Advances of Vibrational Spectroscopic Technologies in Life Sciences
Acknowledgments
Conflicts of interest
References
- Huck, C.W. Highly Efficient Novel Vibrational Spectroscopic Methods. GIT Lab. J. 2016, 29, 2–5. [Google Scholar]
- Pezzei, C.K.; Watschinger, M.; Huck-Pezzei, V.A.; Lau, C.; Zuo, Z.; Leung, P.C.; Huck, C.W. Infrared spectroscopic techniques for the non-invasive and rapid quality control of Chinese traditional medicine Si-Wu-Tang. Spectrosc. Eur. 2016, 28, 16–21. [Google Scholar]
- Huck, C.W. Advances of infrared spectroscopy in natural product research. Phytochem. Lett. 2015, 11, 384–393. [Google Scholar] [CrossRef]
- Huck, C.W.; Ozaki, Y.; Huck-Pezzei, V.A. Critical Review upon the Role and Potential of Fluorescence and Near-Infrared Imaging and Absorption Spectroscopy in Cancer Related Cells, Serum, Saliva, Urine and Tissue Analysis. Curr. Med. Chem. 2016. [Google Scholar] [CrossRef]
- Huck, C.W.; Huck-Pezzei, V.A.C.; Pezzei, C.K. An industry perspective of food fraud. Curr. Opin. Food Sci. 2016, 10, 32–37. [Google Scholar] [CrossRef]
- Clara, D.; Pezzei, C.K.; Schönbichler, S.A.; Popp, M.; Krolitzek, J.; Bonn, G.K.; Huck, C.W. Comparison of near-infrared diffuse reflectance (NIR) and attenuated-total-reflectance mid-infrared (ATR-IR) spectroscopic determination of the antioxidant capacity of Sambuci flos with classic wet chemical methods (assays). Anal. Methods 2016, 8, 97–104. [Google Scholar] [CrossRef]
- Schmutzler, M.; Huck, C.W. Simultaneous detection of total antioxidant capacity and total soluble solids content by Fourier transform near-infrared (FT-NIR) spectroscopy: A quick and sensitive method for on-site analyses of apples. Food Control 2016, 66, 27–37. [Google Scholar] [CrossRef]
- De Benedictis, L.; Schmutzler, M.; Karer, R.; Eisenstecken, D.; Huck-Pezzei, V.; Robatscher, P.; Oberhuber, M.; Mimmo, T.; Capici, C.; Scampicchio, M.; et al. Near infrared spectroscopy as a tool for quality control of food of the alpine region—A short report about a cross-border project. NIR News 2012, 23, 12–15. [Google Scholar] [CrossRef]
- Schmutzler, M.; Beganovic, A.; Böhler, G.; Huck, C. Modern safety control for meat products: near infrared spectroscopy utilised for detection of contaminations and adulterations of premium veal products. NIR News 2016, 27, 11–13. [Google Scholar] [CrossRef]
- Siesler, H.W.; Ozaki, Y.; Kawata, S.; Heise, H.M. (Eds.) Near-Infrared Spectroscopy: Principles, Instruments, Applications (Google eBook); Wiley: Weinheim, Germany, 2008.
- Săsĭć, S.; Ozaki, Y. Raman, Infrared, and Near-Infrared Chemical Imaging; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- O’Brien, N.A.; Hulse, C.A.; Friedrich, D.M.; Van Milligen, F.J.; von Gunten, M.K.; Pfeifer, F.; Siesler, H.W. Miniature near-infrared (NIR) spectrometer engine for handheld applications. In Proceedings of SPIE; Druy, M.A., Crocombe, R.A., Eds.; SPIE: Bellingham, WA, USA, 2012; Volume 8374, p. 837404. [Google Scholar]
- Sorak, D.; Herberholz, L.; Iwascek, S.; Altinpinar, S.; Pfeifer, F.; Siesler, H.W. New Developments and Applications of Handheld Raman, Mid-Infrared, and Near-Infrared Spectrometers. Appl. Spectrosc. Rev. 2012, 47, 83–115. [Google Scholar] [CrossRef]
- Lutz, O.M.D.; Bonn, G.K.; Rode, B.M.; Huck, C.W. Reproducible quantification of ethanol in gasoline via a customized mobile near-infrared spectrometer. Anal. Chim. Acta 2014, 826, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Salzer, R.; Siesler, H.W. Infrared and Raman Spectroscopic Imaging; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Eisenstecken, D.; Panarese, A.; Robatscher, P.; Huck, C.; Zanella, A.; Oberhuber, M. A Near Infrared Spectroscopy (NIRS) and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars “Cripps Pink” and “Braeburn”. Molecules 2015, 20, 13603–13619. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, M.; Li, C.; Eremina, N.; Goormaghtigh, E.; Barth, A. Simultaneous Fitting of Absorption Spectra and Their Second Derivatives for an Improved Analysis of Protein Infrared Spectra. Molecules 2015, 20, 12599–12622. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, R.; Fix, D.; Schade, U.; Aziz, E.; Timofeeva, N.; Weinkamer, R.; Masic, A. Anisotropy in Bone Demineralization Revealed by Polarized Far-IR Spectroscopy. Molecules 2015, 20, 5835–5850. [Google Scholar] [CrossRef] [PubMed]
- Kodai, M.; Ishikawa, D.; Genkawa, T.; Sugino, H.; Komiyama, M.; Ozaki, Y. Image Monitoring of Pharmaceutical Blending Processes and the Determination of an End Point by Using a Portable Near-Infrared Imaging Device. Molecules 2014, 20, 4007–4019. [Google Scholar]
- Achata, E.; Esquerre, C.; O’Donnell, C.; Gowen, A. A Study on the Application of Near Infrared Hyperspectral Chemical Imaging for Monitoring Moisture Content and Water Activity in Low Moisture Systems. Molecules 2014, 20, 2611–2621. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Calvo, M.; Prieto, M.; López, M.; Alvarez-Ordóñez, A. Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques. Molecules 2014, 19, 21310–21323. [Google Scholar] [CrossRef] [PubMed]
- Lutz, O.; Rode, B.; Bonn, G.; Huck, C. Largely Reduced Grid Densities in a Vibrational Self-Consistent Field Treatment Do Not Significantly Impact the ResultingWavenumbers. Molecules 2014, 19, 21253–21275. [Google Scholar] [CrossRef] [PubMed]
- Aydin, M. Comparative Study of the Structural and Vibroelectronic Properties of Porphyrin and Its Derivatives. Molecules 2014, 19, 20988–21021. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.N.; Qi, W.; Kidder, L.H.; Amin, S.; Kenyon, S.M.; Blake, S. Combined Dynamic Light Scattering and Raman Spectroscopy Approach for Characterizing the Aggregation of Therapeutic Proteins. Molecules 2014, 19, 20888–20905. [Google Scholar] [CrossRef] [PubMed]
- Campos, N.da S.; Oliveira, K.S.; Almeida, M.R.; Stephani, R.; Cappa de Oliveira, L.F. Classification of Frankfurters by FT-Raman Spectroscopy and Chemometric Methods. Molecules 2014, 19, 18980–18992. [Google Scholar] [CrossRef] [PubMed]
- Farias, M.; Carneiro, R. Simultaneous Quantification of Three Polymorphic Forms of Carbamazepine in the Presence of Excipients Using Raman Spectroscopy. Molecules 2014, 19, 14128–14138. [Google Scholar] [CrossRef] [PubMed]
- Sandasi, M.; Vermaak, Ii.; Chen, W.; Viljoen, A.M. Hyperspectral Imaging and Chemometric Modeling of Echinacea—A Novel Approach in the Quality Control of Herbal Medicines. Molecules 2014, 19, 13104–13121. [Google Scholar] [CrossRef] [PubMed]
- Huck, C. Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis. Molecules 2016, 21, 633. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D. The Role of Visible and Infrared Spectroscopy Combined with Chemometrics to Measure Phenolic Compounds in Grape and Wine Samples. Molecules 2015, 20, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C.W.; Bonn, G.K. Au-Nanomaterials as a Superior Choice for Near-Infrared Photothermal Therapy. Molecules 2014, 19, 20580–20593. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huck, C.W. Advances of Vibrational Spectroscopic Technologies in Life Sciences. Molecules 2017, 22, 278. https://doi.org/10.3390/molecules22020278
Huck CW. Advances of Vibrational Spectroscopic Technologies in Life Sciences. Molecules. 2017; 22(2):278. https://doi.org/10.3390/molecules22020278
Chicago/Turabian StyleHuck, Christian W. 2017. "Advances of Vibrational Spectroscopic Technologies in Life Sciences" Molecules 22, no. 2: 278. https://doi.org/10.3390/molecules22020278
APA StyleHuck, C. W. (2017). Advances of Vibrational Spectroscopic Technologies in Life Sciences. Molecules, 22(2), 278. https://doi.org/10.3390/molecules22020278