Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome—A Concise Review
Abstract
:1. Introduction
2. Combinations Including Amifostine (WR-2721)
3. Combinations without Amifostine or Other Thiol Radioprotectors
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singh, V.K.; Romaine, P.L.P.; Newman, V.L.; Seed, T.M. Medical countermeasures for unwanted CBRN exposures. Part II radiological and nuclear threats with review of recent countermeasure patents. Expert Opin. Ther. Pat. 2016, 26, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Romaine, P.L.P.; Seed, T.M. Medical countermeasures for radiation exposure and related injuries: Characterization of medicines, FDA-approval status and inclusion into the strategic national stockpile. Health Phys. 2015, 108, 607–630. [Google Scholar] [CrossRef] [PubMed]
- Pellmar, T.C.; Rockwell, S. The Radiological/Nuclear Threat Countermeasures Working Group. Priority list of research areas for radiological nuclear threat countermeasures. Radiat. Res. 2005, 163, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Kumar, K.S.; Walden, T.L.; Neta, R.; Landauer, M.R.; Clark, E.P. Advances in radioprotection through the use of combined agent regimens. Int. J. Radiat. Biol. 1990, 57, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Hosseinimehr, S.A. Trends in development of radioprotective agents. Drug Discov. Today 2007, 12, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.G.; Pittock, J.W.; Rubinstein, J.S. Early results of the screening program for radioprotectors. J. Radiat. Oncol. Biol. Phys. 1982, 8, 565–570. [Google Scholar] [CrossRef]
- Buschini, A.; Aneschi, E.; Carlo-Stella, C.; Regazzi, E.; Rizzoli, V.; Poli, P.; Rossi, C. Amifostine (WR-2721) selective protection against melphalan toxicity. Leukemia 2000, 14, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Buschini, A.; Aneschi, E.; Carlo-Stella, C.; Regazzi, E.; Rizzoli, V.; Poli, P.; Rossi, C. Bleomycin genotoxicity and amifostine (WR-2721) cell protection in normal leukocytes vs. K562 tumoral cells. Biochem. Pharmacol. 2002, 63, 967–975. [Google Scholar] [CrossRef]
- Hofer, M.; Falk, M.; Komůrková, D.; Falková, I.; Bačíková, A.; Klejdus, B.; Pagáčová, E.; Štefančíková, L.; Weiterová, L.; Angelis, K.J.; et al. Two new faces of amifostine: Protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells. J. Med. Chem. 2016, 59, 3003–3017. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Hoover, R.L.; Kumar, K.S. Selenium pretreatment enhances the radioprotective effect and reduces the lethal toxicity of WR-2721. Free Radic. Res. Commun. 1987, 3, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.Q.; Graham, W.J.; MacKenzie, L.J.; Pittock, J.W.; Shaw, L.M. Can WR-2721 be improved upon? Pharmacol. Ther. 1988, 39, 157–168. [Google Scholar] [CrossRef]
- Kumar, K.S.; Vaishnav, Y.N.; Weiss, J.F. Radioprotection by antioxidant enzymes and enzyme mimetics. Pharmacol. Ther. 1988, 39, 301–309. [Google Scholar] [CrossRef]
- Buntzel, J.; Micke, O.; Mucke, R.; Glatzel, M.; Schonekaes, K.G.; Schafer, U.; Kisters, K.; Bruns, F. Amifostine and selenium during simultaneous radiochemotherapy in head and neck cancer—Redox status data. Trace Elem. Electrol. 2005, 22, 211–2015. [Google Scholar] [CrossRef]
- Ali, B.H.; Al Moundhri, M.S. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: A review of some recent research. Food Chem. Toxicol. 2006, 44, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Landauer, M.R. Radioprotection by antioxidants. Ann. N. Y. Acad. Sci. 2000, 899, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Weiss, J.F. Radioprotection by vitamin-E–injectable vitamin-E administered alone or with WR-3689 enhances survival of irradiated mice. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 841–845. [Google Scholar] [CrossRef]
- Kaplan, B.; Orhan, O.; Yazici, C.; Karahacioglu, E. Radioprotective effects of amifostine (WR 2721) and vitamin E on whole-body-irradiated rat liver. Turk. Klin. Tip Bilim. Derg. 2009, 29, 1055–1062. [Google Scholar]
- Singh, V.K.; Fatanmi, O.O.; Wise, S.Y.; Newman, V.L.; Romaine, P.L.; Seed, T.M. Potentiation of the radioprotective efficacy of two medical countermeasures, gamma-tocotrienol and amifostine, by a combination prophylactic modality. Radiat. Prot. Dosim. 2016, 172, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Hanson, W.R. Radioprotection of murine intestine by WR-2721, 16,16-dimethyl-prostaglandin E2 and the combination of both agents. Radiat. Res. 1987, 111, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Pelus, L.M.; Broxmeyer, H.E. Modulation of expression of HLA-DR (Ia) antigens and the proliferation of human erythroid (BFU-E) and multipotential (CFU-GEMM) progenitor cells by prostaglandin E. Exp. Hematol. 1984, 12, 741–748. [Google Scholar] [PubMed]
- Hoggatt, J.; Singh, P.; Sampath, J.; Pelus, L.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009, 113, 5444–5455. [Google Scholar] [CrossRef] [PubMed]
- Hanson, W.R.; Houseman, K.A.; Collins, P.W. Radiation protection in vivo by prostaglandins and related compounds of the arachidonic acid cascade. Pharmacol. Ther. 1988, 39, 347–356. [Google Scholar] [CrossRef]
- Mota, J.M.S.C.; Soares, P.M.G.; Menezes, A.A.J.; Lemos, H.P.; Cunha, F.Q.; Brito, G.A.C.; Ribeiro, R.A.; de Souza, M.H.L.P. Amifostine (Wr-2721) prevents indomethacin-induced gastric damage in rats: Role of non-protein sulfhydryl groups and leukocyte adherence. Dig. Dis. Sci. 2007, 52, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Patchen, M.L.; MacVittie, T.J.; Jackson, W.E. Postirradiation glucan administration enhances the radioprotective effects of WR-2721. Radiat. Res. 1989, 117, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Patchen, M.L.; MacVittie, T.J.; Weiss, J.F. Combined modality radioprotection: The use of glucan and selenium with WR-2721. Int. J. Radiat. Oncol. Biol. Phys. 1990, 18, 1069–1075. [Google Scholar] [CrossRef]
- Pillai, T.G.; Devi, P.U. Mushroom beta glucan: Potential candidate for post irradiation protection. Mutat. Res. Genet. Toxicol. Environ. 2013, 751, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M. Modulation of animal and human hematopoiesis by β-glucans. A review. Molecules 2011, 16, 7969–7979. [Google Scholar] [CrossRef] [PubMed]
- Macková, N.O.; Fedoročko, P. Combined radioprotective effect of Broncho-Vaxom® and WR-2721 on hematopoiesis and circulating blood-cells. Neoplasma 1995, 42, 25–30. [Google Scholar] [PubMed]
- Fedoročko, P.; Brezáni, P.; Macková, N.P. Radioprotective effects of WR-2721, Broncho-Vaxom® and their combinations—Survival, myelopoietic restoration and induction of colony-stimulating activity in mice. Int. J. Immunopharmacol. 1994, 16, 177–184. [Google Scholar] [CrossRef]
- Jiang, S.Q.; Shen, X.R.; Liu, Y.M.; He, Y.; Jiang, D.W.; Chen, W. Radioprotective effects of Sinpulus nudus L. polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice. J. Radiat. Res. 2015, 56, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, Q.; Wu, S.; Xia, X.C.; Wu, A.Q.; Cui, F.M.; Gu, Y.P.; Zhang, X.G.; Cao, J.P. Radioprotector WR-2721 and mitigating peptidoglycan synergistically promote mouse survival through the amelioration of intestinal and bone marrow damage. J. Radiat. Res. 2015, 56, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Nagata, S. The Cytokine Handbook; Thomson, A., Ed.; Academic Press: New York, NY, USA, 1994; p. 371. [Google Scholar]
- Drouet, M.; Delaunay, C.; Grenier, N.; Garrigou, P.; Mayol, J.F.; Hérodin, F. Cytokines in combination to treat radiation-induced myelosuppression: Evaluation of SCF + glycosylated EPO + pegylated G-CSF as an emergency treatment in highly irradiated monkeys. Haematol. Hematol. J. 2008, 93, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Komůrková, D.; Hoferová, Z. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: A concise review. Molecules 2014, 19, 4770–4778. [Google Scholar] [CrossRef] [PubMed]
- Patchen, M.L.; MacVittie, T.J.; Souza, L.M. Postirradiation treatment with granulocyte colony-stimulating factor and preirradiation WR-2721 administration synergize to enhance hematopoietic recostitution and increase survival. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 773–779. [Google Scholar] [CrossRef]
- Patchen, M.L. Amifostine plus granulocyte colony-stimulating factor therapy enhances recovery from supralethal radiation exposures—Preclinical experience in animal-models. Eur. J. Cancer 1995, 31A, S17–S21. [Google Scholar] [CrossRef]
- Neumeister, P.; Jaeger, G.; Eibl, M.; Sormann, S.; Zinke, W.; Linkesch, W. Amifostine in combination with erythropoietin and G-CSF promotes multilineage hematopoiesis in patients with myelodysplastic syndrome. Leuk. Lymphoma 2001, 40, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Winczura, P.; Jassem, J. Combined treatment with cytoprotective agents and radiotherapy. Cancer Treat. Rev. 2010, 36, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.C.; Murley, J.S.; Grdina, D.J. Metformin exhibits radiation countermeasures efficacy when used alone or in combination with sulfhydryl containing drugs. Radiat. Res. 2014, 181, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Zucali, J.R. Mechanisms of protection of hematopoietic stem-cells from irradiation. Leuk. Lymphoma 1994, 13, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Pospíšil, M.; Hofer, M.; Netíková, J.; Pipalová, I.; Vacek, A.; Bartoníčková, A.; Volenec, K. Elevation of extracellular adenosine induces radioprotective effects in mice. Radiat. Res. 1995, 134, 323–330. [Google Scholar] [CrossRef]
- Hofer, M.; Pospisil, M.; Weiterova, L.; Hoferova, Z. The role of adenosine receptor agonists in regulation of hematopoiesis. Molecules 2011, 16, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Pospíšil, M.; Hofer, M.; Znojil, V.; Vácha, J.; Netíková, J.; Holá, J. Synergistic effect of granulocyte colony-stimulating factor and drugs elevating extracellular adenosine on neutrophil production in mice. Blood 1995, 86, 3692–3697. [Google Scholar] [PubMed]
- Pospíšil, M.; Hofer, M.; Znojil, V.; Netíková, J.; Vácha, J.; Holá, J.; Vacek, A. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance the haemopoietic reconstitution in irradiated mice. Eur. J. Haematol. 1998, 60, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Bar-Yehuda, S.; Madi, L.; Barak, D.; Mittelman, M.; Ardon, E.; Ochaion, A.; Cohn, S.; Fishman, P. Agonists to the A3 adenosine receptor induce G-CSF production via NF-kappa B activation: A new class of myeloprotective agents. Exp. Hematol. 2002, 30, 1390–1398. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Šefc, L.; Dušek, L.; Vacek, A.; Holá, J.; Hoferová, Z.; Štreitová, D. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice. Int. J. Radiat. Biol. 2010, 86, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Hoferová, Z.; Weiterová, L.; Komůrková, D. Stimulatory action of cyclooxygenase inhibitors on hematopoiesis. A review. Molecules 2012, 17, 5615–5625. [Google Scholar] [CrossRef] [PubMed]
- Pospíšil, M.; Hofer, M.; Pipalová, I.; Viklická, Š. Enhancement of hematopoietic recovery in gamma-irradiated mice by the joint use of diclofenac, an inhibitor of prostaglandin production, and glucan, a macrophage activator. Exp. Hematol. 1992, 20, 891–895. [Google Scholar] [PubMed]
- Hofer, M.; Pospíšil, M.; Viklická, Š.; Vacek, A.; Pipalová, I.; Bartoníčková, A. Hematopoietic recovery in repeatedly irradiated mice can be enhanced by a repeatedly administered combination of diclofenac and glucan. J. Leukoc. Biol. 1993, 53, 185–189. [Google Scholar] [PubMed]
- Hofer, M.; Pospíšil, M.; Dušek, L.; Hoferová, Z.; Weiterová, L. Inhibition of cyclooxygenase-2 promotes the stimulatory action of adenosine A3 receptor agonist on hematopoiesis in sublethally γ-irradiated mice. Biomed. Pharmacother. 2011, 65, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Dušek, L.; Hoferová, Z.; Komůrková, D. Agonist of the adenosine A3 receptor, IB-MECA, and inhibitor of cyclooxygenase-2, meloxicam, given alone or in a combination early after total body irradiation, enhance survival of γ-irradiated mice. Radiat. Environ. Biophys. 2014, 53, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Holá, J.; Vacek, A.; Štreitová, D.; Znojil, V. Inhibition of cyclooxygenase 2 in mice increases production of G-CSF and induces radioprotection. Radiat. Res. 2008, 170, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Holá, J.; Vacek, A.; Štreitová, D. Meloxicam, a cyclooxygenase-2 inhibitor, increases the level of serum G-CSF and might be usable as an auxiliary means in G-CSF therapy. Physiol. Res. 2008, 57, 307–310. [Google Scholar] [PubMed]
- Patchen, M.L.; MacVittie, T.J.; Solberg, B.D.; Souza, L.M. Survival enhancement and hemopoietic regeneration following radiation exposure: Therapeutic approach using glucan and granulocyte colony-stimulating factor. Exp. Hematol. 1990, 18, 1042–1048. [Google Scholar] [PubMed]
- Neta, R.; Oppenheim, J.J.; Douches, S.D. Interdependence of the radioprotective effects of human recombinant interleukin 1α, tumor necrosis factor α, granulocyte colony-stimulating factor, and murine recombinant granulocy-macrophage colony-stimulating factor. J. Immunol. 1988, 140, 108–111. [Google Scholar] [PubMed]
- Patchen, M.L.; Fischer, R.; MacVittie, T.J. Effects of combined administration of interleukin-6 and granulocyte colony-stimulating factor on recovery from radiation-induced hemopoietic aplasia. Exp. Hematol. 1993, 21, 338–344. [Google Scholar] [PubMed]
- Patchen, M.L.; Fischer, R.; MacVittie, T.J.; Seiler, F.R.; Williams, D.E. Mast cell growth factor (C-kit ligand) in combination with granulocyte-macrophage colony-stimulating factor and interleukin-3: In vivo hemopoietic effects in irradiated mice compared to in vitro effects. Biotherapy 1993, 7, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Farese, A.M.; Hérodin, F.; McKearn, J.P.; Baum, C.; Burton, E.; MacVittie, T.J. Acceleration of hematopoietic reconstitution with a synthetic cytokine (SC-55494) after radiation-induced bone marrow aplasia. Blood 1996, 87, 581–591. [Google Scholar] [PubMed]
- MacVittie, T.J.; Farese, A.M.; Hérodin, F.; Grab, L.B.; Baum, C.M.; McKearn, J.P. Combination therapy for radiation-induced bone marrow aplasia in nonhuman primates using synthokine SC-55494 and recombinant human granulocyte colony-stimulating factor. Blood 1996, 87, 4129–4135. [Google Scholar] [PubMed]
- Neelis, K.J.; Hartong, S.C.; Egeland, T.; Thomas, G.R.; Eaton, D.L.; Wagemaker, G. The efficacy of single-dose administeration of thrombopoietin with coadministration of either granulocyte/macrophage colony-stimulating factor or granulocyte colony-stimulating factor in myelosuppressed rhesus monkeys. Blood 1997, 90, 2565–2573. [Google Scholar] [PubMed]
- Farese, A.M.; Hunt, P.; Grab, L.B.; MacVittie, T.J. Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J. Clin. Investig. 1996, 97, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Hérodin, F.; Bourin, P.; Mayol, J.F.; Lataillade, J.J.; Drouet, M. Short-term injection of antiapoptotic cytokine combinations soon after lethal gamma-irradiation promotes survival. Blood 2003, 101, 2609–2616. [Google Scholar] [CrossRef] [PubMed]
- Hérodin, F.; Roy, L.; Grenier, N.; Delaunay, C.; Bauge, S.; Vaurijoux, A.; Gregoire, E.; Martin, C.; Alonso, A.; Mayol, L.F.; et al. Antiapoptotic cytokines in combination with pegfilgrastim soon after irradiation mitigate myelosuppression in nonhuman primates exposed to high radiation dose. Exp. Hematol. 2007, 35, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Hérodin, F.; Drouet, M. Myeloprotection following cytotoxic damage: The sooner the better. Exp. Hematol. 2008, 36, 769–770. [Google Scholar] [CrossRef] [PubMed]
- Hirouchi, T.; Ito, K.; Nakano, M.; Monzen, S.; Yoshino, H.; Chiba, M.; Hazawa, M.; Nakano, A.; Ishikawa, J.; Yamaguchi, M.; et al. Mitigative effects of a combination of multiple pharmaceutical drugs on the survival of mice exposed to lethal ionizing radiation. Curr. Pharm. Biotechnol. 2016, 17, 190–199. [Google Scholar] [CrossRef]
- Singh, V.K.; Newman, V.L.; Seed, T.M. Colony-stimulating factors for the treatment of the hematopoietic compartment of the acute radiation syndrome (H-ARS): A review. Cytokine 2015, 71, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Vasin, M.V.; Ushakov, I.B.; Kovtun, V.I.; Komarova, S.N.; Semenova, L.A.; Koroleva, L.V.; Galkin, A.A. The influence of combined application of quercetin and indralin on post-irradiation repair of hematopoiesis in acute radiation injury. Radiat. Biol. Radioecol. 2011, 51, 247–251. (in Russian). [Google Scholar]
- Day, R.M.; Davis, T.A.; Barshishat-Kupper, M.; McCart, E.A.; Tipton, A.S.; Landauer, M.R. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril. Int. Immunopharmac. 2013, 15, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Wise, S.Y.; Fatanmi, O.O.; Beattie, L.A.; Ducey, E.J.; Seed, T.M. Alpha tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice. J. Radiat. Res. 2014, 55, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Vasil’eva, I.N.; Bespalov, V.G.; Baranenko, D.A. Radioprotective and apoptotic properties of a combination of alpha-tocopherol acetate and ascorbic acid. Bull. Exp. Biol. Med. 2016, 161, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Wambi, C.; Sanzari, J.; Wan, X.S.; Nuth, M.; Davis, J.; Ko, Y.H.; Sayers, C.M.; Baran, M.; Ware, J.H.; Kennedy, A.R. Dietary antioxidants protect hematopoietic cells and improve animal survival after total-body irradiation. Radiat. Res. 2008, 169, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Wambi, C.O.; Sanzari, J.K.; Sayers, C.M.; Nuth, M.; Zhou, Z.Z.; Davis, J.; Finnberg, N.; Lewis-Wambi, J.S.; Ware, J.H.; El-Deiry, W.S.; et al. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival. Radiat. Res. 2009, 172, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.L; Sankwar, S.; Verma, S.; Devi, M.; Samanta, N.; Agarwala, P.K.; Kumar, R.; Singh, P.K. Whole-body protection to lethally irradiated mice by oral administration of semipurified fraction of Podophyllum hexandrum and post irradiation treatment with Picorrhiza kurroa. Tokai J. Exp. Clin. Med. 2008, 33, 6–12. [Google Scholar] [PubMed]
- Crescenti, E.J.V.; Medina, V.A.; Croci, M.; Sambuco, L.A.; Prestifilippo, J.P.; Elverdin, J.C.; Bergoc, R.M.; Rivera, E.S. Radioprotection of sensitive rat tissues by oligoelements Se, Zn, Mn plus Lachesis muta venom. J. Radiat. Res. 2011, 52, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, C.M.; Miao, Y.R.; Diep, A.N.; Wu, C.; Rankin, E.B.; Atwood, T.F.; Xing, L.; Giaccia, A.J. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci. Transl. Med. 2014, 6, 236ra64. [Google Scholar] [CrossRef] [PubMed]
- Olcina, M.M.; Giaccia, A.J. Reducing radiation-induced gastrointestinal toxicity – the role of the PHD/HIF axis. J. Clin. Investig. 2016, 126, 3708–3715. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.E. Post-irradiation approaches to treatment of radiation injuries in the context of radiological terrorism and radiation accidents. Int. J. Radiat. Biol. 2004, 80, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Dörr, H.; Meineke, V. Acute radiation syndrome caused by accidental radiation exposure—Therapeutic principles. BMC Med. 2011, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Waselenko, J.K.; MacVittie, TJ.; Blakely, W.F.; Pesik, N.; Wiley, A.L.; Dickerson, W.E.; Tsu, H.; Confer, D.L.; Coleman, C.N.; Seed, T.; et al. Strategic National Stockpile Radiation Working Group: Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 2004, 140, 1037–1051. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.E.; Cohen, E.P. Radiation-induced multi-organ involvement and failure: The contribution of radiation effects on the renal system. Br. J. Radiol. 2005, 27 (Suppl. 2005), 82–88. [Google Scholar] [CrossRef]
- Dainiak, N.; Ricks, R.C. The evolving role of haematopoietic stem cell transplantation in radiation injury: Potentials and limitations. Br. J. Radiol. 2005, 27 (Suppl. 2005), 169–174. [Google Scholar] [CrossRef]
- Dainiak, N.; Gent, R.N.; Carr, Z.; Schneider, R.; Bader, R.; Buglova, E.; Chao, N.; Coleman, C.N.; Ganser, A.; Gorin, C.; et al. Literature review and global consensus on management of acute radiation syndrome affecting non-hematopoietic organs systems. Disaster Med. Public Health Prep. 2011, 5, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Drouet, M.; Hérodin, F. Radiation victim management and the haematologist in the future: Time to revisit therapeutic guidelines? Int. J. Radiat. Biol. 2010, 86, 636–648. [Google Scholar] [CrossRef] [PubMed]
Agent or Group of Agents | Predominant Radiomodifying Effect(s) | Reference Number(s) |
---|---|---|
Adenosine monophosphate | Stimulator of hematopoietic cell proliferation through adenosine receptor action | [41,42,43,44] |
Alpha-lipoic acid | Antioxidant | [71,72] |
AMD3100 | Influences migration and homing of hematopoietic stem cells | [60] |
Amifostine | Free radical scavenger | [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39] |
Ascorbic acid (vitamin C) | Antioxidant | [70,71,72] |
Beta-glucan | Immunomodulator, stimulator of hematopoiesis | [24,25,26,27,54] |
Broncho-Vaxom | Immunomodulator, stimulator of hematopoiesis | [28,29] |
Captopril | Vasodilator | [68] |
Diclofenac | Inhibitor of prostaglandin synthesis, stimulator of myelopoiesis | [47,48,49] |
Dipyridamole | Enhances adenosine receptor action, stimulator of proliferation of hematopoietic cells | [41,42,43,44] |
Erythropoietin (EPO) | Hematopoietic growth factor, stimulator of erythropoiesis | [31,65,66] |
Flt3-ligand | Hematopoietic growth factor, stimulator of hematopoiesis | [62,63] |
Genistein | Antioxidant | [68] |
Glycogen synthase kinase-3 (GSK-3) inhibitor | Regulator of apoptosis | [76] |
Granulocyte colony-stimulating factor (G-CSF) | Hematopoietic growth factor, stimulator of hematopoiesis | [30,31,32,33,34,35,36,37,38,52,53,54,56,58,61,63,65,66] |
Granulocyte-macrophage colony-stimulating factor (GM-CSF) | Hematopoietic growth factor, stimulator of hematopoiesis | [57,60,66] |
Indralin | Adrenomimetic | [67] |
Inhibitors of prolyl hydroxylase domain-containing enzymes (PHDs) | Antioxidants | [75,76] |
Interleukin-1 (IL-1) | Cytokine, regulator of immune response, inflammation, and hematopoiesis | [55] |
Interleukin-3 (IL-3) | Cytokine, regulator of production of granulocytes and macrophages | [57,63,66] |
Interleukin-6 (IL-6) | Cytokine, stimulator of myelopoiesis | [56] |
Interleukin-11 (IL-11) | Cytokine, stimulator of hematopoiesis and lymphopoiesis | [30] |
Lachesis muta venom | Immunomodulator (?) | [74] |
Megakaryocyte growth and development factor (MGDF) | Hematopoietic growth factor, stimulator of thrombopoiesis | [61] |
Meloxicam | Inhibitor of prostaglandin synthesis, stimulator of myelopoiesis | [50,51,52,53] |
Metformin | Antioxidant, modulator of cell renewal | [39] |
N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA) | Stimulator of hematopoietic cell proliferation through adenosine receptor action | [45,46,50,51] |
N-acetyl-cysteine | Antioxidant | [71,72] |
Nandrolone decanoate | Anabolic effects | [65] |
Peptidoglycan | Immunomodulator, stimulator of hematopoiesis | [31] |
Picrorhiza kuroa extract | Antioxidant | [73] |
Podophyllum hexandrum extract | Antioxidant | [73] |
Polysaccharide from Sipunculus nudus | Immunomodulator, stimulator of hematopoiesis | [30] |
Prostaglandin E2 and prostaglandin family members (misoprotol) | Modulators of proliferation of hematopoietic cells, protectors of intestinal tissue | [19,20,21,22,23] |
Quercetin | Antioxidant | [67] |
Romiplostim | Hematopoietic growth factor, stimulator of hematopoiesis | [65] |
Salts of various metals (copper, manganese, selenium, zinc) | Antioxidants | [10,11,12,13,14,71,72,74] |
Stem cell factor (SCF) (c-kit ligand, mast cell growth factor) | Hematopoietic growth factor, stimulator of hematopoiesis | [31,57,62,63,66] |
Stromal-derived factor-1 (SDF-1) | Chemokine, influences migration of hematopoietic cells | [62] |
Synthokine SC-55494 | Cytokine, stimulator of hematopoiesis | [58,59] |
Thrombopoietin (TPO) | Hematopoietic growth factor, stimulator of thrombopoiesis | [60,62] |
Tumor necrosis factor (TNF) | Modulator of inflammation | [55] |
Vitamin E and its family members | Antioxidants | [15,16,17,18,69,70,71,72] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofer, M.; Hoferová, Z.; Depeš, D.; Falk, M. Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome—A Concise Review. Molecules 2017, 22, 834. https://doi.org/10.3390/molecules22050834
Hofer M, Hoferová Z, Depeš D, Falk M. Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome—A Concise Review. Molecules. 2017; 22(5):834. https://doi.org/10.3390/molecules22050834
Chicago/Turabian StyleHofer, Michal, Zuzana Hoferová, Daniel Depeš, and Martin Falk. 2017. "Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome—A Concise Review" Molecules 22, no. 5: 834. https://doi.org/10.3390/molecules22050834
APA StyleHofer, M., Hoferová, Z., Depeš, D., & Falk, M. (2017). Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome—A Concise Review. Molecules, 22(5), 834. https://doi.org/10.3390/molecules22050834