Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single Factor Experiment
2.1.1. Effect of Cellulase Concentration on Extraction of TPC
2.1.2. Effect of Ultrasonic Time on Extraction of TPC
2.1.3. Effect of Ultrasonic Temperature on Extraction of TPC
2.1.4. Effect of Liquid to Solid Ratio on Extraction of TPC
2.2. Response Surface Methodology
2.2.1. The Results in the BBD Experiments
2.2.2. Fitting the Model
2.2.3. Analysis of Response Surfaces and Contours
2.2.4. Verification Experiments
2.3. Analysis of Microscopic Changes
2.4. Comparison of UAEE with Other Extraction Methods
2.4.1. Total Phenolic Content
2.4.2. Antioxidant Activity of Phenolic Extracts
2.4.3. Antitumor Activity of Phenolic Extracts
3. Material and Methods
3.1. Plant Material and Chemical Reagents
3.2. Ultrasonic-Assisted Enzymatic Extraction
3.3. Experimental Design
3.3.1. Single-Factor Experiment
3.3.2. Response Surface Methodology Experiment
3.4. Scanning Electron Microscopy Analysis
3.5. Comparison with Other Extraction Procedures
3.5.1. Heat Extraction (HE)
3.5.2. Ultrasonic-Assisted Extraction (UAE)
3.5.3. Enzyme-Assisted Extraction (EAE)
3.6. Determination of Total Phenolic Content
3.7. Evaluation of Antioxidant Capacity
3.7.1. ABTS Method
3.7.2. DPPH Method
3.7.3. TAC Method
3.7.4. FRAC Method
3.8. Evaluation of Antitumor Capacity
3.8.1. Cell Culture
3.8.2. MTT Cell Proliferation Assay
3.8.3. Morphological Evaluation
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ananga, A.; Georgiev, V.; Tsolova, V. Manipulation and engineering of metabolic and biosynthetic pathway of plant polyphenols. Curr. Pharm. Des. 2013, 19, 6186–6206. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi, S.; Jayalakshmi, S.; Sreeramulu, K. Polyphenols from different agricultural residues: Extraction, identification and their antioxidant properties. J. Food Sci. Technol. 2015, 52, 2761–2769. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Xie, H.; Xu, X.; Liang, Y.; Wei, X. Phenolic constituents from isodon lophanthoides var. Graciliflorus and their antioxidant and antibacterial activities. J. Funct. Foods 2014, 6, 492–498. [Google Scholar] [CrossRef]
- Yi, J.; Wang, Z.; Bai, H.; Yu, X.; Jing, J.; Zuo, L. Optimization of purification, identification and evaluation of the in vitro antitumor activity of polyphenols from pinus koraiensis pinecones. Molecules 2015, 20, 10450–10467. [Google Scholar] [CrossRef] [PubMed]
- Onishi, S.; Nishi, K.; Yasunaga, S.; Muranaka, A.; Maeyama, K.; Kadota, A.; Sugahara, T. Nobiletin, a polymethoxy flavonoid, exerts anti-allergic effect by suppressing activation of phosphoinositide 3-kinase. J. Funct. Foods 2014, 6, 606–614. [Google Scholar] [CrossRef]
- Nahar, P.P.; Driscoll, M.V.; Li, L.; Slitt, A.L.; Seeram, N.P. Phenolic mediated anti-inflammatory properties of a maple syrup extract in raw 264.7 murine macrophages. J. Funct. Foods 2014, 6, 126–136. [Google Scholar] [CrossRef]
- Gómez-García, R.; Martínez-Ávila, G.C.; Aguilar, C.N. Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis Vinifera L.) residues. 3 Biotech 2012, 2, 297–300. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Michel, I.; Tessaro, I.C.; Marczak, L.D.F. Optimization of phenolics extraction from sesame seed cake. Sep. Purif. Technol. 2014, 122, 506–514. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus Fruticosus L.) residues: A comparison with conventional methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Q.; Zhang, C.; Cao, W.; Fan, D.; Yang, H. Extraction optimization of polyphenols from waste kiwi fruit seeds (Actinidia Chinensis Planch.) and evaluation of its antioxidant and anti-inflammatory properties. Molecules 2016, 21, 832. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, B.; Yao, S. Application of ultrasonic technique for extracting chlorogenic acid from eucommia ulmodies oliv.(e. Ulmodies). Ultrason. Sonochem. 2005, 12, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Odabaş, H.İ.; Koca, I. Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Ind. Crops Prod. 2016, 91, 114–124. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Martínez-Ávila, G.C.; Wong-Paz, J.E.; Belmares-Cerda, R.; Rodríguez-Herrera, R.; Aguilar, C.N. Ultrasound-assisted extraction of phenolic compounds from laurus nobilis l. And their antioxidant activity. Ultrason. Sonochem. 2013, 20, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Yan, J.; Liu, R.; Marcone, M.F.; Aisa, H.A.; Tsao, R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem. 2012, 133, 1292–1298. [Google Scholar] [CrossRef]
- Huynh, N.T.; Smagghe, G.; Gonzales, G.B.; Van Camp, J.; Raes, K. Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica Oleracea L. Var. Botrytis) outer leaves. J. Agric. Food Chem. 2014, 62, 7468–7476. [Google Scholar] [CrossRef] [PubMed]
- Joo, C.G.; Lee, K.H.; Park, C.; Joo, I.W.; Choe, T.B.; Lee, B.C. Correlation of increased antioxidation with the phenolic compound and amino acids contents of camellia sinensis leaf extracts following ultra high pressure extraction. J. Ind. Eng. Chem. 2012, 18, 623–628. [Google Scholar] [CrossRef]
- Le, H.V.; Le, V.V.M. Comparison of enzyme-assisted and ultrasound-assisted extraction of vitamin c and phenolic compounds from acerola (Malpighia Emarginata DC.) fruit. Int. J. Food Sci. Technol. 2012, 47, 1206–1214. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Zhang, Q.; Li, Y.-F.; Dong, L.-L.; Liu, S.-L. Optimization of ultrasound extraction of alisma orientalis polysaccharides by response surface methodology and their antioxidant activities. Carbohydr. Polym. 2015, 119, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.-B. Ultrasound-assisted extraction of natural antioxidants from the flower of limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Liao, N.; Zhong, J.; Ye, X.; Lu, S.; Wang, W.; Zhang, R.; Xu, J.; Chen, S.; Liu, D. Ultrasonic-assisted enzymatic extraction of polysaccharide from corbicula fluminea: Characterization and antioxidant activity. LWT-Food Sci. Technol. 2015, 60, 1113–1121. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Engmann, F.N.; Zhang, H. Ultrasound-assisted enzymatic extraction (uaee) of phytochemical compounds from mulberry (Morus Nigra) must and optimization study using response surface methodology. Ind. Crops Prod. 2015, 63, 214–225. [Google Scholar] [CrossRef]
- Dang, B.; Huynh, T.; Le, V. Simultaneous treatment of acerola mash by ultrasound and pectinase preparation in acerola juice processing: Optimization of the pectinase concentration and pectolytic time by response surface methodology. Int. Food Res. J. 2012, 19, 509–513. [Google Scholar]
- Chen, M.; Zhao, Y.; Yu, S. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem. 2015, 172, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Y.; Chen, G.; Yue, W.; Liang, Q.; Wu, Q. Optimisation of ultrasound assisted extraction of phenolic compounds from sparganii rhizoma with response surface methodology. Ultrason. Sonochem. 2013, 20, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.-Y.; Li, P.-H.; Huang, C.-C.; Wang, C.-C. Changes in functional characteristics of starch during water caltrop (Trapa Quadrispinosa Roxb.) growth. Food Chem. 2007, 104, 376–382. [Google Scholar] [CrossRef]
- Yasuda, M.; Yasutake, K.; Hino, M.; Ohwatari, H.; Ohmagari, N.; Takedomi, K.; Tanaka, T.; Nonaka, G.-I. Inhibitory effects of polyphenols from water chestnut (Trapa Japonica) husk on glycolytic enzymes and postprandial blood glucose elevation in mice. Food Chem. 2014, 165, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Hwang, J.-W.; Han, Y.-K.; Kwon, H.-J.; Hong, H.; Kim, E.-H.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Antioxidant activity and protective effects of trapa japonica pericarp extracts against tert-butylhydroperoxide-induced oxidative damage in chang cells. Food Chem. Toxicol. 2014, 64, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Li, F.; Xu, X.; Tang, J. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int. J. Biol. Macromol. 2017, 94, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.N.; Zhou, X.L.; Si, J.; Gong, X.M.; Wang, S. Studies on cellulase-ultrasonic assisted extraction technology for flavonoids from Illicium verum residues. Chem. Cent. J. 2016, 10, 2–9. [Google Scholar] [CrossRef]
- Heleno, S.A.; Diz, P.; Prieto, M.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus Bisporus L. By response surface methodology and comparison with conventional soxhlet extraction. Food Chem. 2016, 197, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 2013, 17, 120–129. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Zhou, Y.; Zheng, J.; Li, S.; Li, A.N.; Li, H.B. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology. Molecules 2016, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-A.; Kuo, C.-H.; Chen, B.-Y.; Li, Y.; Liu, Y.-C.; Chen, J.-H.; Shieh, C.-J. A novel enzyme-assisted ultrasonic approach for highly efficient extraction of resveratrol from polygonum cuspidatum. Ultrason. Sonochem. 2016, 32, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.; Shao, D.; Yuan, Y.; Wang, Z.; Qiang, C. Ultrasound-assisted extraction, hplc analysis, and antioxidant activity of polyphenols from unripe apple. J. Sep. Sci. 2012, 35, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Dranca, F.; Oroian, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 2016, 31, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhu, J.X.; Diao, W.C.; Wang, C.R. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydr. Polym. 2014, 113, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Yuan, J.F.; Zhang, Z.Q. Microwave-assisted extraction optimised with response surface methodology and antioxidant activity of polyphenols from hawthorn (Crataegus Pinnatifida Bge.) fruit. Int. J. Food Sci. Technol. 2010, 45, 2400–2406. [Google Scholar] [CrossRef]
- Majd, M.H.; Rajaei, A.; Bashi, D.S.; Mortazavi, S.A.; Bolourian, S. Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (phlomidoschema parviflorum) leaves using response surface methodology. Ind. Crops Prod. 2014, 57, 195–202. [Google Scholar] [CrossRef]
- Mushtaq, M.; Sultana, B.; Bhatti, H.N.; Asghar, M. Rsm based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus Lanatus Thunb.) rind. J. Food Sci. Technol. 2015, 52, 5048–5056. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Chen, D.; Li, X.; Li, T.; Yuan, M.; Zhou, Y.; Ding, C. Optimization of extraction process and antioxidant activity of polysaccharides from leaves of paris polyphylla. Carbohydr. Polym. 2014, 104, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Gao, T.; Yang, H.; Du, Y.; Li, C.; Wei, L.; Zhou, T.; Lu, J.; Bi, H. Simultaneous microwave/ultrasonic-assisted enzymatic extraction of antioxidant ingredients from nitraria tangutorun bobr. Juice by-products. Ind. Crops Prod. 2015, 66, 229–238. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, M.; He, L.; Fu, P.; Wang, L.; Zhou, J. Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod. Proc. 2013, 91, 158–168. [Google Scholar] [CrossRef]
- Valdés, A.; Vidal, L.; Beltrán, A.; Canals, A.; Garrigós, M.C. Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus Amygdalus): A multivariate analysis approach. J. Agric. Food Chem. 2015, 63, 5395–5402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sariburun, E.; Şahin, S.; Demir, C.; Türkben, C.; Uylaşer, V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J. Food Sci. 2010, 75, C328–C335. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Hou, Z.; Gao, Y.; Xue, Y.; Liu, X.; Liu, G. Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes Erecta L.) residue using response surface methodology. Food Bioprod. Proc. 2012, 90, 9–16. [Google Scholar] [CrossRef]
- Hammi, K.M.; Jdey, A.; Abdelly, C.; Majdoub, H.; Ksouri, R. Optimization of ultrasound-assisted extraction of antioxidant compounds from tunisian zizyphus lotus fruits using response surface methodology. Food Chem. 2015, 184, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Szydłowska-Czerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 2008, 76, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Saibu, G.; Katerere, D.; Rees, D.; Meyer, M. In vitro cytotoxic and pro-apoptotic effects of water extracts of tulbaghia violacea leaves and bulbs. J. Ethnopharmacol. 2015, 164, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Not available.
Run | Independent Variables | Y (TPC mg·GAE/g·DW) | |||
---|---|---|---|---|---|
X1 | X2 | X3 | Experimental | Predicted | |
1 | −1 | −1 | 0 | 50.3 | 50.60 |
2 | −1 | 1 | 0 | 51.1 | 51.05 |
3 | −1 | 0 | −1 | 48.4 | 48.23 |
4 | −1 | 0 | 1 | 47.6 | 47.53 |
5 | 1 | −1 | 0 | 48.7 | 48.75 |
6 | 1 | 1 | 0 | 49.9 | 49.60 |
7 | 1 | 0 | −1 | 47.6 | 47.68 |
8 | 1 | 0 | 1 | 44.6 | 44.78 |
9 | 0 | −1 | −1 | 46.6 | 46.48 |
10 | 0 | −1 | 1 | 45.5 | 45.28 |
11 | 0 | 1 | −1 | 47.5 | 47.73 |
12 | 0 | 1 | 1 | 45.2 | 45.33 |
13 | 0 | 0 | 0 | 52.7 | 52.33 |
14 | 0 | 0 | 0 | 52.4 | 52.33 |
15 | 0 | 0 | 0 | 51.9 | 52.33 |
Source | Coefficient Estimate | Sum of Squares | df | Mean Square | F Value | p Value | Significance |
---|---|---|---|---|---|---|---|
Model | 52.33 | 96.62 | 9 | 10.74 | 74.90 | <0.0001 | *** <0.001 |
X1 | −0.82 | 5.44 | 1 | 5.44 | 37.99 | 0.0016 | ** <0.01 |
X2 | 0.33 | 0.84 | 1 | 0.84 | 5.90 | 0.0595 | >0.05 |
X3 | −0.90 | 6.48 | 1 | 6.48 | 45.21 | 0.0011 | ** <0.01 |
X1X2 | 0.10 | 0.040 | 1 | 0.040 | 0.28 | 0.6199 | >0.05 |
X1X3 | −0.55 | 1.21 | 1 | 1.21 | 8.44 | 0.0336 | * <0.05 |
X2X3 | −0.30 | 0.36 | 1 | 0.36 | 2.51 | 0.1739 | >0.05 |
X12 | −0.74 | 2.03 | 1 | 2.03 | 14.17 | 0.0131 | * <0.05 |
X22 | −1.59 | 9.35 | 1 | 9.35 | 65.26 | 0.0005 | *** <0.001 |
X32 | −4.54 | 76.16 | 1 | 76.16 | 531.35 | <0.0001 | *** <0.001 |
Residual | 0.72 | 5 | 0.14 | ||||
Lack of fit | 0.39 | 3 | 0.13 | 0.80 | 0.5986 | >0.05 | |
Pure error | 0.33 | 2 | 0.16 | ||||
Col Total | 97.33 | 14 |
Extraction Methods | Extraction Conditions | Response | |||
---|---|---|---|---|---|
Cellulase Concentration (%) | Time (min) | Liquid to Solid Ratio (mL/g) | Temperature (°C) | TPC (mg/g) | |
HE | — | 120 | 30 | 80 | 42.4 ± 1.3 |
UAE | — | 30 | 30 | 50 | 48.2 ± 1.4 |
EAE | 2.0 | 720 | 30 | 50 | 44.8 ± 1.5 |
UAEE | 1.74 | 25.5 | 30 | 49 | 53.6 ± 2.2 |
Independent Variables | Coded Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Cellulase concentration (X1) (%) | 1.5 | 2.0 | 2.5 |
Ultrasonic time (X2) (min) | 20 | 25 | 30 |
Ultrasonic temperature (X3) (°C) | 40 | 50 | 60 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Mao, Y.-D.; Wang, Y.-F.; Raza, A.; Qiu, L.-P.; Xu, X.-Q. Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues. Molecules 2017, 22, 396. https://doi.org/10.3390/molecules22030396
Li F, Mao Y-D, Wang Y-F, Raza A, Qiu L-P, Xu X-Q. Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues. Molecules. 2017; 22(3):396. https://doi.org/10.3390/molecules22030396
Chicago/Turabian StyleLi, Feng, Yi-Dan Mao, Yi-Fan Wang, Aun Raza, Li-Peng Qiu, and Xiu-Quan Xu. 2017. "Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues" Molecules 22, no. 3: 396. https://doi.org/10.3390/molecules22030396
APA StyleLi, F., Mao, Y. -D., Wang, Y. -F., Raza, A., Qiu, L. -P., & Xu, X. -Q. (2017). Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues. Molecules, 22(3), 396. https://doi.org/10.3390/molecules22030396