | 0.1 | 0.1 | - | - |
3 | 1,3-Dimethylbenzene ** | <900 | 864 | 1.5 | - | 0.6 | 0.7 | 0.6 | - |
4 | 2-Furanmethanol | <900 | 866 | - | - | - | - | 0.1 | - |
5 | Ethylbenzene | <900 | 868 | 0.2 | - | 0.6 | 0.2 | 0.1 | - |
6 | 3-Methylbutanoic acid (Isovaleric acid) | <900 | 888 | - | - | - | - | 0.1 | - |
7 | 3-Methylbut-2-enoic acid * | <900 | / | 0.1 | 0.2 | - | 0.1 | 0.1 | - |
8 | Ethenylbenzene | <900 | 892 | 0.1 | - | - | 0.1 | - | - |
9 | 1,2-Dimethylbenzene ** | <900 | 897 | 0.3 | - | 0.8 | 0.1 | - | - |
10 | Methoxybenzene | 912 | / | 0.1 | - | - | 0.2 | - | - |
11 | 2-Acetylfuran | 918 | 914 | - | - | - | - | 0.1 | - |
12 | Benzaldehyde 4 | 965 | 966 | 0.1 | 0.2 | 0.7 | 0.1 | - | - |
13 | 5-Methylfurfural 4 | 970 | 966 | - | - | - | - | 0.1 | - |
14 | (E)-Hex-3-enoic acid 4 | 991 | / | 0.5 | 0.3 | - | 0.2 | - | - |
15 | (Z)-Hex-3-enoic acid | 1013 | 1013 | 0.1 | 0.2 | - | 0.1 | 0.1 | - |
16 | Pantolactone | 1044 | / | 0.1 | 0.2 | - | 0.1 | 0.1 | 0.2 |
17 | Phenylacetaldehyde 4 | 1048 | 1049 | 0.1 | 0.2 | 0.6 | 0.1 | - | - |
18 | Acetophenone 4 | 1065 | 1065 | - | - | - | 0.1 | - | - |
19 | cis-Linalool oxide (furan type) | 1076 | 1075 | 0.7 | 0.3 | 3.3 | 0.2 | 1.3 | 0.1 |
20 | trans-Linalool oxide (furan type) | 1091 | 1091 | 0.2 | 0.2 | 1.2 | - | 0.4 | - |
21 | Linalool 4 | 1102 | 1101 | 0.1 | - | - | - | - | - |
22 | Hotrienol | 1106 | 1110 | 0.1 | 0.2 | 0.6 | - | - | - |
23 | 2-Phenylethanol 4 | 1116 | 1116 | 0.7 | 0.7 | 1.6 | 0.3 | 0.4 | - |
24 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 1143 | 1149 | 0.2 | 0.3 | - | 0.3 | - | - |
25 | Benzoic acid 4 | 1181 | 1178 | 4.4 | 3.1 | 2.0 | 2.2 | 1.2 | 0.3 |
26 | Terpendiol I | 1191 | 1191 | 0.7 | 0.5 | 0.7 | 0.3 | - | - |
27 | 5-Hydrohymethylfurfural 1 | 1230 | 1226 | 0.8 | 2.6 | - | 1.1 | 13.3 | 0.8 |
28 | 4-Methoxybenzaldehyde 4 | 1259 | 1258 | 0.1 | 0.2 | 0.7 | - | 0.3 | - |
29 | Phenylacetic acid 4 | 1269 | 1270 | 0.8 | 0.8 | - | 0.6 | 0.1 | - |
30 | Nonanoic acid 4 | 1273 | 1276 | 0.1 | 0.2 | 0.7 | - | - | - |
31 | 1,4-Benzenediol 4 (Hydroquinone) | 1328 | / | 25.8 | 2.4 | - | 36.8 | 27.7 | 0.7 |
32 | 3,4,5-Trimethylphenol ** | 1336 | 1331 | 0.3 | 0.5 | 1.6 | 0.3 | - | 0.2 |
33 | 3-Hydroxy-4-phenylbutan-2-one | 1354 | 1348 | - | - | 2.8 | - | - | - |
34 | Phenylpropanoic acid 4 | 1359 | 1361 | 1.8 | 1.6 | - | 0.4 | - | - |
35 | 1-Hydroxylinalool ** | 1365 | / | 0.3 | 0.3 | - | - | 0.1 | - |
36 | 4-Hydroxybenzaldehyde 4 | 1393 | / | 10.3 | 9.9 | - | 5.3 | 2.5 | 1.2 |
37 | 4-Hydroxy-3-methoxy-benzaldehyde (Vanillin) 4 | 1412 | 1394 | 0.3 | 0.7 | - | - | - | - |
38 | 4-Methoxybenzoic acid (p-Anisic acid) 4 | 1452 | 1451 | 3.7 | 4.2 | - | 2.5 | 0.7 | 0.4 |
39 | (E)-3-Phenylprop-2-enoic acid (trans-Cinnamic acid) 4 | 1455 | 1457 | 0.9 | 0.7 | - | 0.4 | 0.1 | 0.1 |
40 | Methyl 4-hydroxybenzoate 4 | 1482 | / | 0.2 | 0.3 | - | - | - | - |
41 | 4-Hydroxy-phenylacetonitrile * | 1502 | / | 1.0 | 1.3 | - | 0.8 | 0.3 | 0.3 |
42 | Methyl 4-hydroxy-3-methoxybenzoate | 1530 | 1527 | 0.2 | 0.2 | - | - | - | - |
43 | 4-Hydroxybenzoic acid 4 | 1558 | 1558 | 16.4 | 0.2 | - | 16.6 | 11.6 | - |
44 | 3,5,5-Trimethyl-4-(3-oxo-1-butenyl)cyclohex-2-en-1-one (3-Oxo-α-ionone) | 1665 | 1661 | 1.8 | 1.5 | 2.4 | - | 0.3 | - |
45 | Syringaldehyde 4 | 1668 | 1667 | - | 0.7 | - | - | 0.1 | - |
46 | 3,5,5-Trimethyl-4-(3-oxobutyl)cyclohex-2-en-1-one (3-Oxo-7,8-dihydro-α-ionone) | 1682 | 1681 | 0.5 | 0.1 | 0.7 | 0.3 | 0.3 | - |
47 | Heptadecane 4 | 1700 | 1700 | 0.2 | - | 0.9 | 0.1 | - | - |
48 | Methyl syringate 4 | 1744 | 1744 | 9.8 | 12.2 | 26.2 | 3.0 | 6.6 | 1.0 |
49 | 4-Hydroxy-3,5,5-trimethyl-4-(3-oxo-1-butenyl)cyclohex-2-en-1-one (Vomifoliol) | 1802 | 1796 | 1.1 | 2.6 | - | 1.1 | 0.9 | - |
50 | Hexadecan-1-ol 4 | 1882 | 1883 | 0.1 | 0.2 | 1.2 | 0.2 | 0.4 | 1.5 |
51 | (E)-4-(r-1′,t-2′,c-4′-trihydroxy-3′,6′,6′-trimethylcyclohexyl)-but-3-en-2-one | 1960 | / | 3.1 | 18.3 | - | 6.2 | 3.3 | 49.1 |
52 | Hexadecanoic acid 4 | 1970 | 1977 | 1.1 | 4.1 | 1.8 | 0.7 | 0.1 | 0.1 |
53 | (Z)-Octadec-9-en-1-ol 4 | 2060 | 2060 | 0.8 | 6.2 | 3.1 | 2.0 | 0.1 | 8.9 |
54 | Octadecan-1-ol 4 | 2084 | 2081 | 0.1 | 1.5 | 0.8 | 0.2 | 2.2 | 2.8 |
55 | (Z)-Octadec-9-enoic acid 4 | 2142 | 2140 | 1.5 | 2.4 | 2.8 | 1.7 | 0.1 | 0.1 |
56 | Docosane 4 | 2200 | 2200 | 0.1 | 1.0 | 23.0 | 0.2 | 14.0 | 25.9 |
57 | Tricosane 4 | 2300 | 2300 | 0.7 | 1.0 | 4.3 | 0.7 | 0.1 | 0.1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerković, I.; Kuś, P.M. Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey. Molecules 2017, 22, 1909. https://doi.org/10.3390/molecules22111909
Jerković I, Kuś PM. Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey. Molecules. 2017; 22(11):1909. https://doi.org/10.3390/molecules22111909
Chicago/Turabian StyleJerković, Igor, and Piotr M. Kuś. 2017. "Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey" Molecules 22, no. 11: 1909. https://doi.org/10.3390/molecules22111909
APA StyleJerković, I., & Kuś, P. M. (2017). Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey. Molecules, 22(11), 1909. https://doi.org/10.3390/molecules22111909