Volatile Composition in Two Pummelo Cultivars (Citrus grandis L. Osbeck) from Different Cultivation Regions in China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Index
2.2. Volatile Composition
2.2.1. Aldehydes
2.2.2. Alcohols
2.2.3. Ketones
2.2.4. Esters
2.2.5. Terpenes
2.2.6. Other Volatiles
2.3. Feature Aroma
2.4. Multivariate Analysis
2.4.1. Cluster Analysis
2.4.2. Principal Component Analysis
2.5. Regional Characteristics
3. Experimental Section
3.1. Chemicals and Standards
3.2. Pummelo Fruits
3.3. Head Space Solid Phase Microextraction
3.4. GC-MS Analysis
3.5. Statistical Analyses
4. Conclusions
Supplementary Materials
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Dharmawan, J.; Kasapis, S.; Curran, P.; Johnson, J.R. Characterization of volatile compounds in selected citrus fruits from asia. Part I: Freshly-squeezed juice. Flavour Fragr. J. 2007, 22, 228–232. [Google Scholar] [CrossRef]
- Cheong, M.W.; Zhu, D.; Sng, J.; Liu, S.Q.; Zhou, W.; Curran, P.; Yu, B. Characterisation of calamansi (Citrus microcarpa). Part II: Volatiles, physicochemical properties and non-volatiles in the juice. Food Chem. 2012, 134, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Buttara, M.; Intarapichet, K.O.; Cadwallader, K.R. Characterization of potent odorants in Thai chempedak fruit (Artocarpus integer, Merr.), an exotic fruit of Southeast Asia. Food Res. Int. 2014, 66, 388–395. [Google Scholar] [CrossRef]
- Ren, J.N.; Tai, Y.N.; Dong, M.; Shao, J.H.; Yang, S.Z.; Pan, S.Y. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chem. 2015, 185, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Black, C.A.; Parker, M.; Siebert, T.E.; Capone, D.L.; Francis, I.L. Terpenoids and their role in wine flavour: Recent advances. Aust. J. Grape Wine Res. 2015, 21, 582–600. [Google Scholar] [CrossRef]
- Ni, H.; Hong, P.; Ji, H.F.; Sun, H.; Chen, Y.H.; Xiao, A.F.; Chen, F. Comparative analyses of aromas of fresh, naringinase-treated and resin-absorbed juices of pummelo by GC-MS and sensory evaluation. Flavour Fragr. J. 2015, 30, 245–253. [Google Scholar] [CrossRef]
- Brat, P.; Rega, B.; Alter, P.; Reynes, M.; Brillouet, J. Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice. J. Agric. Food Chem. 2003, 51, 3442–3447. [Google Scholar] [CrossRef] [PubMed]
- Averbeck, M.; Schieberle, P.H. Characterisation of the key aroma compounds in a freshly reconstituted orange juice from concentrate. Eur. Food Res. Technol. 2009, 229, 611–622. [Google Scholar] [CrossRef]
- Mastello, R.B.; Janzantti, N.S.; Monteiro, M. Volatile and odoriferous compounds changes during frozen concentrated orange juice processing. Food Res. Int. 2015, 77, 591–598. [Google Scholar] [CrossRef]
- Yang, Y.N.; Su, Z. Resources and actualities of breeds of famous Citrus grandis in china. J. Sichuan Teach. Coll. 2002, 23, 163. [Google Scholar]
- Cheong, M.W.; Liu, S.Q.; Zhou, W.; Curran, P.; Yu, B. Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food Chem. 2012, 135, 2505–2513. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Pan, Q.; Qu, W.; Duan, C. Comparison of volatile profiles of nine litchi (Litchi chinensis sonn.) cultivars from southern china. J. Agric. Food Chem. 2009, 57, 9676–9681. [Google Scholar] [CrossRef] [PubMed]
- Allegrone, G.; Belliardo, F.; Cabella, P. Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties. J. Agric. Food Chem. 2006, 54, 1844–1848. [Google Scholar] [CrossRef] [PubMed]
- Mehl, F.; Marti, G.; Boccard, J.; Debrus, B.; Merle, P.; Delort, E.; Baroux, L.; Raymo, V.; Velazco, M.I.; Sommer, H.; et al. Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: A metabolomic approach. Food Chem. 2014, 143, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Toker, C.; Aksoy, U.; Ertaş, H. The effect of fruit ripening, altitude and harvest year on volatile compounds of virgin olive oil obtained from the Ayvalık variety. Flavour Fragr. J. 2016, 31, 195–205. [Google Scholar] [CrossRef]
- Zhang, M.; Nan, H.; Wang, Y.; Jiang, X.; Li, Z. Comparison of flavonoid compounds in the flavedo and juice of two pummelo cultivars (Citrus grandis L. Osbeck) from different cultivation regions in china. Molecules 2014, 19, 17314–17328. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Selli, S. Determination of volatile, phenolic, organic acid and sugar components in a turkish cv. dortyol (Citrus sinensis L. Osbeck) orange juice. J. Sci. Food Agric. 2011, 91, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Albertini, M.V.; Carcouet, E.; Pailly, O.; Gambotti, C.; Luro, F.; Berti, L. Changes in organic acids and sugars during early stages ofdevelopment of acidic and acidless citrus fruit. J. Agric. Food Chem. 2006, 54, 8335–8339. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.K.; Yu, K.J.; Lan, Y.B.; Sun, R.Z.; Li, Q.; He, F.; Pan, Q.H.; Duan, C.Q.; Wang, J. Comparison of transcriptional expression patterns of carotenoid metabolism in ‘Cabernet Sauvignon’ grapes from two regions with distinct climate. J. Plant Physiol. 2017, 213, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.T.; Rios, J.J.; Aparicio, R. Changes in the volatile composition of virgin olive oil during oxidation: Flavors and off-flavors. J. Agric. Food Chem. 1997, 45, 2666–2673. [Google Scholar] [CrossRef]
- Matsui, K.; Sugimoto, K.; Mano, J.; Ozawa, R.; Takabayashi, J. Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS ONE 2012, 7, e36433. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N.; Jones, A.D.; Beaudry, R. Changes in free amino acid content in ‘jonagold’ apple fruit as related to branched-chain ester production, ripening, and senescence. J. Am. Soc. Hortic. Sci. 2011, 136, 429–440. [Google Scholar]
- Pino, J.A.; Mesa, J. Contribution of volatile compounds to mango (Mangifera indica, L.) aroma. Flavour Fragr. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Compilation of Flavour Threshold Values in Air and Water; Oliemans Punter & Partners BV: AA Zeist, The Netherlands, 2011; pp. 50–150. [Google Scholar]
- Rambla, J.L.; Gonzalezmas, M.C.; Pons, C.; Bernet, G.P.; Asins, M.J.; Granell, A. Fruit volatile profiles of two citrus hybrids are dramatically different from those of their parents. J. Agric. Food Chem. 2014, 62, 11312–11322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Pan, Q.; Yan, G.; Duan, C. Using headspace solid phase micro-extraction for analysis of aromatic compounds during alcoholic fermentation of red wine. Food Chem. 2011, 125, 743–749. [Google Scholar] [CrossRef]
Sample Availability: Samples of the Citrus grandis L. Osbeck investigated in this work are available from the authors. |
Pummelo Cultivar | Fruit Weight (kg) | Total Soluble Solids (%) | Total Sugar (g Glucose/L) | Total Acidity (g Citric Acid/L) |
---|---|---|---|---|
Shatian-GD15 | 1.1 ± 0.0 a | 16.1 ± 0.4 a | 111.7 ± 8.1 a | 2.6 ± 0.1 d |
Shatian-SC15 | 1.2 ± 0.1 a | 10.2 ± 0.3 bc | 91.3 ± 5.2 b | 4.5 ± 0.2 c |
Shatian-GX15 | 1.5 ± 0.0 a | 13.1 ± 0.5 b | 111.2 ± 6.3 a | 3.7 ± 0.0 c |
Shatian-GX5 | 1.3 ± 0.1 a | 12.2 ± 0.6 b | 103.2 ± 4.5 ab | 2.4 ± 0.1 d |
Guanxi-GD15 | 2.4 ± 0.0 b | 12.0 ± 0.3 b | 109.0 ± 2.3 ab | 6.6 ± 0.1 b |
Guanxi-SC15 | 2.3 ± 0.1 b | 12.4 ± 0.4 b | 112.5 ± 3.9 a | 10.6 ± 0.6 a |
Guanxi-FJ15 | 2.5 ± 0.1 b | 12.1 ± 0.6 b | 104.6 ± 4.1 ab | 11.6 ± 1.0 a |
Guanxi-FJ5 | 2.4 ± 0.1 b | 12.8 ± 0.3 b | 98.6 ± 7.3 b | 9.1 ± 0.2 a |
Volatile Compound (µg/L) | No. | Shatian-GD15 | Shatian-SC15 | Shatian-GX15 | Shatian-GX5 | Guanxi-GD15 | Guanxi-SC15 | Guanxi-FJ15 | Guanxi-FJ5 |
---|---|---|---|---|---|---|---|---|---|
Aldehydes | |||||||||
Hexanal | 1 | 5369.6 ± 62.4 d | 7401.4 ± 545.9 cd | 679.7 ± 18.4 e | 801.1 ± 34.4 e | 13388.3 ± 3094.1 a | 8541.5 ± 440.5 c | 7512.5 ± 267.0 c | 9700.6 ± 229.7 bc |
E-2-Pentenal | 2 | nd | 244.9 ± 21.9 d | nd | nd | 1527.2 ± 24.5 a | 817.9 ± 137.5 c | 837.3 ± 78.2 c | 1215.9 ± 71.5 b |
Heptanal | 3 | nd | nd | nd | nd | nd | nd | 27.8 ± 0.0 b | 256.3 ± 3.5 a |
E-2-Hexenal | 4 | nd | nd | nd | nd | 58.7 ± 0.0 b | 25.3 ± 0.2 c | 136.9 ± 1.1 a | nd |
Z-2-Heptenal | 5 | 16.1 ± 0.0 d | 284.2 ± 21.6 c | nd | nd | 1411.5 ± 0.5 a | 778.7 ± 101.1 b | 782.7 ± 7.0 b | 862.3 ± 0.9 b |
Nonanal | 6 | nd | 129.7 ± 10.1 a | 139.7 ± 5.3 a | nd | 136.7 ± 4.2 a | 131.3 ± 0.5 a | 136.0 ± 3.0 a | 128.7 ± 1.1 a |
E,E-2,4-Hexadienal | 7 | nd | 61.8 ± 5.5 d | nd | nd | 594.2 ± 84.3 a | 235.8 ± 28.2 c | 264.8 ± 10.7 bc | 355.9 ± 13.8 b |
E-2-Octenal | 8 | nd | 124.2 ± 69.1 c | nd | 15.9 ± 1.6 d | 332.7 ± 67.2 ab | 372.3 ± 50.6 a | 312.8 ± 2.2 ab | 268.9 ± 26.3 b |
E,E-2,4-Heptadienal | 9 | nd | 2.9 ± 0.1 d | nd | nd | 55.9 ± 1.2 b | 90.1 ± 20.5 a | 58.1 ± 4.2 b | 42.0 ± 6.4 bc |
Benzaldehyde | 10 | nd | nd | nd | nd | 76.1 ± 0.0 a | 74.6 ± 0.9 a | 75.9 ± 0.7 a | 75.5 ± 0.0 a |
E-2-Nonenal | 11 | nd | nd | nd | nd | 17.1 ± 4.9 a | 26.2 ± 12.9 a | 25.5 ± 0.3 a | 18.7 ± 0.7 a |
Alcohols | |||||||||
Pentanol | 12 | 1115.6 ± 84.3 d | 1240 ± 12.1 d | nd | 404.0 ± 48.9 e | 3384.4 ± 333.7 a | 2547.9 ± 119.2 b | 2058.3 ± 153.1 c | 3097.7 ± 71.4 a |
Z-2-Penten-1-ol | 13 | 399.7 ± 2.0 d | 1016.9 ± 175.3 c | nd | nd | 1915.6 ± 80.5 a | 998.0 ± 98.3 c | 1202.1 ± 124.6 c | 1560.6± 9.3 b |
Hexanol | 14 | 912.0 ± 2.0 c | 979.1 ± 46.5 c | 242.2 ± 0.0 e | 527.5 ± 95.1 d | 1523.8 ± 174.4 a | 1316.6 ± 73.0 b | 939.0 ± 11.7 c | 991.2 ± 6.3 c |
Z-3-Hexen-1-ol | 15 | 279.7 ± 91.4 e | 516.9 ± 56.6 d | nd | 345.1 ± 78.9 de | 1959.9 ± 176.8 a | 809.4 ± 97.1 c | 1087.4 ± 20.4 b | 1154.9 ± 32.9 b |
1-Octen-3-ol | 16 | nd | 39.7 ± 0.4 | nd | nd | nd | nd | nd | nd |
1-Hexanol, 2-ethyl- | 17 | nd | nd | 31.3 ± 0.2 a | nd | 34.1 ± 0.2 a | nd | 29.7 ± 0.9 a | nd |
Octanol | 18 | nd | nd | nd | nd | nd | nd | 13.6 ± 0.2 | nd |
Ketones | |||||||||
Methyl isobutyl ketone | 19 | 1502.3 ± 71.9 ab | 1615.6 ± 752.3 ab | 523.3 ± 12.4 c | 1216.9 ± 292.7 b | 1053.9 ± 39.9 b | 1057.3 ± 7.4 b | 1075.6 ± 17.8 b | 1057.4 ± 38.5 b |
1-Penten-3-one | 20 | nd | 661.0 ± 0.3 d | nd | nd | 4252.3 ± 290.3 a | 1850.9 ± 10.1 c | 2507.3 ± 99.4 b | nd |
5-Hepten-2-one, 6-methyl- | 21 | nd | 57.8 ± 1.1 a | nd | nd | 23.7 ± 2.8 b | 64.9 ± 6.4 a | 36.5 ± 0.2 b | 15.4 ± 0.9 c |
Esters | |||||||||
Ethyl acetate | 22 | 19,117.8 ± 758.0 b | 500.4 ± 226.4 e | 203,729.4 ± 73.6 a | 2326.2 ± 309.8 c | 102.4 ± 1.4 g | 969.2 ± 37.7 d | 288.5 ± 11.1 f | 429.7 ± 73.7 e |
Butyl acetate | 23 | nd | 413.4 ± 13.6 | nd | nd | nd | nd | nd | nd |
Ethyl octanoate | 24 | 297.2 ± 2.3 a | 259.1 ± 2.1 a | ||||||
Ethyl decanoate | 25 | nd | 592.4 ± 6.9 b | nd | 544.1 ± 2.3 b | nd | nd | 714.3 ± 0.7 a | 514.5 ± 16.2 c |
Butyl butanoate | 26 | nd | nd | nd | 620.4 ± 32.1 b | 939.7 ± 90.3 a | 488.6 ± 4.4 b | 871.5 ± 31.8 a | 582.4 ± 146.9 b |
Isobutyl 2,2,4-trimethyl-3-carboxyisopropyl pentanoate | 27 | nd | nd | nd | 478.1 ± 4.4 b | 642.0 ± 6.5 a | nd | 610.7 ± 6.1 a | nd |
2-Methyl-, 2,2-dimethyl-1-(2-hydroxy-1-methylethyl), propyl propanoate | 28 | nd | nd | nd | 485.1 ± 19.2 | nd | nd | nd | nd |
Terpenes | |||||||||
β-Myrcene | 29 | nd | 330.9 ± 11.4 d | nd | nd | 2760.3 ± 898.9 a | 451.7 ± 76.9 cd | 1394.1 ± 282.4 bc | 1631.9 ± 754.7 bc |
Limonene | 30 | 3480.6 ± 498.9 a | 2935.1 ± 29.6 b | 572.4 ± 78.3 d | 598.6 ± 6.6 d | 1545.5 ± 190.5 c | 1008.5 ± 150.3 c | 351.8 ± 85.2 d | 510.0 ± 54.8 d |
Terpinolene | 31 | nd | nd | nd | nd | nd | 164.9 ± 10.3 | nd | nd |
β-Elemene | 32 | nd | 249.6 ± 2.7 | nd | nd | nd | nd | nd | nd |
(−)-Germacrene D | 33 | nd | 434 ± 81.2 | nd | nd | nd | nd | nd | nd |
α-Muurolene | 34 | nd | 7.5 ± 0.3 | nd | nd | nd | nd | nd | nd |
Copaene | 35 | nd | 10.9 ± 0.6 | nd | nd | nd | nd | nd | nd |
δ-Cadinene | 36 | nd | 12.1 ± 0.0 | nd | nd | nd | nd | nd | nd |
β-Neoclovene | 37 | 4.8 ± 0.3 | nd | nd | nd | nd | nd | nd | nd |
cis-Linalool oxide | 38 | 66.3 ± 2.3 f | 117.0 ± 1.2 e | nd | nd | 1147.0 ± 146.1 c | 3350.2 ± 596.7 a | 2953.1 ± 17.1 b | 1452.9 ± 264.5 c |
trans-Linalool oxide | 39 | nd | nd | nd | nd | nd | 986.1 ± 19.7 a | 1129.6 ± 79.5 a | 421.8 ± 98.3 b |
Linalool | 40 | 99.4 ± 1.3 b | 117.9 ± 24.0 a | 58.9 ± 1.7 c | 16.8 ± 0.9 d | 10.7 ± 0.9 d | 7.1 ± 2.2 d | 7.6 ± 1.7 d | 18.5 ± 0.1 d |
Terpinen-4-ol | 41 | nd | 169.3 ± 1.7 b | nd | nd | nd | nd | 341.2 ± 3.5 a | nd |
α-Terpineol | 42 | 15.0 ± 1.4 b | 60.5 ± 1.8 a | 6.0 ± 0.6 c | 12.6 ± 2.7 b | nd | 5.2 ± 0.0 c | 18.5 ± 0.0 b | nd |
Geraniol | 43 | nd | 8.4 ± 0.7 | nd | nd | nd | nd | nd | nd |
(E)-Carveol | 44 | 244.6 ± 32.6 a | 28.5 ± 4.2 c | 107.3 ± 2.9 b | nd | nd | nd | nd | nd |
Neral | 45 | nd | 356.9 ± 30.7 | nd | nd | nd | nd | nd | nd |
Citral | 46 | 146.6 ± 39.9 b | 586.4 ± 47.3 a | nd | nd | nd | 30.4 ± 0.0 c | nd | nd |
Geranylacetone | 47 | 83.3 ± 0.0 b | nd | nd | nd | 158.4 ± 16.4 b | 318.7 ± 30.5 a | 44.5 ± 0.0 c | |
Other volatiles | |||||||||
Toluene | 48 | nd | 499.3 ± 4.1 a | 158.3 ± 3.6 d | nd | 226.2 ± 2.2 c | 249.6 ± 12.2 b | nd | nd |
Benzene, 1-methyl-2-(1-methylethyl)- | 49 | 111.65 ± 0.0 b | nd | nd | nd | 138.2 ± 45.4 b | nd | nd | nd |
Volatile Compound | No. | Aroma Descriptor | Odor Threshold (µg/L) | Odor Activity Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Shatian-GD15 | Shatian-SC15 | Shatian-GX15 | Shatian-GX5 | Guanxi-GD15 | Guanxi-SC15 | Guanxi-FJ15 | Guanxi-FJ5 | ||||
Aldehydes | |||||||||||
Hexanal | 1 | grass, tallow, fat | 4.5 [23] | 1193.2 ± 13.8 | 1644.8 ± 121.3 | 151.0 ± 4.1 | 202.6 ± 7.6 | 2975.2 ± 687.6 | 1898.1 ± 97.9 | 1669.5 ± 59.3 | 2155.7 ± 51.0 |
Heptanal | 3 | fat, citrus, rancid | 3 [25] | nd | nd | nd | nd | nd | nd | 9.3 ± 0.0 | 85.4 ± 1.2 |
2-Hexenal | 4 | apple, green | 17 [25] | nd | nd | nd | nd | 3.5 ± 0.0 | 1.5 ± 0.0 | 8.1 ± 0.1 | nd |
Nonanal | 6 | fat, citrus, green | 1 [25] | nd | 129.7 ± 10.1 | 139.7 ± 5.3 | 0 | 136.7 ± 4.2 | 131.3 ± 0.5 | 136.0 ± 3.0 | 128.7 ± 1.1 |
E-2-Octenal | 8 | green, nut, fat | 3 [23] | nd | 41.4 ± 23.0 | nd | 5.3 ± 0.5 | 110.9 ± 22.4 | 124.1 ± 16.9 | 104.3 ± 0.7 | 89.6 ± 8.8 |
Benzaldehyde | 10 | almond, burnt sugar | 350 [23] | nd | nd | nd | nd | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 |
E-2-Nonenal | 11 | orris, fat, cucumber | 0.08 [8,23] | nd | nd | nd | nd | 214.1 ± 61.3 | 327.9 ± 161.3 | 318.9 ± 3.8 | 233.7 ± 8.8 |
Alcohols | |||||||||||
Pentanol | 12 | fruit | 4000 [23] | 0.3 ± 0.0 | 0.3 ± 0.0 | nd | 0.1 ± 0.0 | 0.8 ± 0.1 | 0.6 ± 0.0 | 0.5 ± 0.0 | 0.8 ± 0.0 |
Hexanol | 14 | green | 500 [23] | 1.8 ± 0.0 | 2.0 ± 0.1 | 0.5 ± 0.0 | 1.1 ± 0.2 | 3.0 ± 0.3 | 2.6 ± 0.1 | 1.9 ± 0.0 | 2.0 ± 0.0 |
Z-3-Hexen-1-ol | 15 | grass | 70 [25] | 4.0 ± 1.3 | 7.4 ± 0.8 | nd | 5.2 ± 1.1 | 28.0 ± 2.5 | 11.6 ± 1.4 | 15.5 ± 0.3 | 16.5 ± 0.5 |
1-Octen-3-ol | 16 | mushroom | 1 [25] | nd | 39.7 ± 0.4 | nd | nd | nd | nd | nd | nd |
Octanol | 18 | moss, nut, mushroom | 190 [23] | nd | nd | nd | nd | nd | nd | 0.1 ± 0.0 | nd |
Ketones | |||||||||||
1-Penten-3-one | 20 | fish, pungent | 1 [25] | nd | 661.0 ± 0.3 | nd | nd | 4252.3 ± 290.3 | 1850.9 ± 10.1 | 2507.4 ± 99.4 | nd |
5-Hepten-2-one, 6-methyl- | 21 | 50 [25] | nd | 1.2 ± 0.0 | nd | nd | 0.5 ± 0.1 | 1.3 ± 0.1 | 0.7 ± 0.0 | 0.3 ± 0.0 | |
Esters | |||||||||||
Ethyl acetate | 22 | pineapple | 5000 [23] | 3.8 ± 0.2 | 0.1 ± 0.0 | 40.7 ± 0.0 | 0.5 ± 0.1 | <0.1 | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
Ethyl octanoate | 24 | fruit, fat | 194 [23] | nd | 1.4 ± 0.0 | nd | 1.3 ± 0.0 | nd | nd | nd | nd |
Ethyl decanoate | 25 | grape | 6300 [23] | nd | 0.1 ± 0.0 | nd | 0.1 ± 0.0 | nd | nd | 0.1 ± 0.0 | 0.1 ± 0.0 |
Butyl butanoate | 26 | fruit | 400 [23] | nd | nd | nd | 1.6 ± 0.1 | 2.3 ± 0.2 | 1.2 ± 0.0 | 2.2 ± 0.1 | 1.5 ± 0.4 |
Terpenes | |||||||||||
β-Myrcene | 29 | balsamic, must, spice | 15 [23] | nd | 22.1± 0.8 | nd | nd | 184.0 ± 59.9 | 30.1 ± 5.1 | 92.9 ± 18.8 | 108.8 ± 50.3 |
Limonene | 30 | citrus, mint | 34 [8] | 102.9 ± 14.7 | 85.3 ± 0.9 | 17.6 ± 2.3 | 17.6 ± 0.2 | 44.1 ± 5.6 | 29.4 ± 4.4 | 11.7 ± 2.5 | 14.7 ± 1.6 |
Terpinolene | 31 | 200 [23] | nd | nd | nd | nd | nd | 0.8 ± 0.1 | nd | nd | |
cis-Linalool oxide | 38 | flower | 320 [25] | 0.2 ± 0.0 | 0.4 ± 0.0 | nd | nd | 3.6 ± 0.5 | 10.5 ± 1.9 | 9.2 ± 0.1 | 4.5 ± 0.8 |
Linalool | 40 | flower, lavender | 6 [23] | 16.6 ± 0.2 | 19.7 ± 4.0 | 9.8 ± 0.3 | 2.8 ± 0.2 | 1.8 ± 0.2 | 1.2 ± 0.4 | 1.3 ± 0.3 | 3.1 ± 0.0 |
Terpinen-4-ol | 41 | turpentine, nutmeg, must | 130 [25] | nd | 1.3 ± 0.0 | nd | nd | nd | nd | 2.6 ± 0.0 | nd |
α-Terpineol | 42 | oil, anise, mint | 330 [25] | <0.1 | 0.2± | <0.1 | <0.1 | nd | <0.1 | 0.1± 0.0 | nd |
Geraniol | 43 | rose, geranium | 40 [25] | nd | 0.2 ± 0.0 | nd | nd | nd | nd | nd | nd |
Neral | 45 | lemon | 1000 [25] | nd | 0.4 ± 0.0 | nd | nd | nd | nd | nd | nd |
Citral | 46 | lemon | 85 [25] | 1.7 ± 0.5 | 6.9 ± 0.6 | nd | nd | nd | 0.4 ± 0.0 | nd | nd |
Geranylacetone | 47 | flower | 60 [23] | 1.4 ± 0.0 | nd | nd | nd | 2.6 ± 0.4 | nd | 5.3 ± 0.5 | 0.7 ± 0.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, L.; Wu, Z.; Wang, Y.; Zang, Y.; Liu, G. Volatile Composition in Two Pummelo Cultivars (Citrus grandis L. Osbeck) from Different Cultivation Regions in China. Molecules 2017, 22, 716. https://doi.org/10.3390/molecules22050716
Zhang M, Li L, Wu Z, Wang Y, Zang Y, Liu G. Volatile Composition in Two Pummelo Cultivars (Citrus grandis L. Osbeck) from Different Cultivation Regions in China. Molecules. 2017; 22(5):716. https://doi.org/10.3390/molecules22050716
Chicago/Turabian StyleZhang, Mingxia, Linbo Li, Zhongwei Wu, Yanjie Wang, Yiming Zang, and Guojie Liu. 2017. "Volatile Composition in Two Pummelo Cultivars (Citrus grandis L. Osbeck) from Different Cultivation Regions in China" Molecules 22, no. 5: 716. https://doi.org/10.3390/molecules22050716
APA StyleZhang, M., Li, L., Wu, Z., Wang, Y., Zang, Y., & Liu, G. (2017). Volatile Composition in Two Pummelo Cultivars (Citrus grandis L. Osbeck) from Different Cultivation Regions in China. Molecules, 22(5), 716. https://doi.org/10.3390/molecules22050716