3-Substituted N-Benzylpyrazine-2-carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Lipophilicity
2.3. Biological Evaluation
2.3.1. In Vitro Antimycobacterial Activity
2.3.2. Antibacterial Activity
2.3.3. Antifungal Activity
2.3.4. Cytotoxicity
2.4. Docking Studies
3. Experimental Section
3.1. General
3.2. Chemistry
3.2.1. 3-Chloropyrazine-2-carboxylic Acid (3-Cl-POA)
3.2.2. General Synthetic Procedure for N-Benzyl-3-chloropyrazine-2-carboxamides 1–13
3.2.3. General Synthetic Procedure for N-Benzyl-3-(benzylamino)pyrazine-2-carboxamides (5a–7a, 9a–11a and 13a)
3.3. Analytical Data of Compounds
3.4. Methods
3.4.1. Determination of Lipophilicity by HPLC (log k)
3.4.2. Evaluation of In Vitro Antimycobacterial Activity
3.4.3. Antimycobacterial In Vitro Activity Screening Against Mycobacterium Smegmatis
3.4.4. Evaluation of In Vitro Antibacterial Activity
3.4.5. Evaluation of In Vitro Antifungal Activity
3.4.6. Cytotoxicity Assays
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- O’Connell, K.M.G.; Hodgkinson, J.T.; Sore, H.F.; Welch, M.; Salmond, G.P.C.; Spring, D.R. Combating Multidrug-Resistant Bacteria: Current Strategies for the Discovery of Novel Antibacterials. Angew. Chem. Int. Ed. 2013, 52, 10706–10733. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Action Plan on Antimicrobial Resistance; WHA68/2015/REC/1; World Health Organisation: Geneva, Switzerland, 2015; Available online: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ (accessed on 16 January 2017).
- World Health Organization. Global Tuberculosis Report 2016; WHA68/2015/REC/1; World Health Organisation: Geneva, Switzerland, 2016; Available online: http://www.who.int/tb/publications/global_report/en/ (accessed on 16 January 2017).
- Servusova-Vanaskova, B.; Jandourek, O.; Paterova, P.; Kordulakova, J.; Plevakova, M.; Kubicek, V.; Kucera, R.; Garaj, V.; Naesens, L.; Kunes, J.; et al. Alkylamino derivatives of N-Benzylpyrazine-2-carboxamide: Synthesis and antimycobacterial evaluation. MedChemComm 2015, 6, 1311–1317. [Google Scholar] [CrossRef]
- Lima, C.H.S.; Henriques, M.G.M.O.; Candea, A.L.P.; Lourenco, M.C.S.; Bezerra, F.A.F.M.; Ferreira, M.L.; Kaiser, C.R.; de Souza, M.V.N. Synthesis and Antimycobacterial Evaluation of N′-(E)-heteroaromaticpyrazine-2-carbohydrazide Derivatives. Med. Chem. 2011, 7, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Zimhony, O.; Vilcheze, C.; Arai, M.; Welch, J.T.; Jacobs, W.R. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother. 2007, 51, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.P.D.; Pavan, F.R.; Leite, C.Q.F.; Felli, V.M.A. Synthesis and evaluation of a pyrazinoic acid prodrug in Mycobacterium tuberculosis. Saudi Pharm. J. 2014, 22, 376–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Mishra, A.K.; Malonia, S.K.; Chauhan, D.S.; Sharma, V.D.; Venkatesan, K.; Katoch, V.M. The paradox of pyrazinamide: An update on the molecular mechanisms of pyrazinamide resistance in Mycobacteria. J. Commun. Dis. 2006, 38, 288–298. [Google Scholar] [PubMed]
- Shi, W.; Zhang, X.; Jiang, X.; Yuan, H.; Lee, J.S.; Barry, C.E, III; Wang, H.; Zhang, W.; Zhang, Y. Pyrazinamide Inhibits Trans-Translation in Mycobacterium tuberculosis. Science 2011, 333, 1630–1632. [Google Scholar] [CrossRef] [PubMed]
- Sayahi, H.; Pugliese, K.M.; Zimhony, O.; Jacobs, W.R., Jr.; Shekhtman, A.; Welch, J.T. Analogs of the Antituberculous Agent Pyrazinamide Are Competitive Inhibitors of NADPH Binding to M. tuberculosis Fatty Acid Synthase I. Chem. Biodivers. 2012, 9, 2582–2596. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Chen, J.; Feng, J.; Cui, P.; Zhang, S.; Weng, X.; Zhang, W.; Zhang, Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014, 3, e58. [Google Scholar] [CrossRef] [PubMed]
- Kalinda, A.S.; Aldrich, C.C. Pyrazinamide: A Frontline Drug Used for Tuberculosis. Molecular Mechanism of Action Resolved after 50 Years? ChemMedChem 2012, 7, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Servusova, B.; Eibinova, D.; Dolezal, M.; Kubicek, V.; Paterova, P.; Pesko, M.; Kral’ova, K. Substituted N-Benzylpyrazine-2-carboxamides: Synthesis and Biological Evaluation. Molecules 2012, 17, 13183–13198. [Google Scholar] [CrossRef] [PubMed]
- Servusova, B.; Vobickova, J.; Paterova, P.; Kubicek, V.; Kunes, J.; Dolezal, M.; Zitko, J. Synthesis and antimycobacterial evaluation of N-substituted 5-chloropyrazine-2-carboxamides. Bioorg. Med. Chem. Lett. 2013, 23, 3589–3591. [Google Scholar] [CrossRef] [PubMed]
- Semelkova, L.; Konecna, K.; Paterova, P.; Kubicek, V.; Kunes, J.; Novakova, L.; Marek, J.; Naesens, L.; Pesko, M.; Kralova, K.; et al. Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides. Molecules 2015, 20, 8687–8711. [Google Scholar] [CrossRef] [PubMed]
- Zitko, J.; Dolezal, M. Enoyl acyl carrier protein reductase inhibitors: An updated patent review (2011–2015). Expert Opin. Ther. Pat. 2016, 26, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J.; Dolezal, M.; Kunes, J.; Satinsky, D.; Raich, I. Novel regioselective preparation of 5-chloropyrazine-2-carbonitrile from pyrazine-2-carboxamide and coupling study of substituted phenylsulfanylpyrazine-2-carboxylic acid derivatives. Curr. Org. Chem. 2005, 9, 49–60. [Google Scholar] [CrossRef]
- Jandourek, O.; Dolezal, M.; Paterova, P.; Kubicek, V.; Pesko, M.; Kunes, J.; Coffey, A.; Guo, J.; Kralova, K. N-Substituted 5-Amino-6-methylpyrazine-2,3-dicarbonitriles: Microwave-Assisted Synthesis and Biological Properties. Molecules 2014, 19, 651–671. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds 1–13 and 1a–13a are available from the authors.
No. | R1 | R2 | MW | ClogP | Log k | MIC (μg·mL−1) (μM) | |
---|---|---|---|---|---|---|---|
M. tuberculosis | M. smegmatis | ||||||
1 | 2-CH3 | - | 261.71 | 2.004 | 0.009 | >100 | 250 |
1a | 2-CH3 | 2-CH3 | 346.43 | 4.862 | 1.459 | 12.5 (36) | > 500 |
2 | 4-CH3 | - | 261.71 | 2.054 | 0.033 | >100 | >500 |
2a | 4-CH3 | 4-CH3 | 346.43 | 4.962 | 1.517 | 25 (72) | >250 |
3 | 4-OCH3 | - | 277.71 | 1.474 | −0.202 | 25 (90) | 125 |
3a | 4-OCH3 | 4-OCH3 | 378.43 | 3.802 | 0.981 | 50 (132) | >500 |
4 | 2,4-diOCH3 | - | 307.73 | 1.563 | −0.095 | >100 | >500 |
5 | 2-Cl | - | 282.12 | 2.268 | 0.033 | >100 | 250 |
5a | 2-Cl | 2-Cl | 387.26 | 5.390 | 1.542 | >100 | >500 |
6 | 3-Cl | - | 282.12 | 2.268 | 0.060 | 100 | 125 |
6a | 3-Cl | 3-Cl | 387.26 | 5.390 | 1.515 | >100 | >500 |
7 | 4-Cl | - | 282.12 | 2.268 | 0.082 | >100 | 500 |
7a | 4-Cl | 4-Cl | 387.26 | 5.390 | 1.533 | >50 | >250 |
8 | 2,4-diCl | - | 316.57 | 2.981 | 0.375 | >100 | 125 |
9 | 3,4-diCl | - | 316.57 | 2.861 | 0.309 | 100 | 250 |
9a | 3,4-diCl | 3,4-diCl | 456.15 | 6.576 | 1.997 | 12.5 (27) | >500 |
10 | 2-F | - | 265.67 | 1.698 | −0.154 | >100 | 125 |
10a | 2-F | 2-F | 354.36 | 4.250 | 1.108 | >100 | >500 |
11 | 4-F | - | 265.67 | 1.698 | −0.139 | >100 | 250 |
11a | 4-F | 4-F | 354.36 | 4.250 | 1.058 | >100 | >500 |
12 | 3-CF3 | - | 315.68 | 2.438 | 0.110 | >100 | 125 |
13 | 4-CF3 | - | 315.68 | 2.438 | 0.145 | >100 | >500 |
13a | 4-CF3 | 4-CF3 | 454.38 | 5.730 | 1.593 | >100 | >500 |
INH | - | - | - | - | - | 0.2 | 7.8–15.6 |
Compound | MIC (μM) after 24 h | ||
---|---|---|---|
S. aureus | MRSA | S. epidermidis | |
2 | 125 | >500 | 500 |
3 | 31.25 | 125 | 250 |
3a | 15.62 | 62.5 | >500 |
4 | 125 | >500 | >500 |
5 | 7.81 | 500 | 15.62 |
8 | 125 | 250 | 125 |
9 | 62.5 | 250 | 31.25 |
13 | 31.25 | 500 | 62.5 |
13a | 62.5 | >500 | >500 |
Penicillin V | 0.12 | 62.5 | 3.9 |
Neomycin | 1.95 | 0.98 | 7.81 |
Compound | IC50 (μM) |
---|---|
5 | 847.2 |
1a | >250 * |
3a | >100 * |
9a | >100 * |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semelková, L.; Janďourek, O.; Konečná, K.; Paterová, P.; Navrátilová, L.; Trejtnar, F.; Kubíček, V.; Kuneš, J.; Doležal, M.; Zitko, J. 3-Substituted N-Benzylpyrazine-2-carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation. Molecules 2017, 22, 495. https://doi.org/10.3390/molecules22030495
Semelková L, Janďourek O, Konečná K, Paterová P, Navrátilová L, Trejtnar F, Kubíček V, Kuneš J, Doležal M, Zitko J. 3-Substituted N-Benzylpyrazine-2-carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation. Molecules. 2017; 22(3):495. https://doi.org/10.3390/molecules22030495
Chicago/Turabian StyleSemelková, Lucia, Ondřej Janďourek, Klára Konečná, Pavla Paterová, Lucie Navrátilová, František Trejtnar, Vladimír Kubíček, Jiří Kuneš, Martin Doležal, and Jan Zitko. 2017. "3-Substituted N-Benzylpyrazine-2-carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation" Molecules 22, no. 3: 495. https://doi.org/10.3390/molecules22030495
APA StyleSemelková, L., Janďourek, O., Konečná, K., Paterová, P., Navrátilová, L., Trejtnar, F., Kubíček, V., Kuneš, J., Doležal, M., & Zitko, J. (2017). 3-Substituted N-Benzylpyrazine-2-carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation. Molecules, 22(3), 495. https://doi.org/10.3390/molecules22030495