Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana
Abstract
:1. Introduction
2. Results
2.1. α-Mangostin Isolation and Purification
2.2. Synthetic Modifications
2.3. Biological Assays
2.3.1. Anti-Bacterial Assay
2.3.2. Anti-Fungal Assay
3. Discussion
4. Materials and Methods
4.1. Isolation and Purification of α-Mangostin from Mangoosteen Fruit
4.2. General Methods for Compound Analysis
4.3. Anti-Microbial Activity Assay
4.3.1. Anti-Bacterial Assay
4.3.2. Anti-Fungal Assay
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martin, F.W. Durian and mangosteen. In Tropical and Subtropical Fruits: Composition, Properties and Uses; Nagy, S., Shaw, P.E., Eds.; The AVI Publishing Company, Inc.: Westport, CT, USA, 1980; pp. 407–414. [Google Scholar]
- Kanchanapoom, K.; Kanchanapoom, M. Mangosteen. In Tropical and Subtropical Fruits; Shaw, P.E., Chan, H.T., Nagy, S., Eds.; Agscience Inc.: Auburndale, FL, USA, 1998; pp. 191–215. [Google Scholar]
- Suksamrarn, S.; Komutiban, O.; Ratananukul, P.; Chimnoi, N.; Lartpornmatulee, N.; Suksamrarn, A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem. Pharm. Bull. 2006, 54, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008, 46, 3227–3239. [Google Scholar] [CrossRef] [PubMed]
- Iinuma, M.; Tosa, H.; Tanaka, T.; Asai, F.; Kobayashi, A.; Shimano, R.; Miyauchi, K.-I. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J. Pharm. Pharmacol. 1996, 48, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Duangsrisai, S.; Choowongkomon, K.; Bessa, L.; Costa, P.; Amat, N.; Kijjoa, A. Antibacterial and EGFR-tyrosine kinase inhibitory activities of polyhydroxylated xanthones from Garcinia succifolia. Molecules 2014, 19, 19923–19934. [Google Scholar] [CrossRef] [PubMed]
- Chomnawang, M.T.; Surassmo, S.; Nukoolkarn, V.S.; Gritsanapan, W. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 2005, 101, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, A.A.; Zakharchenko, N.S.; Trubnikova, E.V.; Medvedeva, O.A.; Kuznetsova, T.V.; Masgutova, G.A.; Zylkova, M.V.; Buryanov, Y.I.; Belous, A.S. Bactericide and immunomodulating properties of transgenic Kalanchoe pinnata synergize with antimicrobial peptide cecropin P1 in vivo. J. Immunol. Res. 2017, in press. [Google Scholar]
- Miguel-de Abreu, P.; Farias, P.G.; Paliva, G.S.; Almeida, A.M.; Morals, P.V. Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: A potential health hazard. BMC Microbiol. 2014, 14, 118. [Google Scholar]
- Jain, A.; Agarwal, A.; Verma, R.K. Cefoxitin Disc diffusion test for detection of methicillin-resistant Staphylococci. J. Med. Microbiol. 2008, 57, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.B. HPLC analysis of selected xanthones in mangosteen fruit. J. Separ. Sci. 2007, 30, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.A.; Ibrahim, S.R.M.; Shaaban, M.I.A.; Ross, S.A. Mangostan axanthones I and II, new xanthones from the pericarp of Garcinia mangostana. Phytotherapia 2014, 98, 215–221. [Google Scholar]
- Sakagami, Y.; Iinuma, M.; Piyasena, K.G.; Dharmaratne, H.R. Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine 2005, 12, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Phitaktim, S.; Chomnawang, M.; Sirichaiwetchakoon, K.; Dunkhunthod, B.; Hobbs, G.; Eumkeb, G. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol. 2016, 16, 195. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Crisostomo, C.J.J.; Garcia, K.D.C.; Shen, C. Antimicrobial xanthones from Garcinia mangostana L. Philipp. Sci. 2010, 47, 63–75. [Google Scholar]
- Alsultan, Q.M.N.; Sijam, K.; Rashid, T.S.; Ahmad, K.B. GC-MS Analysis and antibacterial activity of mangosteen leaf extracts against plant pathogenic bacteria. Am. J. Plant Sci. 2016, 7, 1013–1020. [Google Scholar] [CrossRef]
- Tatiya-Aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. In vivo antibacterial activity of Garcinia mangostana pericarp extract against methicillin-resistant Staphylococcus aureus in a mouse superficial skin infection model. Pharm. Biol. 2016, 54, 2606–2615. [Google Scholar] [CrossRef] [PubMed]
- Dharmaratne, H.R.W.; Sakagami, Y.; Piyasena, K.G.P.; Thevanesam, V. Antibacterial activity of xanthones from Garcinia mangostana (L.) and their structure-activity relationship studies. Nat. Prod. Res. 2013, 27, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Weecharangsan, W.; Opanasopit, P.; Sukma, M.; Ngawhirunpat, T.; Sotanaphun, U.; Siripong, P. Antioxidative and neuroprotective activities of extracts from the fruit hull of mangosteen (Garcinia mangostana Linn.). Med. Princ. Pract. 2006, 15, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Beltrán, S.; Orozco-Ibarra, M.; González-Cuahutencos, O.; Victoria-Mares, S.; Merchand-Reyes, G.; Medina-Campos, O.N.; Pedraza-Chaverri, J. Neuroprotective effect and reactive oxygen species scavenging capacity of mangosteen pericarp extract in cultured neurons. Curr. Top. Nutr. Res. 2008, 6, 149–158. [Google Scholar]
- Márquez-Valadez, B.; Lugo-Huitrón, R.; Valdivia-Cerda, V.; Miranda-Ramírez, L.R.; Pérez-De La Cruz, V.; González-Cuahutencos, O.; Rivero-Cruz, I.; Mata, R.; Santamaría, R.; Pedraza-Chaverrí, J. The natural xanthone α-mangostin reduces oxidative damage in rat brain tissue. Nutr. Neurosci. 2009, 12, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Chaverrí, J.; Reyes-Fermín, L.M.; Nolasco-Amaya, E.G.; Ibarra, M.O.; Medina-Campos, O.N.; González-Cuahutencos, O.; Rivero-Cruz, I.; Mata, R. ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons. Exp. Toxicol. Pathol. 2009, 61, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.-S.; Kim, E.-Y.; Han, L.; Kim, N.-R.; Lam, B.; Paik, J.H.; Yoon, K.D.; Choi, Y.H.; Chin, Y.-W. Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garcinia mangostana L. (Guttiferae). Eur. J. Lipid Sci. Technol. 2016, 118, 1416–1421. [Google Scholar] [CrossRef]
- Balunas, M.J.; Su, B.; Brueggemeier, R.W.; Kinghorn, A.D. Xanthones from the botanical dietary supplement mangosteen (Garcinia mangostana) with aromatase inhibitory activity. J. Nat. Prod. 2008, 71, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.N.; Chung, M.I.; Liou, S.J.; Lee, T.H.; Wang, J.P. Synthesis and anti-inflammatory effects of xanthone derivatives. J. Pharm. Pharmacol. 1996, 48, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.W.; Kinghorn, A.D. Structural characterization, biological effects, and synthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement. Mini. Rev. Org. Chem. 2008, 5, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Jo, M.; Lee, B.; Han, S.; Lee, K.; Jung, J.; Seo, S.; Kwak, Y. Synthesis of xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents. Bioorg. Med. Chem. Lett. 2014, 24, 2062–2065. [Google Scholar] [CrossRef] [PubMed]
- Morelli, C.F.; Biagiotti, M.; Pappalardo, V.M.; Rabuffetti, M.; Speranza, G. Chemistry of α-mangostin. Studies on the semisynthesis of minor xanthones from Garcinia mangostana. Nat. Product Res. 2015, 29, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Koh, J.; Li, J.; Qiu, S.; Aung, T.T.; Lin, H.; Lakshminarayanan, R.; Dai, X.; Tang, C.; Lim, F.H.; et al. Design and synthesis of amphiphilic xanthone-based, membrane-targeting antimicrobials with improved membrane selectivity. J. Med. Chem. 2013, 56, 2359–2373. [Google Scholar] [CrossRef] [PubMed]
- Samprasit, W.; Rojanarata, T.; Akkaramongkolporn, P.; Ngawhirunpat, T.; Kaomongkolgit, R.; Opanasopit, P. Fabrication and in vitro/in vivo performance of mucoadhesive electrospun nanofiber mats containing α-mangostin. AAPS Pharm. Sci. Tech. 2015, 16, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Suwantong, O.; Pankongadisak, P.; Deachathai, S.; Supaphol, P. Electrospun poly(l-lactic acid) fiber mats containing crude Garcinia mangostana extracts for use as wound dressings. Polym. Bull. 2014, 71, 925–949. [Google Scholar] [CrossRef]
- Lakouraj, M.M.; Rahpaima, G.; Mohseni, M. Synthesis, characterization, metal sorption, and biological activities of organosoluble and thermally stable azoxanthone-based polyester. Polym. Adv. Technol. 2015, 26, 234–244. [Google Scholar] [CrossRef]
- Vimala, K.; Yallapu, M.M.; Varaprasad, K.; Reddy, N.N.; Ravindra, S.; Naidu, N.S.; Raju, K.M. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J. Biomater. Nanobiotechnol. 2011, 2, 55–64. [Google Scholar] [CrossRef]
- Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kwon, D.Y. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013, 20, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Shlar, I.; Poverenov, E.; Vinokur, Y.; Horev, B.; Droby, S.; Rodov, V. High throughput screening of nanoparticle-stabilizing ligands: Application to preparing antimicrobial curcumin nanoparticles by antisolvent precipitation. Nano-Micro Lett. 2015, 7, 68–79. [Google Scholar] [CrossRef]
- Dogra, N.; Choudhary, R.; Kohli, P.; Haddock, J.D.; Makwana, S.; Horev, B.; Vinokur, Y.; Droby, S.; Rodov, V. Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces. J. Agric. Food Chem. 2015, 63, 2557–2565. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, M.; Hettiarachchy, N.S.; Ganesh, V.; Ricke, S.C.; Singh, S. Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium in broth and chicken meat system. J. Food Saf. 2011, 31, 462–471. [Google Scholar] [CrossRef]
- Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Ueckert, J.; Bos, A.; Narbad, A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. Appl. Microbiol. 2004, 97, 104–113. [Google Scholar] [CrossRef]
- Rodov, V.; Nafussi, B.; Ben-Yehoshua, S. Essential oil components as potential means to control postharvest pathogens of citrus fruit. Fresh Prod. 2011, 5, 43–50. [Google Scholar]
- Horev, B.; Sela, S.; Vinokur, Y.; Gorbatsevich, E.; Pinto, R.; Rodov, V. The effects of active and passive modified atmosphere packaging on the survival of Salmonella enterica serotype Typhimurium on washed romaine lettuce leaves. Food Res. Int. 2012, 45, 1129–1132. [Google Scholar] [CrossRef]
- Izumi, H.; Rodov, V.; Bai, J.; Wendakoon, S. Physiology and quality of fresh-cut produce in CA/MA storage. In Fresh-Cut Fruit and Vegetables: Physiology, Technology and Safety, 1st ed.; Pareek, S., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 271–318. [Google Scholar]
- Fadida, T.; Kroupitski, Y.; Peiper, U.M.; Bendikov, T.; Sela, S.; Poverenov, E. Air-ozonolysis to generate contact active antimicrobial surfaces: Activation of polyethylene and polystyrene followed by covalent graft of quaternary ammonium salts. Colloids Surf. B Biointerfaces 2014, 122, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef]
- Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E.; et al. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013, 9, 4069–4076. [Google Scholar] [CrossRef] [PubMed]
- Meridor, D.; Gedanken, A. Preparation of enzyme nanoparticles and studying the catalytic activity of the immobilized nanoparticles on polyethylene films. Ultrason. Sonochem. 2013, 20, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Poverenov, E.; Danino, S.; Horev, B.; Granit, R.; Vinokur, Y.; Rodov, V. Layer-by-Layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate-chitosan combination. Food Bioprocess Technol. 2014, 7, 1424–1432. [Google Scholar] [CrossRef]
- Poverenov, E.; Rutenberg, R.; Danino, S.; Horev, B.; Rodov, V. Gelatin-chitosan composite films and edible coatings to enhance the quality of food products: Layer-by-Layer vs. blended formulations. Food Bioprocess Technol. 2014, 7, 3319–3327. [Google Scholar] [CrossRef]
- Poverenov, E.; Shemesh, M.; Gulino, A.; Cristaldi, D.A.; Zakin, V.; Yefremov, T.; Granit, R. Durable contact active antimicrobial materials formed by a one-step covalent modification of polyvinyl alcohol, cellulose and glass surfaces. Colloids Surf. B Biointerfaces 2013, 112, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.; Papadakis, S.E.; Yam, K.L. Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials. Int. J. Food Sci. Technol. 2003, 38, 165–169. [Google Scholar] [CrossRef]
- Bastarrachea, L.; Dhawan, S.; Sablani, S.S. Engineering properties of polymeric based antimicrobial films for food packaging: A review. Food Eng. Rev. 2011, 3, 79–93. [Google Scholar] [CrossRef]
- Kurt, P.; Wood, L.; Ohman, D.E.; Wynne, K.J. Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir 2007, 23, 4719–4723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Kang, E.T.; Neoh, K.G.; Wang, P.; Tan, K.L. Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials 2001, 22, 1541–1548. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; El-Ghorab, D.M.H.; El-Barbary, M.A.; Zayed, M.F.; Goransson, U.; Larsson, S.; Veerporte, R. Naturally occurring xanthones; latest investigations: Isolation, structure elucidation and chemosystematic significance. Curr. Med. Chem. 2009, 16, 2581–2626. [Google Scholar] [CrossRef] [PubMed]
- Jyoshna; Khare, P.; Shanker, K. Mangiferin: A review of sources and interventions for biological activities. BioFactors 2016, 42, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Cramer, G.M.; Ford, R.A.; Hall, R.L. Estimation of Toxic Hazard—A Decision Tree Approach. J. Cosmet. Toxicol. 1978, 16, 255–276. [Google Scholar] [CrossRef]
- Patlewicz, G.; Jeliazkova, N.; Safford, R.J.; Worth, A.P.; Aleksiev, B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res. 2008, 19, 495–524. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, S.; Worth, A. Analysis of the Cramer Classification Scheme for Oral Systemic Toxicity-Implications for Its Implementation in Toxtree; EUR 24898 EN; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Verhaar, H.J.M.; van Leeuwen, C.J.; Hermens, J.L.M. Classifying environmental pollutants. 1. Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 1992, 25, 471–491. [Google Scholar] [CrossRef]
- Verhaar, H.J.M.; Solbe, J.; Speksnijder, J.; van Leeuwen, C.J.; Hermens, J.L.M. Classifying environmental pollutants: Part 3. External validation of the classification system. Chemosphere 2000, 40, 875–883. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds I and I A to I L are available from the authors.
S. No. | Compound Information | Structure | Reaction of α-Mangostin with | Molecular Formula | Mass |
---|---|---|---|---|---|
1. | α-Mangostin (I) | - | C24H26O6 | 411 (M+1)+ | |
2. | Ritter product of α-mangostin (I A) | Acetonitrile in Silica supported sulphuric acid | C26H31NO7 | 470 (M+1)+ | |
3. | Ritter product of α-mangostin (I B) | Malononitrile in Silica supported sulphuric acid | C27H30N2O7 | 514 (M+2+NH3)+ | |
4. | Ritter product of α-mangostin (I C) | Butyronitrile in Silica supported sulphuric acid | C28H25NO7 | 498 (M+1)+ | |
5. | Alkylated product of α-mangostin (I D) | Ethyl Iodide | C28H34O6 | 467 (M+1)+ | |
K2CO3/ACN | |||||
M.W. 10 min | |||||
6. | Alkylated product of α-mangostin (I E) | Bromopropane | C33H44O6 | 537 (M)+ | |
K2CO3/ACN | |||||
M.W. 10 min | |||||
7. | Alkylated product of α-mangostin (I F) | Cyclopentyl bromide | C39H50O6 | 615 (M)+ | |
K2CO3/ACN | |||||
M.W. 10 min | |||||
8. | Alkylated product of α-mangostin (I G) | Propargyl bromide | C33H32O6 | 525 (M)+ | |
K2CO3/ACN | |||||
M.W. 10 min | |||||
9. | Alkylated product of α-mangostin (I H) | Benzyl bromide | C45H44O6 | 681 (M)+ | |
K2CO3/ACN | |||||
M.W. 10 min | |||||
10. | Alkylated product of α-mangostin (I I) | Benzene sulphonyl chloride | C42H38O12S3 | 831 (M)+ | |
K2CO3/ACN | |||||
M.W. 10 min | |||||
11. | Alkylated product of α-mangostin (I J) | Chloroethyl morpholine hydrochloride | C42H59N3O9 | 750 (M)+ | |
K2CO3/ACN | |||||
M.W. 10 min | |||||
12. | Acylated product of α-mangostin (I K) | Acetic anhydride | C26H28O7 | 536 (M)+ | |
K2CO3/ACN | |||||
M.W. 10 min | |||||
13. | Reduced product of α-mangostin (I L) | Palladium/Carbon | C25H30O6 | 415 (M+1)+ |
S. No. | Zone of Inhibition in mm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli | B. subtilis | S. aureus | P. aeruginosa | C. albicans | A. niger | |||||||
Conc. (μg/mL) | 50 | 100 | 50 | 100 | 50 | 100 | 50 | 100 | 50 | 100 | 50 | 100 |
I | 5 ± 0.09 | 8 ± 0.04 | 7 ± 0.11 | 9 ± 0.15 | 5 ± 0.05 | 9 ± 0.12 | 6 ± 0.24 | 10 ± 0.08 | 8 ± 0.12 | 10 ± 0.14 | 4 ± 0.18 | 7 ± 0.05 |
I A | 4 ± 0.18 | 9 ± 0.16 | 6 ± 0.15 | 10 ± 0.11 | 5 ± 0.12 | 11 ± 0.22 | 5 ± 0.11 | 8 ± 0.16 | 7 ± 0.11 | 10 ± 0.06 | 9 ± 0.11 | 12 ± 0.02 |
I B | 6 ± 0.14 | 10 ± 0.11 | 6 ± 0.12 | 9 ± 0.23 | 5 ± 0.16 | 8 ± 0.14 | 4 ± 0.08 | 8 ± 0.22 | 4 ± 0.16 | 6 ± 0.11 | 3 ± 0.07 | 5 ± 0.15 |
I C | 8 ± 0.11 | 11 ± 0.08 | 10 ± 0.06 | 12 ± 0.04 | 6 ± 0.18 | 9 ± 0.06 | 5 ± 0.16 | 10 ± 0.13 | 2 ± 0.16 | 6 ± 0.13 | 2 ± 0.18 | 5 ± 0.14 |
I D | 7 ± 0.12 | 10 ± 0.18 | 4 ± 0.04 | 10 ± 0.09 | 5 ± 0.08 | 7 ± 0.12 | 9 ± 0.21 | 9 ± 0.08 | 4 ± 0.22 | 6 ± 0.21 | 7 ± 0.15 | 9 ± 0.08 |
I E | 6 ± 0.13 | 11 ± 0.22 | 9 ± 0.15 | 12 ± 0.16 | 7 ± 0.22 | 11 ± 0.18 | 7 ± 0.05 | 12 ± 0.03 | 4 ± 0.08 | 7 ± 0.17 | 3 ± 0.04 | 5 ± 0.05 |
I F | 6 ± 0.18 | 9 ± 0.04 | 5 ± 0.09 | 11 ± 0.18 | 7 ± 0.14 | 11 ± 0.17 | 5 ± 0.09 | 9 ± 0.14 | 3 ± 0.07 | 5 ± 0.14 | 4 ± 0.09 | 7 ± 0.11 |
I G | 6 ± 0.20 | 9 ± 0.12 | 7 ± 0.05 | 10 ± 0.11 | 10 ± 0.21 | 11 ± 0.19 | 6 ± 0.14 | 9 ± 0.18 | 4 ± 0.12 | 6 ± 0.19 | 3 ± 0.16 | 5 ± 0.19 |
I H | 5 ± 0.12 | 9 ± 0.11 | 6 ± 0.12 | 9 ± 0.08 | 8 ± 0.18 | 10 ± 0.13 | 8 ± 0.11 | 11 ± 0.11 | 9 ± 0.17 | 13 ± 0.12 | 7 ± 0.11 | 10 ± 0.21 |
I I | 5 ± 0.08 | 8 ± 0.15 | 6 ± 0.04 | 10 ± 0.20 | 7 ± 0.11 | 9 ± 0.15 | 9 ± 0.19 | 12 ± 0.06 | 10 ± 0.14 | 12 ± 0.09 | 9 ± 0.08 | 13 ± 0.11 |
I J | 4 ± 0.15 | 7 ± 0.16 | 5 ± 0.11 | 8 ± 0.14 | 4 ± 0.13 | 7 ± 0.21 | 3 ± 0.08 | 6 ± 0.20 | 11 ± 0.12 | 13 ± 0.15 | 6 ± 0.03 | 8 ± 0.18 |
I K | 10 ± 0.14 | 12 ± 0.16 | 4 ± 0.10 | 7 ± 0.14 | 5 ± 0.08 | 9 ± 0.08 | 6 ± 0.22 | 9 ± 0.06 | 8 ± 0.20 | 11 ± 0.18 | 10 ± 0.15 | 13 ± 0.18 |
I L | 9 ± 0.13 | 11 ± 0.06 | 5 ± 0.21 | 8 ± 0.16 | 5 ± 0.12 | 8 ± 0.05 | 6 ± 0.15 | 8 ± 0.12 | 7 ± 0.13 | 10 ± 0.08 | 9 ± 0.17 | 12 ± 0.08 |
Std drug | 19 ± 0.11 | 24 ± 0.05 | 16 ± 0.07 | 20 ± 0.14 | 11 ± 0.15 | 18 ± 0.06 | 15 ± 0.12 | 19 ± 0.16 | 15 ± 0.16 | 18 ± 0.04 | 14 ± 0.13 | 18 ± 0.08 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E.; Poltronieri, P. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana. Molecules 2017, 22, 275. https://doi.org/10.3390/molecules22020275
Narasimhan S, Maheshwaran S, Abu-Yousef IA, Majdalawieh AF, Rethavathi J, Das PE, Poltronieri P. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana. Molecules. 2017; 22(2):275. https://doi.org/10.3390/molecules22020275
Chicago/Turabian StyleNarasimhan, Srinivasan, Shanmugam Maheshwaran, Imad A. Abu-Yousef, Amin F. Majdalawieh, Janarthanam Rethavathi, Prince Edwin Das, and Palmiro Poltronieri. 2017. "Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana" Molecules 22, no. 2: 275. https://doi.org/10.3390/molecules22020275
APA StyleNarasimhan, S., Maheshwaran, S., Abu-Yousef, I. A., Majdalawieh, A. F., Rethavathi, J., Das, P. E., & Poltronieri, P. (2017). Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana. Molecules, 22(2), 275. https://doi.org/10.3390/molecules22020275