Inclusion Complexes of a New Family of Non-Ionic Amphiphilic Dendrocalix[4]arene and Poorly Water-Soluble Drugs Naproxen and Ibuprofen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure–Solubilization Relationship
2.2. Fluorescence Studies
2.3. The Effect of Drug on Micelle Morphology
2.4. NMR Investigation
3. Experimental Section
3.1. Materials
3.2. NMR Experiments
3.3. Transmission Electron Microscopy (TEM), HR TEM
3.4. Fluorescence Titration Assay
3.5. Molecular Modeling
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grosser, T.; Smyth, E.; FitzGerald, G.A. Anti-Inflammatory, antipyretic, and analgesic agents; pharmacotherapy of gout. In The Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L., Chabner, B., Knollmann, B., Eds.; McGraw-Hill: New York, NY, USA, 2011; Volume 34, pp. 987–989. [Google Scholar]
- Bhat, P.A.; Rather, G.M.; Dar, A.A. Effect of surfactant mixing on partitioning of model hydrophobic drug, naproxen, between aqueous and micellar phases. J. Phys. Chem. B 2009, 113, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Mura, P.; Zerrouk, N.; Mennini, N.; Maestrelli, F.; Chemtob, C. Development and characterization of naproxen-chitosan solid systems with improved drug dissolution properties. Eur. J. Pharm. Sci. 2003, 19, 67–75. [Google Scholar] [CrossRef]
- Valero, M.; Esteban, B. Effect of binary and ternary polyvinylpyrrolidone and/or hydroxypropyl-β-cyclodextrin complexes on the photochemical and photosensitizing properties of naproxen. J. Photochem. Photobiol. B Biol. 2004, 76, 95–102. [Google Scholar] [CrossRef]
- Pacheco, D.P.; Martinez, F. Thermodynamic analysis of the solubility of naproxen in ethanol plus water cosolvent mixtures. Phys. Chem. Liq. 2007, 45, 581–595. [Google Scholar] [CrossRef]
- Manrique, J.; Martínez, F. Solubility of ibuprofen in some ethanol + water cosolvent mixtures at several temperatures. Lat. Am. J. Pharm. 2007, 26, 344–354. [Google Scholar]
- Pacheco, D.P.; Manrique, Y.J.; Martínez, F. Thermodynamic study of the solubility of ibuprofen and naproxen in some ethanol + propylene glycol mixtures. Fluid Phase Equilib. 2007, 262, 23–31. [Google Scholar] [CrossRef]
- Muntó, M.; Ventosa, N.; Sala, S.; Veciana, J. Solubility behaviors of ibuprofen and naproxen drugs in liquid “CO2-organic solvent” mixtures. J. Supercrit. Fluids 2008, 47, 147–153. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Martínez, F. Temperature dependence of the solubility of acetaminophen in propylene glycol + ethanol mixtures. J. Solut. Chem. 2006, 35, 335–352. [Google Scholar] [CrossRef]
- Mueller, A.; Lalor, R.; Cardaba, C.M.; Matthews, S.E. Stable and sensitive probes for lysosomes: Cell-Penetrating fluorescent calix[4]arenes accumulate in acidic vesicles. Cytom. Part A 2011, 79A, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Rodik, R.V.; Boyko, V.I.; Kalchenko, V.I. Calixarenes in bio-medical researches. Curr. Med. Chem. 2009, 16, 1630–1655. [Google Scholar] [CrossRef] [PubMed]
- Tsou, L.K.; Dutschman, G.E.; Gullen, E.A.; Telpoukhovskaia, M.; Cheng, Y.C.; Hamilton, A.D. Discovery of a synthetic dual inhibitor of HIV and HCV infection based on a tetrabutoxy-calix[4]arene scaffold. Bioorg. Med. Chem. Lett. 2010, 20, 2137–2139. [Google Scholar] [CrossRef] [PubMed]
- Charnley, M.; Fairfull-Smith, K.; Haldar, S.; Elliott, R.; McArthur, S.L.; Williams, N.H.; Haycock, J.W. Generation of bioactive materials with rapid self-assembling resorcinarene-peptides. Adv. Mater. 2009, 21, 2909–2915. [Google Scholar] [CrossRef]
- Consoli Grazia, M.L.; Granata, G.; Galante, E.; Di Silvestro, I.; Salafia, L.; Geraci, C. Synthesis of water-soluble nucleotide-calixarene conjugate & preliminary ieval in vitro DNA replication inhibitory activity. Tetrahedron 2007, 63, 10758–10763. [Google Scholar]
- Da Silva, D.L.; Do Couto Tavares, E.; De Souza Conegero, L.; De Fátima, Â.; Pilli, R.A.; Fernandes, S.A. NMR studies of inclusion complexation of the pyrrolizidine alkaloid retronecine and p-sulfonic acid calix[6]arene. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 149–155. [Google Scholar] [CrossRef]
- Panchal, J.G.; Patel, R.V.; Menon, S.K. Preparation and physicochemical characterization of carbamazepine (CBMZ): Para-Sulfonated calix[n]arene inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 201–208. [Google Scholar] [CrossRef]
- Fernandes, S.A.; Cabeça, L.F.; Marsaioli, A.J.; De Paula, E. Investigation of tetracaine complexation with β-cyclodextrins and p-sulphonic acid calix[6]arenes by nOe and PGSE NMR. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 395–401. [Google Scholar] [CrossRef]
- Consoli, G.M.L.; Granata, G.; Geraci, C. Design, synthesis, and drug solubilising properties of the first folate-calix[4]arene conjugate. Org. Biomol. Chem. 2011, 9, 6491–6495. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Huang, H.; Zheng, Y.S. Design, synthesis, and transport potential of a new family of nonionic amphiphilic dendro-calix[4]arene. Curr. Org. Chem. 2012, 16, 2745–2751. [Google Scholar] [CrossRef]
- Garzón, L.C.; Martínez, F. Temperature dependence of solubility for ibuprofen in some organic and aqueous solvents. J. Solut. Chem. 2004, 33, 1379–1395. [Google Scholar] [CrossRef]
- Lucht, S.; Stumpe, J.; Rutloh, M. Triple fluorescence of substituted benzanilides in solution and in solid states. J. Fluoresc. 1998, 8, 153–166. [Google Scholar] [CrossRef]
- Heldt, J.; Gprmin, D.; Kasha, M. The triple fluorescence of benzanilide and the dielectric medium modulation of its competitive excitation. Chem. Phys. Lett. 1988, 150, 433–436. [Google Scholar] [CrossRef]
- Becherer, M.S.; Schade, B.; Böttcher, C.; Hirsch, A. Supramolecular assembly of self-labeled amphicalixarenes. Chemistry 2009, 15, 1637–1648. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Introduction to fluorescence. In Principles of Fluorescence Spectroscopy, 3rd ed.; Springer US: New York, NY, USA, 2006; Volume 1, pp. 1–26. [Google Scholar]
- Chen, M.; Shang, T.; Liu, J.; Diao, G. Complexation thermodynamics between butyl rhodamine B and calix[n]arenesulfonates (n = 4, 6, 8). J. Chem. Thermodyn. 2011, 43, 88–93. [Google Scholar] [CrossRef]
- Naddo, T.; Che, Y.; Zhang, W.; Balakrishnan, K.; Yang, X.; Yen, M.; Zhao, J.; Moore, J.S.; Zang, L. Detection of explosives with a fluorescent nanofibril film. J. Am. Chem. Soc. 2007, 129, 6978–6979. [Google Scholar] [CrossRef] [PubMed]
- Grigorenko, N.A.; Leumann, C.J. 2-Phenanthrenyl–DNA: Synthesis, pairing, and fluorescence properties. Chem. Eur. J. 2009, 15, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Heinlein, T.; Knemeyer, J.P.; Piestert, O.; Sauer, M. Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. J. Phys. Chem. B 2003, 107, 7957–7964. [Google Scholar] [CrossRef]
- Wilson, J.N.; Yin, N.T.; Kool, E.T. Efficient quenching of oligomeric fluorophores on a DNA backbone. J. Am. Chem. Soc. 2007, 129, 15426–15427. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, A.; Bhuyan, M.; Das, G. Aromatic guest inclusion by a tripodal ligand: Fluorescence and structural studies. J. Photochem. Photobiol. A Chem. 2008, 197, 149–155. [Google Scholar] [CrossRef]
- Consoli, G.M.L.; Granata, G.; Lo Nigro, R.; Malandrino, G.; Geraci, C. Spontaneous self-assembly of water-soluble nucleotide-calixarene conjugates in small micelles coalescing to microspheres. Langmuir 2008, 24, 6194–6200. [Google Scholar] [CrossRef] [PubMed]
- Kellermann, M.; Bauer, W.; Hirsch, A.; Schade, B.; Ludwig, K.; Böttcher, C. The first account of a structurally persistent micelle. Angew. Chem. Int. Ed. 2004, 43, 2959–2962. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Park, S.; Kim, S.K. Ab initio studies on the van der Waals complexes of polycyclic aromatic hydrocarbons. I. Benzene–Naphthalene complex. J. Chem. Phys. 2002, 116, 7902. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Comp. | TEM Diameter (nm) | TEM Diameter (nm) with NAP | TEM Diameter (nm) with IBP | NAP Solubilty (mg/mL) * | IBP Solubilty (mg/mL) * | Quenching Constant (KSV) M−1 |
---|---|---|---|---|---|---|
1a | 5.0 | 12.2 | 10.0 | 2.10 | 3.00 | 5.5 × 105 |
1b | 7.1 | 11.4 | 08.5 | 2.50 | 3.50 | 5.8 × 105 |
1c | 2.90 | 3.80 | 6.1 × 105 | |||
2 | 0.30 | 0.60 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, K.; Badshah, S.L.; Ahmad, N.; Rashid, H.U.; Mabkhot, Y. Inclusion Complexes of a New Family of Non-Ionic Amphiphilic Dendrocalix[4]arene and Poorly Water-Soluble Drugs Naproxen and Ibuprofen. Molecules 2017, 22, 783. https://doi.org/10.3390/molecules22050783
Khan K, Badshah SL, Ahmad N, Rashid HU, Mabkhot Y. Inclusion Complexes of a New Family of Non-Ionic Amphiphilic Dendrocalix[4]arene and Poorly Water-Soluble Drugs Naproxen and Ibuprofen. Molecules. 2017; 22(5):783. https://doi.org/10.3390/molecules22050783
Chicago/Turabian StyleKhan, Khalid, Syed Lal Badshah, Nasir Ahmad, Haroon Ur Rashid, and Yahia Mabkhot. 2017. "Inclusion Complexes of a New Family of Non-Ionic Amphiphilic Dendrocalix[4]arene and Poorly Water-Soluble Drugs Naproxen and Ibuprofen" Molecules 22, no. 5: 783. https://doi.org/10.3390/molecules22050783
APA StyleKhan, K., Badshah, S. L., Ahmad, N., Rashid, H. U., & Mabkhot, Y. (2017). Inclusion Complexes of a New Family of Non-Ionic Amphiphilic Dendrocalix[4]arene and Poorly Water-Soluble Drugs Naproxen and Ibuprofen. Molecules, 22(5), 783. https://doi.org/10.3390/molecules22050783