Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MSn Coupled with Chemometrics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Extraction Conditions
2.2. Methodology Validation
2.3. Chemical Fingerprint Establishment and SA
2.4. Identification of Chemical Components in Danshen
2.5. Chemometric Analysis
2.5.1. HCA
2.5.2. PCA
2.5.3. PLS-DA
3. Materials and Methods
3.1. Materials and Reagents
3.2. Instrumentation and Chromatographic Conditions
3.2.1. HPLC Instrumentation and Chromatographic Conditions
3.2.2. HPLC-MSn Instrumentation and Chromatographic Conditions
3.3. Preparation of Sample and Standard Solutions
3.4. Data Analysis
3.4.1. Similarity Analysis (SA)
3.4.2. Chemometric Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Su, C.Y.; Ming, Q.L.; Rahman, K.; Han, T.; Qin, L.P. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin. J. Nat. Med. 2015, 13, 163–182. [Google Scholar] [CrossRef]
- Hong, M.; Li, S.; Tan, H.Y.; Wang, N.; Tsao, S.W.; Feng, Y.B. Current status of herbal medicines in chronic liver disease therapy: The biological effects, molecular targets and future prospects. Int. J. Mol. Sci. 2015, 16, 28705–28745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Guo, J.; Bao, J.; Lu, J.; Wang, Y. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): A systematic review. Med. Res. Rev. 2014, 34, 768–794. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Y.; Xue, L.; Severino, R.P.; Gao, S.; Niu, J.; Qin, L.P.; Zhang, D.; Bromme, D. Salvia miltiorrhiza: An ancient Chinese herbal medicine as a source for anti-osteoporotic drugs. J. Ethnopharmacol. 2014, 155, 1401–1416. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Guan, Y.; Duan, J.L.; Wei, G.; Zhu, Y.R.; Quan, W.; Guo, C.; Zhou, D.; Wang, Y.H.; Xi, M.M.; Wen, A.D. Cardioprotective effect of Danshensu against myocardial ischemia/reperfusion injury and inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation. Eur. J. Pharmacol. 2013, 699, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.D.; Wang, L.; Shen, J.C.; Hao, S.J.; Ming, A.M.; Wang, X.D.; Su, F.; Zhang, Z.C. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res. Bull. 2015, 115, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Park, J.H.; Park, O.K.; Kim, I.H.; Yan, B.C.; Ahn, J.H.; Kwon, S.H.; Choi, J.H.; Kim, J.D.; Won, M.H. Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia. Anat. Cell Biol. 2013, 46, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.W.; Li, C.X.; Gao, H.W.; Wu, Q.; Shi, J.S.; Chen, X.P. Dihydrotanshinone I attenuates atherosclerosis in ApoE-deficient mice: Role of NOX4/NF-kappaB mediated lectin-like oxidized LDL receptor-1 (LOX-1) of the endothelium. Front. Pharmacol. 2016, 7, 418. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, V.G.; Lal, P.; Mantelli, B.; Tiedje, C.; Zucal, C.; Thongon, N.; Gaestel, M.; Latorre, E.; Marinelli, L.; Seneci, P.; et al. Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function. Sci. Rep. 2015, 5, 16478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Chen, L.; Lu, Y.; Wu, J.M.; Xu, B.; Sun, Z.G.; Zheng, S.Z.; Wang, A.Y. Danshensu has anti-tumor activity in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur. J. Pharmacol. 2010, 643, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Won, S.H.; Jiang, C.; Lee, H.J.; Jeong, S.J.; Lee, E.O.; Zhang, J.; Ye, M.; Kim, S.H.; Lu, J. Tanshinones from Chinese medicinal herb Danshen (Salvia miltiorrhiza Bunge) suppress prostate cancer growth and androgen receptor signaling. Pharm. Res. 2012, 29, 1595–1608. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.S.; Zeng, C.L.; Zhu, L.J.; Jiang, L.; Li, N.; Hu, H. Salvianolic acid A inhibits platelet activation and arterial thrombosis via inhibition of phosphoinositide 3-kinase. J. Thromb. Haemost. 2010, 8, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.W.; Ho, W.S. Anti-oxidative and hepatoprotective effects of lithospermic acid against carbon tetrachloride-induced liver oxidative damage in vitro and in vivo. Oncol. Rep. 2015, 34, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Zhao, Y.Z.; Kim, Y.C.; Sohn, D.H. PF2401-SF, standardized fraction of Salvia miltiorrhiza and its constituents, tanshinone I, tanshinone IIA, and cryptotanshinone, protect primary cultured rat hepatocytes from bile acid-induced apoptosis by inhibiting JNK phosphorylation. Food Chem. Toxicol. 2007, 45, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Xu, L.Z.; Wu, X.C.; Xu, L.L.; Yang, J.Y.; Chen, H.M. Preventive effects of salvianolic acid B on transforming growth factor-beta1-induced epithelial-to-mesenchymal transition of human kidney cells. Biol. Pharm. Bull. 2009, 32, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Ye, T.X.; Zhao, G.R.; Yuan, Y.J.; Guo, Z.X. Aqueous extract of Salvia miltiorrhiza attenuates increased endothelial permeability induced by tumor necrosis factor-alpha. Int. Immunopharmacol. 2005, 5, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Shen, X.Y.; Huang, H.Q.; Xu, S.W.; Yu, Y.; Zhou, C.H.; Chen, S.R.; Le, K.; Wang, Y.H.; Liu, P.Q. Cryptotanshinone suppressed inflammatory cytokines secretion in RAW264.7 macrophages through inhibition of the NF-kappaB and MAPK signaling pathways. Inflammation 2011, 34, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.H.; Jin, Y.; Jin, F.; Kim, D.Y.; Chang, J.H.; Kim, J.A.; Son, J.K.; Moon, T.C.; Son, K.H.; et al. 15,16-Dihydrotanshinone I suppresses IgE-Ag stimulated mouse bone marrow-derived mast cell activation by inhibiting Syk kinase. J. Ethnopharmacol. 2015, 169, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Ru, M.; Wang, K.R.; Li, B.; Wang, Y.C.; Xia, P.G.; Liang, Z.S. Spaceflight environment-induced variation in root yield and active constituents of Salvia miltiorrhiza. Planta Med. 2014, 80, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Wang, Z.Z. Diversity evaluation of Salvia miltiorrhiza using ISSR markers. Biochem. Genet. 2013, 51, 707–721. [Google Scholar] [CrossRef] [PubMed]
- WHO. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- SFDA. Technical Requirements for the Development of Fingerprints of TCM Injections; State Food and Drug Administration of China: Beijing, China, 2000. [Google Scholar]
- Ji, Z.C.; Sun, W.Y.; Sun, G.X.; Zhang, J. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics. J. Sep. Sci. 2016, 39, 3019–3027. [Google Scholar] [CrossRef] [PubMed]
- Lucio-Gutierrez, J.R.; Coello, J.; Maspoch, S. Enhanced chromatographic fingerprinting of herb materials by multi-wavelength selection and chemometrics. Anal. Chim. Acta 2012, 710, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Sun, L.N.; Tai, Z.G.; Gao, S.H.; Xu, W.; Chen, W.S. A simple and sensitive HPLC method for the simultaneous determination of eight bioactive components and fingerprint analysis of Schisandra sphenanthera. Anal. Chim. Acta 2010, 662, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.Y.; Xiao, X.; Luo, J.M.; Fu, C.; Wang, Q.W.; Wang, Y.M.; Liang, Q.L.; Luo, G.A. Integrating qualitative and quantitative characterization of traditional Chinese medicine injection by high-performance liquid chromatography with diode array detection and tandem mass spectrometry. J. Sep. Sci. 2014, 37, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Deng, R.; Zhou, L.; Meng, X.; Kuang, T.; Lai, X.; Zhang, J.; Zhang, Y. Development of a rapid resolution liquid chromatographic method combined with chemometrics for quality control of Angelicae dahuricae radix. Phytochem. Anal. 2012, 23, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, S.B.; Xie, M.Y.; Nie, S.P.; Liu, W.; Li, C.; Gong, X.F.; Wang, Y.X. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Anal. Chim. Acta 2008, 623, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.D.; Tang, L.Y.; Wu, H.W.; Zhou, G.H.; Wang, T.; Kou, Z.Z.; Li, S.W.; Wang, Z.J. Chemometric analyses for the characterization of raw and processed seeds of Descurainia sophia (L.) based on HPLC fingerprints. J. Pharm. Biomed. Anal. 2015, 111, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.F.; Wang, K.F.; Mao, X.; Liang, W.Y.; Chen, W.J.; Li, S.; Qi, Q.; Cui, Y.P.; Zhang, L.Z. Screening and analysis of the potential bioactive components of Poria cocos (Schw.) wolf by HPLC and HPLC-MS(n) with the aid of chemometrics. Molecules 2016, 21, 227. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.L.; Bi, C.Q.; Xiao, X.; Ma, X.P.; Ge, F.H. Fingerprint and simultaneous determination of multi-components in water-soluble components of Salvia miltiorrhiza in miao autonomous county of Songtao, Guizhou. Zhong Yao Cai 2015, 38, 536–539. [Google Scholar] [PubMed]
- Liu, A.H.; Lin, Y.H.; Yang, M.; Guo, H.; Guan, S.H.; Sun, J.H.; Guo, D.A. Development of the fingerprints for the quality of the roots of Salvia miltiorrhiza and its related preparations by HPLC-DAD and LC-MS(n). J. Chromatogr. B 2007, 846, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Liu, Y.Y.; Liu, Z.L.; Wang, C.; Song, Z.Q.; Liu, Y.; Dong, Y.Z.; Ning, Z.C.; Lu, A.P. Comparison of the roots of Salvia miltiorrhiza Bunge (Danshen) and its variety S. miltiorrhiza Bge f. Alba (Baihua Danshen) based on multi-wavelength HPLC-fingerprinting and contents of nine active components. Anal. Methods 2016, 8, 3171–3182. [Google Scholar] [CrossRef]
- Luo, H.L.; Kong, W.J.; Hu, Y.C.; Chen, P.; Wu, X.R.; Wan, L.; Yang, M.H. Quality evaluation of Salvia miltiorrhiza Bge. by ultra high performance liquid chromatography with photodiode array detection and chemical fingerprinting coupled with chemometric analysis. J. Sep. Sci. 2015, 38, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Y.G.; Zhang, F.; Chou, G.X.; Cheng, X.M.; Zhang, M.; Wang, Z.T. Extraction and ultra-performance liquid chromatography of hydrophilic and lipophilic bioactive components in a Chinese herb Radix Salviae Miltiorrhizae. J. Chromatogr. A 2007, 1157, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Ruan, M.; Li, Y.; Li, X.; Luo, J.G.; Kong, L.Y. Qualitative and quantitative analysis of the major constituents in Chinese medicinal preparation Guan-Xin-Ning injection by HPLC–DAD–ESI-MSn. J. Pharm. Biomed. Anal. 2012, 59, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Liang, Q.L.; Luo, D.A.; Zhao, Z.Z.; Jiang, Z.H. Multi-component HPLC fingerprinting of Radix Salviae Miltiorrhiza and its LC-MS-MS identification. Chem. Pharm. Bull. 2005, 53, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.H.; Guo, H.; Ye, M.; Lin, Y.H.; Sun, J.H.; Xu, M.; Guo, D.A. Detection, characterization and identification of phenolic acids in Danshen using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J. Chromatogr. A 2007, 1161, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Y.G.; Zhang, F.; Yang, L.; Chou, G.X.; Wang, Z.T.; Hu, Z.B. Chromatographic fingerprinting analysis of Danshen root (Salvia miltiorrhiza Radix et Rhizoma) and its preparations using high performance liquid chromatography with diode array detection and electrospray mass spectrometry (HPLC-DAD-ESI/MS). J. Sep. Sci. 2007, 30, 2256–2267. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.J.; Zhang, M.; Song, Z.H. Characterization of tanshinones with quinone reductase induction activity from Radix Salvia miltiorrhiza by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 2857–2866. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.H.; Yang, M.; Wang, X.M.; Xu, M.; Liu, A.H.; Guo, D.A. Identification of tanshinones and their metabolites in rat bile after oral administration of TTE-50, a standardized extract of Salvia miltiorrhiza by HPLC-ESI-DAD-MSn. J. Pharm. Biomed. Anal. 2007, 44, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Zhang, H.; Zhao, L.; Dong, X.; Li, X.; Chai, Y.F.; Zhang, G.Q. Rapid separation and identification of phenolic and diterpenoid constituents from Radix Salvia miltiorrhizae by high-performance liquid chromatography diode-array detection, electrospray ionization time-of-flight mass spectrometry and electrospray ionization quadrupole ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 1855–1865. [Google Scholar] [PubMed]
- Chen, H.; Zhang, Q.; Wang, X.M.; Yang, J.; Wang, Q. Qualitative analysis and simultaneous quantification of phenolic compounds in the aerial parts of Salvia miltiorrhiza by HPLC-DAD and ESI/MS(n). Phytochem. Anal. 2011, 22, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, D.H.; Xu, F.; Huang, S.; Zhang, L.; Liu, G.X.; Cai, S.Q. The in vivo absorbed constituents and metabolites of Danshen decoction in rats identified by HPLC with electrospray ionization tandem ion trap and time-of-flight mass spectrometry. Biomed. Chromatogr. 2015, 29, 285–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.L.; Duan, X.J.; Deng, S.H.; Nie, L.; Zang, H.C. Fingerprint analysis, multi-component quantitation, and antioxidant activity for the quality evaluation of Salvia miltiorrhiza var. alba by high-performance liquid chromatography and chemometrics. J. Sep. Sci. 2015, 38, 3337–3344. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Hu, J.; Li, Z.Y.; Qin, X.M.; Zhang, L.Z.; Guo, X.Q. Species classification and quality assessment of Chaihu (Radix Bupleuri) based on high-performance liquid chromatographic fingerprint and combined chemometrics methods. Arch. Pharm. Res. 2011, 34, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.T.; Kong, D.D.; Luo, J.Y.; Kong, W.J.; Guo, W.Y.; Yang, M.H. Quantitative and fingerprinting analysis of Atractylodes rhizome based on gas chromatography with flame ionization detection combined with chemometrics. J. Sep. Sci. 2016, 39, 2517–2526. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples are available from the authors.
No. | Origins | Similarities | No. | Origins | Similarites |
---|---|---|---|---|---|
S1 | Shandong | 0.972 | S14 | Shanxi | 0.982 |
S2 | Shandong | 0.997 | S15 | Shanxi | 0.994 |
S3 | Shandong | 0.993 | S16 | Sichuan | 0.997 |
S4 | Shandong | 0.999 | S17 | Sichuan | 0.991 |
S5 | Shaanxi | 0.998 | S18 | Sichuan | 0.999 |
S6 | Shaanxi | 0.999 | S19 | Jiangsu | 0.996 |
S7 | Shaanxi | 0.997 | S20 | Jiangsu | 0.973 |
S8 | Henan | 0.999 | S21 | Gansu | 0.997 |
S9 | Henan | 0.943 | S22 | Hunan | 0.998 |
S10 | Hebei | 0.999 | S23 | Hunan | 0.999 |
S11 | Hebei | 0.999 | S24 | Yunnan | 0.998 |
S12 | Hebei | 0.998 | S25 | Anhui | 0.994 |
S13 | Shanxi | 0.975 |
ID | tR (min) | Mass Ion (m/z) | Data-Dependent MSn Data (m/z) | Identification |
---|---|---|---|---|
1 a | 4.79 | [M − H]⁻ 197.0452 | MS2:178.9395 MS3: 134.9681, 106.9022 | Danshensu |
2 | 6.19 | [M − H]⁻ 153.0191 | MS2: 109.0295 | Protocatechuic acid |
3 | 7.98 | [M − H]⁻ 341.1076 | MS2:178.9334, 160.8835, 112.8926 | 1-O-caffeoyl glucose |
4 a | 8.96 | [M − H]⁻ 137.0242 | MS2: 109.0310 | Protocatechuic aldehyde |
5 | 13.43 | [M − H]⁻ 179.0344 | MS2: 135.0451 | Caffeic acid |
6 | 15.10 | [M − H]⁻ 683.1226 | MS2: 665.2238, 621.3198, 441.1573 | 3,4-Dihydroxy-(1α,3α,4α,5β)-1-carboxy-4-hydroxy-1,3,5-cyclohexanetriyl ester-benzenepropanoic acid |
7 | 15.74 | [M − H]⁻ 313.0707 | MS2: 269.0386, 158.9700, 108.8062 | Salvianolic acid F |
8 | 17.97 | [M − H]⁻ 539.1178 | MS2: 521.1625, 495.3337, 359.1708, 341.1323, 297.1190 | Yunnaneic acid D/isomer |
9 | 19.34 | [M − H]⁻ 521.1287 | MS2: 498.5744, 477.9366, 359.1708, 341.1323, 297.1190 | Salviaflaside |
10 | 22.09 | [M − H]⁻ 339.0501 | MS2: 320.9998, 294.9889, 184.9634 | Salvianolic acid G |
11 | 22.76 | [M − H]⁻ 735.1541 | MS2: 716.9385, 537.1756, 519.1987, 555.0787 | Hydrosalvianolic acid B |
12 | 25.17 | [M − H]⁻ 717.1436 | MS2: 693.3942, 519.1561, 321.0740, 537.1210 | Iso salvianolic acid E |
13 a | 26.43 | [M − H]⁻ 359.0763 | MS2: 341.1426, 160.8524, 197.0617, 178.8373 MS3: 160.9093, 132.8333 | Rosmarinic acid |
14 | 28.12 | [M − H]⁻ 537.1038 | MS2: 493.1133, 313.0726, 295.0606 | Lithospermic acid |
15 | 28.51 | [M − H]⁻ 749.1708 | MS2: 717.2390, 551.2418, 321.1771 | 8-Hydroxy-9''-methyl-salvianolate B |
16 a | 32.67 | [M − H]⁻ 717.1426 | MS2: 519.1459, 321.1666 MS3: 359.1635, 322.9468 | Salvianolic acid B |
17 | 33.94 | [M − H]⁻ 717.1445 | MS2: 519.1002, 321.1299 | Iso salvianolic acid B |
18 | 37.06 | [M − H]⁻ 717.1447 | MS2: 673.0787, 519.1280, 321.0964 | Salvianolic acid L |
19 | 38.03 | [M − H]⁻ 493.1127 | MS2: 475.0607, 313.1490, 295.0408 | Salvianolic acid A |
20 | 39.86 | [M − H]⁻ 731.1599 | MS2: 713.0930, 533.1845, 335.1095 | Methyl salvianolic acid B |
21 | 40.50 | [M − H]⁻ 551.1185 | MS2: 519.1639, 353.0330, 321.0014 | Methyl salvianolic acid I/H |
22 | 45.70 | [M − H]⁻ 717.6401 | MS2: 673.2368, 617.6599, 519.1243, 321.1423 | Salvianolic acid E |
23 | 64.63 | [M − H]⁻ 505.1127 | MS2: 473.1639, 321.1718 | Methyl salvianolate C |
24 | 21.35 | [M + H]+ 315.1228 | MS2: 297.0677, 266.9693, 249.0071 | 17-Hydroxytanshindiol B |
25 | 37.09 | [M + H]+ 313.1072 | MS2: 294.9926, 264.9864, 247.0231 | Tanshinone A |
26 | 46.34 | [M + H]+ 297.1122 | MS2: 279.0668, 250.9774, 223.1107 | Tanshinone VI |
27 | 47.88 | [M + H]+ 297.1127 | MS2: 279.0222, 269.0689, 251.0355 | Danshenxinkun A |
28 | 48.81 | [M + H]+ 299.1283 | MS2: 281.0504, 263.0121 | 15,16-Dihydrotanshinol B |
29 | 56.29 | [M + H]+ 313.1437 | MS2: 295.0622, 277.0113, 267.0143 | Tanshindiol B |
30 | 60.48 | [M + H]+ 313.1440 | MS2: 295.0879, 277.0540, 267.0566, 249.0650 | Tanshindiol C |
31 | 65.82 | [M + H]+ 295.0967 | MS2: 276.9836, 267.0344, 252.9953,249.0193 | 3α-Hydroxymethylenetanshinquinone |
32 | 66.45 | [M + H]+ 297.1124 | MS2: 279.0198, 261.0336 | Tanshinol B |
33 | 70.11 | [M + H]+ 295.0966 | MS2: 277.0328, 267.0656 | Trijuganone A |
34 | 71.64 | [M + H]+ 311.1276 | MS2: 293.0745, 267.0956MS3: 275.0365, 251.0166 | Tanshinone IIB |
35 | 71.86 | [M + H]+ 311.1279 | MS2: 293.0213, 275.0118, 267.0738 | 3α-Hydroxytanshinone IIA |
36 | 74.83 | [M + H]+ 341.1381 | MS2: 281.0114, 263.0162 | Methyldihydronortanshinonate |
37 | 78.02 | [M + H]+ 309.1119 | MS2: 281.0635 | Tanshinaldehyde |
38 | 78.92 | [M + H]+ 311.1280 | MS2: 293.0916, 283.0533, 267.0832 | 17-Hydroxycryptotanshinone |
39 a | 79.33 | [M + H]+ 279.1015 | MS2: 260.9656, 233.0795 | 15,16-Dihydrotanshinone I |
40 | 80.23 | [M + H]+ 297.1483 | MS2: 269.1145, 279.0749, 251.1033 MS3: 251.0895, 241.0596 | 1-Oxomiltirone |
41 | 81.76 | [M + H]+ 281.1177 | MS2: 263.0103, 252.9724, 235.0020 MS3: 234.9965, 220.9875 | Trijuganone B |
42 | 82.68 | [M + H]+ 339.1228 | MS2: 311.0540, 279.0392, 261.1021 MS3: 260.9993 | Methyl tanshinonate |
43 | 85.19 | [M + H]+ 267.1381 | MS2: 249.0448, 224.9753 | 4-Methylenemiltirone |
44 a | 86.29 | [M + H]+ 297.1481 | MS2: 279.1028, 251.0883, 237.0703 MS3: 264.0307, 251.0550, 237.0704, | Cryptotanshinone |
45 a | 87.42 | [M + H]+ 277.0855 | MS2: 249.0238, 231.058.9814 | Tanshinone I |
46 | 90.41 | [M + H]+ 279.1016 | MS2: 260.9862, 233.0613, 221.0357, 258.9814 | 1,2-Dihydrotanshinone I /3,4-dihydrotanshinone I |
47 | 93.18 | [M + H]+ 281.1539 | MS2: 220.9732, 253.0703, 263.1043, 239.0273 | 1,2-Didehydromiltirone |
48 a | 95.04 | [M + H]+ 295.1327 | MS2: 277.0313, 249.1205, 235.0146 | Tanshinone IIA |
49 | 97.18 | [M + H]+ 283.1689 | MS2: 265.0710, 241.0755, 237.0394, 223.0768 MS3: 250.0806,237.0400, 223.0643, 195.0449 | Miltirone |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Chen, W.; Wu, L.; Li, S.; Qi, Q.; Cui, Y.; Liang, L.; Ye, T.; Zhang, L. Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MSn Coupled with Chemometrics. Molecules 2017, 22, 478. https://doi.org/10.3390/molecules22030478
Liang W, Chen W, Wu L, Li S, Qi Q, Cui Y, Liang L, Ye T, Zhang L. Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MSn Coupled with Chemometrics. Molecules. 2017; 22(3):478. https://doi.org/10.3390/molecules22030478
Chicago/Turabian StyleLiang, Wenyi, Wenjing Chen, Lingfang Wu, Shi Li, Qi Qi, Yaping Cui, Linjin Liang, Ting Ye, and Lanzhen Zhang. 2017. "Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MSn Coupled with Chemometrics" Molecules 22, no. 3: 478. https://doi.org/10.3390/molecules22030478
APA StyleLiang, W., Chen, W., Wu, L., Li, S., Qi, Q., Cui, Y., Liang, L., Ye, T., & Zhang, L. (2017). Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MSn Coupled with Chemometrics. Molecules, 22(3), 478. https://doi.org/10.3390/molecules22030478