Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu2O) Particles for the Removal of Methyl Orange (MO) from Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Crystal Structure of the Synthesized Cu2O and Surface Area
2.2. FTIR and Zeta Potential Analyses
2.3. The Adsorption Performance of Cu2O Particles
2.4. The Photocatalytic Performance of Cu2O Particles
2.5. Band Gap, Band Edge Positions and Proposed Photodegradation Mechanism
2.6. Stability of the Synthesized Cu2O Particles
3. Materials and Methods
3.1. Synthesis of Cu2O Particles
3.1.1. Spherical Cu2O Particles
3.1.2. Cubic Cu2O Particles
3.1.3. Octahedral Cu2O Particles
3.1.4. Rhombic Dodecahedral Cu2O Particles
3.1.5. Truncated Polyhedral Cu2O Particles
3.2. Materials Characterization
3.3. Photocatalytic and Adsorption Experiments
3.4. Photocatalytic Stability Study
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Tay, Q.; Liu, X.; Tang, Y.; Jiang, Z.; Sum, T.C.; Chen, Z. Enhanced Photocatalytic Hydrogen Production with Synergistic Two-Phase Anatase/Brookite TiO2 Nanostructures. J. Phys. Chem. C 2013, 117, 14973–14982. [Google Scholar] [CrossRef]
- Jiang, Z.; Tang, Y.; Tay, Q.; Zhang, Y.; Malyi, O.I.; Wang, D.; Deng, J.; Lai, Y.; Zhou, H.; Chen, X.; et al. Understanding the Role of Nanostructures for Efficient Hydrogen Generation on Immobilized Photocatalysts. Adv. Energy Mater. 2013, 3, 1368–1380. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, Z.; Tay, Q.; Deng, J.; Lai, Y.; Gong, D.; Dong, Z.; Chen, Z. Visible-light plasmonic photocatalyst anchored on titanate nanotubes: A novel nanohybrid with synergistic effects of adsorption and degradation. RSC Adv. 2012, 2, 9406–9414. [Google Scholar] [CrossRef]
- Tang, Y.; Wee, P.; Lai, Y.; Wang, X.; Gong, D.; Kanhere, P.D.; Lim, T.; Dong, Z.; Chen, Z. Hierarchical TiO2 Nanoflakes and Nanoparticles Hybrid Structure for Improved Photocatalytic Activity. J. Phys. Chem. C 2012, 116, 2772–2780. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Huang, Y.; Kanhere, P.D.; Subramaniam, V.P.; Gong, D.; Zhang, S.; Highfield, J.; Schreyer, M.; Chen, Z. Dual-Phase Titanate/Anatase with Nitrogen Doping for Enhanced Degradation of Organic Dye under Visible Light. Chem. A Eur. J. 2011, 17, 2575–2578. [Google Scholar] [CrossRef] [PubMed]
- Pichat, P. (Ed.) Photocatalysis and Water Purification; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Schneider, J.; Bahnemann, D.; Ye, J.; Puma, G.L.; Dionysiou, D.D. (Eds.) Photocatalysis: Fundamentals and Perspectives; RSC: London, UK, 2016. [Google Scholar]
- Dionysiou, D.D.; Puma, G.L.; Ye, J.; Schneider, J.; Bahnemann, D. (Eds.) Photocatalysis: Applications; RSC: London, UK, 2016. [Google Scholar]
- Colmenares, J.C.; Xu, Y.-J. (Eds.) Heterogeneous Photocatalysis; Springer: Berlin, Germany, 2016. [Google Scholar]
- Pichat, P. (Ed.) Photocatalysis: Fundamentals, Materials and Potential; MDPI: Basel, Switzerland, 2016. [Google Scholar]
- Nosaka, Y.; Nosaka, A. Introduction to Photocatalysis from Basic Science to Applications; RSC: London, UK, 2016. [Google Scholar]
- Zhang, Y.Y.; Jiang, Z.L.; Huang, J.Y.; Lim, L.Y.; Li, W.L.; Deng, J.Y.; Gong, D.G.; Tang, Y.X.; Lai, Y.K.; Chen, Z. Titanate and Titania Nanostructured Materials for Environmental and Energy Applications: A Review. RSC Adv. 2015, 5, 79479–79510. [Google Scholar] [CrossRef]
- Tang, Y.X.; Gong, D.G.; Lai, Y.K.; Shen, Y.Q.; Zhang, Y.Y.; Huang, Y.Z.; Tao, J.; Lin, C.J.; Dong, Z.L.; Chen, Z. Hierarchical Layered Titanate Microspherulite: Formation by Electrochemical Spark Discharge Spallation and Application in Aqueous Pollutant Treatment. J. Mater. Chem. 2010, 20, 10169–10178. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Huang, M.H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today 2010, 5, 106–116. [Google Scholar] [CrossRef]
- Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M.H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Peng, P.; Wang, X.; Li, K. Cuprous oxide microcrystals via hydrothermal approach: Morphology evolution and photocatalytic properties. Cryst. Res. Technol. 2015, 5, 299–303. [Google Scholar] [CrossRef]
- Huang, M.H.; Rej, S.; Hsu, S.-C. Facet-dependent properties of polyhedral nanocrystals. Chem. Commun. 2014, 50, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Wolfe, J.; Fichou, D.; Chen, Z. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst. Sci. Rep. 2016, 6, 30882. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, L.; Wang, J.; Yang, Z.; Long, M.; Hu, N.; Zhang, Y. Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation. Nanoscale Res. Lett. 2012, 7, 347. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.; Pai, M.R.; Rao, R.; Pillai, K.T.; Lieberwirth, I.; Tyagi, A.K. Copper(I) Oxide Nanocrystals–One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties. Eur. J. Inorg. Chem. 2013, 2640–2651. [Google Scholar] [CrossRef]
- Vadivelan, V.; Kumar, K.V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 2005, 286, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Banat, F.; Al-Asheh, S.; Al-Makhadmeh, L. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem. 2003, 39, 193–202. [Google Scholar] [CrossRef]
- Hua, Q.; Cao, T.; Bao, H.; Jiang, Z.; Huang, W. Crystal-Plane-Controlled Surface Chemistry and Catalytic Performance of Surfactant-Free Cu2O Nanocrystals. ChemSusChem 2013, 6, 1966–1972. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Peng, F.; Yu, H.; Wang, H. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci. 2009, 11, 129–138. [Google Scholar] [CrossRef]
- Niu, P. Photocatalytic Degradation of Methyl Orange in Aqueous TiO2 Suspensions. Asian J. Chem. 2013, 25, 1103–1106. [Google Scholar]
- Liang, Y.; Lin, S.; Liu, L.; Hu, J.; Cui, W. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: Enhanced photocatalytic degradation under visible light irradiation. Appl. Catal. B Environ. 2015, 164, 192–203. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, J.; Zang, L.; Shen, T.; Hidaka, H.; Pelizzetti, E.; Serpone, N. Photoassisted degradation of dye pollutants in aqueous TiO2 dispersions under irradiation by visible light. J. Mol. Catal. A Chem. 1997, 120, 173–178. [Google Scholar] [CrossRef]
- Chang, X.; Gondal, M.A.; Al-Saadi, A.A.; Ali, M.A.; Shen, H.; Zhou, Q.; Zhang, J.; Du, M.; Liu, Y.; Ji, G. Photodegradation of Rhodamine B over unexcited semiconductor compounds of BiOCl and BiOBr. J. Colloid Interface Sci. 2012, 377, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Bi, F.; Ehsan, M.F.; Liu, W.; He, T. Visible-Light Photocatalytic Conversion of Carbon Dioxide into Methane Using Cu2O/TiO2 Hollow Nanospheres. Chin. J. Chem. 2015, 33, 112–118. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Huang, M.; Li, F.; Wen, Z.Q. Controlled Synthesis of Hierarchical CuO Nanostructures for Electrochemical Capacitor Electrodes. Int. J. Electrochem. Sci. 2013, 8, 8645–8661. [Google Scholar]
- Hernandez, J.; Wrschka, P.; Oehrlein, G.S. Surface Chemistry Studies of Copper Chemical Mechanical Planarization. J. Electrochem. Soc. 2011, 148, G389–G397. [Google Scholar] [CrossRef]
- Parveen, M.F.; Umapathy, S.; Dhanalakshmi, V.; Anbarasan, R. Synthesis and characterization of nano sized Cu(OH)2 and its surface catalytic effect on poly(vinyl alcohol). Indian J. Sci. 2013, 3, 111–117. [Google Scholar]
Sample Availability: Samples of the Cu2O particles are not available from the authors, but can be synthesized following the described procedures. |
Spherical | Cubic | Octahedral | Rhombic Dodecahedral | Truncated | |
---|---|---|---|---|---|
Size (µm) | 0.80 ± 0.15 | 0.75 ± 0.37 | 0.65 ± 0.08 | 0.80 ± 0.157 | 5.0 ± 0.37 |
Surface area (m2/g) | 3.95 | 1.13 | 1.13 | 0.34 | Not available |
Zeta Potential (mV) | Spherical (+) | Cubic (+) | Octahedral (+) | Rhombic Dodecahedral (−) | Truncated (−) |
---|---|---|---|---|---|
Test 1 | 5.93 | 6.70 | 19.7 | −15.3 | −4.59 |
Test 2 | 5.76 | 7.63 | 20.9 | −15.1 | −2.99 |
Test 3 | 5.83 | 6.25 | 23.1 | −15.3 | −3.41 |
Test 4 | 4.92 | 4.51 | 31.8 | −17.6 | −2.68 |
Test 5 | 3.33 | 5.96 | 30.6 | −18.9 | −1.45 |
Test 6 | 5.79 | 5.63 | 31.5 | −18.1 | −1.75 |
Test 7 | 5.79 | 5.88 | 33.0 | −18.3 | −5.41 |
Test 8 | 5.53 | 5.27 | 31.9 | −7.84 | −3.93 |
Test 9 | 4.51 | 6.31 | 31.3 | −7.84 | −1.66 |
Test 10 | 3.33 | 5.16 | 32.9 | −7.78 | −3.24 |
Range | 3.33 to 5.93 | 4.51 to 7.63 | 19.7 to 33.0 | −7.68 to −18.9 | −1.45 to −4.59 |
Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|
Adsorbent | qm (exp) (mg/g) | KL (L/mg) | qm1 (mg/g) | R2 | KF (mg1−nL−ng−1) | n | R2 |
Octahedral | 96.42 | 0.40 | 66 | 0.86 | 17.3 | 1.79 | 0.76 |
Particle | Valence Band Position vs. NHE (eV) | Type | Optical Bandgap (eV) |
---|---|---|---|
Spherical | +0.547 | p-type | 1.88 |
Cubic | +0.597 | p-type | 2.00 |
Octahedral | +0.727 | p-type | 1.93 |
Rhombic Dodecahedral | +0.547 | p-type | 1.96 |
Truncated Polyhedral | +0.537 | p-type | 1.90 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, W.C.J.; Tay, Q.; Qi, H.; Huang, Z.; Li, J.; Chen, Z. Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu2O) Particles for the Removal of Methyl Orange (MO) from Aqueous Media. Molecules 2017, 22, 677. https://doi.org/10.3390/molecules22040677
Ho WCJ, Tay Q, Qi H, Huang Z, Li J, Chen Z. Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu2O) Particles for the Removal of Methyl Orange (MO) from Aqueous Media. Molecules. 2017; 22(4):677. https://doi.org/10.3390/molecules22040677
Chicago/Turabian StyleHo, Weng Chye Jeffrey, Qiuling Tay, Huan Qi, Zhaohong Huang, Jiao Li, and Zhong Chen. 2017. "Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu2O) Particles for the Removal of Methyl Orange (MO) from Aqueous Media" Molecules 22, no. 4: 677. https://doi.org/10.3390/molecules22040677
APA StyleHo, W. C. J., Tay, Q., Qi, H., Huang, Z., Li, J., & Chen, Z. (2017). Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu2O) Particles for the Removal of Methyl Orange (MO) from Aqueous Media. Molecules, 22(4), 677. https://doi.org/10.3390/molecules22040677