Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Novel Vacuolin-1 Analogues by Virtual Drug Screening
2.2. Identification of Novel Vacuolin-1 Analogues by Chemical Synthesis
3. Experimental Section
3.1. 2D Similarity Virtual Screening
3.2. Chemistry
3.2.1. General Procedure for the Synthesis of 1a–1g
3.2.2. General Procedure for the Synthesis of 2a–2k
3.2.3. General Procedure for the Synthesis of 3a–3k
3.2.4. General Procedure for the Synthesis of Vacuolin-1, A1–A6, B1–B5 and C1–C6
3.3. Autophagy Inhibitory Activity Measurement
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, Z.; Klionsky, D.J. Eaten alive: A history of macroautophagy. Nat. Cell Biol. 2010, 12, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Reggiori, F.; Ungermann, C. Autophagosome maturation and fusion. J. Mol. Biol. 2017, 429, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Zhou, J.N. Roles of autophagy and mtor signaling in neuronal differentiation of mouse neuroblastoma cells. Cell. Signal. 2008, 20, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Markaki, M.; Tavernarakis, N. The role of autophagy in genetic pathways influencing ageing. Biogerontology 2011, 12, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.J.; Xavier, R.J. Autophagy, immunity and human disease. Curr. Opin. Gastroenterol. 2009, 25, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Jung, C.H.; Seo, M.; Otto, N.M.; Grunwald, D.; Kim, K.H.; Moriarity, B.; Kim, Y.M.; Starker, C.; Nho, R.S.; et al. The ulk1 complex mediates mtorc1 signaling to the autophagy initiation machinery via binding and phosphorylating atg14. Autophagy 2016, 12, 547–564. [Google Scholar] [CrossRef] [PubMed]
- Petibone, D.M.; Majeed, W.; Casciano, D.A. Autophagy function and its relationship to pathology, clinical applications, drug metabolism and toxicity. J. Appl. Toxicol. 2017, 37, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Maiese, K. Targeting molecules to medicine with mtor, autophagy and neurodegenerative disorders. Br. J. Clin. Pharmacol. 2016, 82, 1245–1266. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, G.R.; Martinet, W. Autophagy in the cardiovascular system. Biochim. Biophys. Acta 2009, 1793, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 2005, 5, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gelinas, C.; Fan, Y.; et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, E.L. The dual role of autophagy in cancer. Curr. Opin. Pharmacol. 2011, 11, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Koustas, E.; Karamouzis, M.V.; Mihailidou, C.; Schizas, D.; Papavassiliou, A.G. Co-targeting of egfr and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer. Cancer Lett. 2017, 396, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xu, N.; He, B.; Pan, C.; Lan, Y.; Zhou, H.; Liu, X. Inhibition of autophagy enhances the selective anti-cancer activity of tigecycline to overcome drug resistance in the treatment of chronic myeloid leukemia. J. Exp. Clin. Cancer Res. 2017, 36, 43. [Google Scholar] [CrossRef] [PubMed]
- Towers, C.G.; Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 2016, 14, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Takabatake, Y.; Takahashi, A.; Isaka, Y. Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Res. 2013, 73, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.T.; Tan, H.L.; Shui, G.; Bauvy, C.; Huang, Q.; Wenk, M.R.; Ong, C.N.; Codogno, P.; Shen, H.M. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class i and iii phosphoinositide 3-kinase. J. Biol. Chem. 2010, 285, 10850–10861. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.; Leung, E.; Matuszek, A.M.; KrogsgaardLarsen, N.; Furkert, D.P.; Brimble, M.A.; Richardsona, A.; Reynisson, J. Virtual screening for novel atg5–atg16 complex inhibitors for autophagy modulation. Med. Chem. Commun. 2015, 6, 239–246. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, S.; Lasell, T.K.; Jadhav, A.P.; Macia, E.; Chardin, P.; Melancon, P.; Roth, M.; Mitchison, T.; Kirchhausen, T. Exo1: A new chemical inhibitor of the exocytic pathway. Proc. Natl. Acad. Sci. USA 2003, 100, 6469–6474. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Dong, S.; Hao, B.; Li, C.; Zhu, K.; Guo, W.; Wang, Q.; Cheung, K.H.; Wong, C.W.; Wu, W.T.; et al. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating rab5a. Autophagy 2014, 10, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Sano, O.; Kazetani, K.; Funata, M.; Fukuda, Y.; Matsui, J.; Iwata, H. Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via pikfyve inhibition. FEBS Lett. 2016, 590, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds A1–A6, B1–B5 and C1–C6 are available from the authors. |
Compound | R1 | R2 | 0.1 µM | 1 µM | 10 µM | 100 µM |
---|---|---|---|---|---|---|
Vacuolin-1 | N,N-diphenylamino | 3-I | + | ++ | +++ | ++++ |
VS1 | N,N-diphenylamino | 4-F | + | + | + | |
VS2 | 4-Cl-phenylamino | 4-Cl | − | + | + | |
VS3 | 4-Cl-phenylamino | 3-I | + | ++ | ++ | ++ |
VS4 | 4-F-phenylamino | 3-I | + | ++ | ++ | ++ |
VS5 | 4-Cl-phenylamino | 4-dimethylamino | + | ++ | ++ | ++ |
VS6 | 4-Cl-phenylamino | 3-NO2 | + | +++ | +++ | +++ |
VS7 | 4-Cl-phenylamino | 4-NO2 | − | − | + | + |
VS8 | 4-OH-phenylamino | 2,4-dimethyl | + | ++ | ++ | ++ |
VS9 | morpholino | H | − | + | + | |
VS10 | morpholino | 4-Cl | − | − | + | |
VS11 | morpholino | 4-Br | − | − | − | |
VS12 | morpholino | 4-I | − | − | + | |
VS13 | morpholino | 3,4-di-Cl | − | − | + | |
VS14 | morpholino | 3-Br-6-OMe | − | + | + |
Compound | 0.1 µM | 1 µM | 10 µM | 100 µM | Compound | 0.1 µM | 1 µM | 10 µM | 100 µM |
---|---|---|---|---|---|---|---|---|---|
vacuolin-1 | + | ++ | +++ | ++++ | B3 | − | − | * | |
A1 | + | ++ | ++ | ++ | B4 | − | − | − | − |
A2 | + | ++ | ++ | ++ | B5 | − | − | − | − |
A3 | + | ++ | ++ | ++ | C1 | + | + | ++ | ++ |
A4 | + | + | +++ | +++ | C2 | − | − | − | + |
A5 | + | +++ | ++++ | ++++ | C3 | − | − | ++ | ++ |
A6 | + | + | ++ | ++ | C4 | − | − | − | + |
B1 | − | + | + | + | C5 | − | − | − | − |
B2 | − | − | + | + | C6 | − | − | − | ++ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Lu, Y.; Siu, H.M.; Guan, J.; Zhu, L.; Zhang, S.; Yue, J.; Zhang, L. Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis. Molecules 2017, 22, 891. https://doi.org/10.3390/molecules22060891
Chen C, Lu Y, Siu HM, Guan J, Zhu L, Zhang S, Yue J, Zhang L. Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis. Molecules. 2017; 22(6):891. https://doi.org/10.3390/molecules22060891
Chicago/Turabian StyleChen, Chang, Yingying Lu, Ho Ming Siu, Jintao Guan, LongChao Zhu, Shuang Zhang, Jianbo Yue, and Liangren Zhang. 2017. "Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis" Molecules 22, no. 6: 891. https://doi.org/10.3390/molecules22060891
APA StyleChen, C., Lu, Y., Siu, H. M., Guan, J., Zhu, L., Zhang, S., Yue, J., & Zhang, L. (2017). Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis. Molecules, 22(6), 891. https://doi.org/10.3390/molecules22060891