Ovicidal and Insecticidal Activities of Pyriproxyfen Derivatives with an Oxime Ester Group
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activities
2.2.1. Insecticidal Activities
2.2.2. Ovicidal Activities
3. Materials and Methods
3.1. Chemistry
3.1.1. General Information
3.1.2. Synthesis of 4-(2-Hydroxyethoxy)benzaldehyde (2)
3.1.3. Synthesis of 4-(2-(2-Pyridinyloxy)ethoxy)benzaldehyde (3)
3.1.4. Synthesis of 4-(2-(2-Pyridinyloxy)ethoxy)benzaldehyde oxime (4)
3.1.5. General Procedure for the Synthesis of 4-(2-(2-Pyridinyloxy)ethoxy)benzaldehyde oxime ester derivatives (5a–5s)
3.2. Biological Evaluation
3.2.1. Insecticidal Activity against Plutella xylostella
3.2.2. Insecticidal Activity against Myzus persicae
3.2.3. Ovicidal Activity against Helicoverpa armigera Eggs
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wainwright, M.; Kristiansen, J.E. On the 75th anniversary of Prontosil. Dyes Pigments 2010, 88, 231–234. [Google Scholar] [CrossRef]
- Bentley, R. Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence β-lactams). J. Ind. Microbiol. Biot. 2009, 36, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Vorperian, V.R.; Gong, Q.; Zhang, S.; January, C.T. Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. J. Cardiovasc. Electrophysiol. 1999, 10, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Krstic, D.; Colovic, M.; Krinulovic, K.; Djuric, D.; Vasic, V. Inhibition of AChE by single and simultaneous exposure to malathion and its degradation products. Gen. Physiol. Biophys. 2007, 26, 247–253. [Google Scholar] [PubMed]
- Karmakar, R.; Bhattacharya, R.; Kulshrestha, G. Comparative metabolite profiling of the insecticide thiamethoxam in plant and cell suspension culture of tomato. J. Agric. Food Chem. 2009, 57, 6369–6374. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, M.C.; Morrissey, C.A.; Headley, J.V.; Peru, K.M.; Liber, K. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environ. Toxicol. Chem. 2017, 36, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.S.; Wang, L.N.; Jin, S.H.; Dong, Y.H.; Lu, H.Z.; Zhang, J.J. Synthesis and fungicidal activity of diamide compounds based on the metabolite of benalaxyl. Chinese J. Org. Chem. 2017, 37, 157–165. [Google Scholar] [CrossRef]
- Sihuincha, M.; ZamoraPerea, E.; OrellanaRios, W.; Stancil, J.D.; LopezSifuentes, V.; VidalOre, C.; Devine, G.J. Potential use of pyriproxyfen for control of Aedes aegypti (Diptera: Culicidae) in Iquitos, Peru. J. Med. Entomol. 2005, 42, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.M.; Shad, S.A.; Abbas, N. Mechanism, stability and fitness cost of resistance to pyriproxyfen in the house fly, Musca domestica L. (Diptera: Muscidae). Pestic. Biochem. Phys. 2015, 119, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.T.; Liu, H.; Liu, D.H.; Wang, L.Y.; Gao, J.; Zhou, Z.Q.; Wang, P. Enantiomeric separations of pyriproxyfen and its six chiral metabolites by high-performance liquid chromatography. Chirality 2016, 28, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Kodaka, R.; Swales, S.E.; Lewis, C.; Katagi, T. Effect of illumination on degradation of pyriproxyfen in water-sediment system. J. Pestic. Sci. 2011, 36, 33–40. [Google Scholar] [CrossRef]
- Fukushima, M.; Fujisawa, T.; katagi, T. Tomato metabolism and porphyrin-catalyzed oxidation of pyriproxyfen. J. Agric. Food Chem. 2005, 53, 5353–5358. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, H.; Kaneko, H.; Nakatsuka, I.; Yamada, H. Metabolism of pyriproxyfen. 3. in vitro metabolism in rats and mice. J. Agric. Food Chem. 1996, 44, 1578–1581. [Google Scholar] [CrossRef]
- Ouyang, G.P.; Chen, Z.; Cai, X.J.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S.; et al. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem. 2008, 16, 9699–9707. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.I.; Zakaria, A.S.; Almutairi, M.S.; Ghoneim, S.W. In vitro anti-candida activity of certain new 3-(1H-Imidazol-1-yl)propan-1-one oxime esters. Molecules 2013, 18, 12208–12221. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.Q.; Zhou, M.J.; Duan, L.F.; Wang, W.; Zhang, J.J.; Wang, D.Q.; Liang, X.M. Efficient synthesis and anti-fungal activity of oleanolic acid oxime esters. Molecules 2013, 18, 3615–3629. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Walia, S.; Shrivastava, C.; Kumar, B.; Kumar, J. Synthesis and insecticidal activity of karanj ketone oxime and its ester derivatives against the mustard aphid (Lipaphis erysimi). Pestic. Res. J. 2010, 22, 39–43. [Google Scholar]
- Ma, J.A.; Huang, R.Q.; Chai, Y.X. Synthesis and insecticidal activities of new pyrethroid acid oxime ester derivatives. Prog. Nat. Sci. 2002, 12, 271–277. [Google Scholar]
- Yu, X.; Shi, D.F.; Zhi, X.Y.; Li, Q.; Yao, X.J.; Xu, H. Synthesis and quantitative structure-activity relationship (QSAR) study of C7-oxime ester derivatives of obacunone as insecticidal agents. RSC Adv. 2015, 5, 31700–31707. [Google Scholar] [CrossRef]
- Li, T.G.; Liu, J.P.; Han, J.T.; Fu, B.; Wang, D.Q.; Wang, M.A. Synthesis and herbicidal activity of α-phenylsulfonylcyclododecanone oxime esters. Chin. J. Org. Chem. 2009, 29, 898–903. [Google Scholar]
- Liu, X.G.; Wu, J.P.; Liang, X.M.; Wang, D.Q. Synthesis and insecticidal activity of 5-acyloxyimino-5-deoxyavermectin B1 derivatives. Pest Manag. Sci. 2004, 6, 697–702. [Google Scholar]
- Chandrika, N.T.; Shrestha, S.K.; Ngo, H.X.; Garneau-Tsodikova, S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg. Med. Chem. 2016, 24, 3680–3686. [Google Scholar] [CrossRef] [PubMed]
- Sundriyal, S.; Viswanad, B.; Ramarao, P.; Chakraborti, A.K.; Bharatam, P.V. New PPARc ligands based on barbituric acid: Virtual screening, synthesis and receptor binding studies. Bioorg. Med. Chem. Let. 2008, 18, 4959–4962. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, L.; Girreser, U.; Clement, B. Synthesis and characterization of para-Substituted N,N′-Dihydroxybenzamidines and their derivatives asmodel compounds for a class of prodrugs. Eur. J. Org. Chem. 2014, 2014, 1961–1975. [Google Scholar] [CrossRef]
- Sun, J.L.; Zhou, Y.M. Design, synthesis and insecticidal activity of novel phenylurea derivatives. Molecules 2015, 20, 5050–5061. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Chen, J.; Li, H.; Dai, B.J.; He, H.B.; Fang, Y.; Shi, Y.J. Synthesis and bioactivities of novel pyrazoleoxime derivatives containing a 5-trifluoromethylpyridyl moiety. Molecules 2016, 21, e276. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of compounds 5a–5s are available from the authors. |
Compound | R | Formula | Status | m.p./°C | Yield (%) |
---|---|---|---|---|---|
5a | Ph- | C21H18N2O4 | White solid | 102–104 | 87 |
5b | 4-OCH3-Ph- | C22H20N2O5 | White solid | 101–103 | 91 |
5c | 2-F-Ph- | C21H17FN2O4 | White solid | 107–109 | 91 |
5d | 4-OCH3-Ph-CH2- | C23H22N2O5 | White solid | 97–99 | 90 |
5e | 4-CH3-Ph-CH2- | C23H22N2O4 | White solid | 102–104 | 88 |
5f | 4-OC2H5-Ph- | C23H22N2O5 | White solid | 103–105 | 83 |
5g | 2,4-Cl-Ph-CH2- | C22H18Cl2N2O4 | White solid | 102–104 | 71 |
5h | β-Naphthyl-CH2- | C26H22N2O4 | White solid | 112–114 | 94 |
5i | 2-(4-chlorophenyl)-3-methylpropyl- | C25H25ClN2O4 | Pale yellow solid | 75–77 | 85 |
5j | 2-furyl- | C19H16N2O5 | White solid | 130–132 | 92 |
5k | 3-(2-Cl-3,3,3-F-1-propenyl)-2,2-Me-cycloproyl- | C23H22ClF3N2O4 | Yellow solid | 141–143 | 86 |
5l | 3-(2-Cl-Py)- | C20H16ClN3O4 | White solid | 133–135 | 90 |
5m | 2-(3,6-Cl-Py)- | C20 H15Cl2N3O4 | Yellow solid | 88–90 | 87 |
5n | 2,2-Me-3-(2-Me-1-propenyl)-cycloproyl- | C24H28N2O4 | White solid | 99–101 | 85 |
5o | CH3CH2CH2- | C18H20N2O4 | White solid | 71–73 | 93 |
5p | CH3- | C16H16N2O4 | White solid | 85–87 | 96 |
5q | 2-thienyl- | C19H16N2O4S | White solid | 132–134 | 88 |
5r | 3-Py- | C20H17N3O4 | White solid | 163–165 | 90 |
5s | 2,2,3,3-Me-cyclopropyl- | C22H26N2O4 | Yellow solid | 91–93 | 89 |
Compound | Myzus persicae | Plutella xyllostella | Helicoverpa armigera Eggs | ||
---|---|---|---|---|---|
600 μg/mL | 200 μg/mL | 600 μg/mL | 600 μg/mL | 200 μg/mL | |
5a | 3.6 ± 0.7 a | 41.7± 1.9 | 20.9 ± 0.7 | ||
5b | 13.3 ± 1.6 | 7.7 ± 2.1 | 23.2 ± 0.8 | ||
5c | 12.6 ± 2.1 | 38.5 ± 3.0 | 28.8 ± 1.1 | ||
5d | 8.7 ± 1.5 | 20.0 ± 1.3 | 15.3 ± 0.4 | ||
5e | 11.3 ± 0.4 | 0 ± 0.0 | 47.6 ± 0.1 | ||
5f | 15.7 ± 0.2 | 10.0 ± 2.5 | 9.2 ± 1.8 | ||
5g | 11.6 ± 1.0 | 0 ± 0.0 | 55.7 ± 3.1 | ||
5h | 6.7 ± 0.4 | 40.0 ± 2.0 | 51.6 ± 3.3 | ||
5i | 11.3 ± 0.4 | 33.3 ± 1.9 | 45.7 ± 1.7 | ||
5j | 87.5 ± 5.3 | 53.8 ± 4.5 | 68.7 ± 3.6 | 100.0 ± 0.0 | 45.3 ± 2.7 |
5k | 45.2 ± 2.6 | 26.7 ± 1.8 | 67.6 ± 3.3 | ||
5l | 49.4 ± 5.7 | 15.4 ± 0.4 | 62.4 ± 3.1 | ||
5m | 58.1 ± 1.9 | 34.3 ± 1.0 | 28.5 ± 0.8 | ||
5n | 39.6 ± 2.7 | 15.1 ± 0.8 | 43.3 ± 3.5 | ||
5o | 57.7 ± 0.4 | 9.6 ± 2.1 | 100.0 ± 0.0 | 67.8 ± 5.2 | |
5p | 53.2 ± 3.6 | 12.8 ± 1.3 | 100.0 ± 0.0 | 79.5 ± 4.2 | |
5q | 73.6 ± 2.9 | 36.4 ± 2.1 | 43.1 ± 3.3 | 100.0 ± 0.0 | 37.1 ± 1.6 |
5r | 25.9 ± 2.2 | 27.7 ± 1.0 | 73.4 ± 5.1 | ||
5s | 72.8 ± 1.2 | 41.3 ± 2.4 | 57.1 ± 1.4 | 100.0 ± 0.0 | 64.3 ± 2.0 |
Pyriproxyfen | 68.3 ± 4.7 | 38.5 ± 1.3 | 76.0 ± 5.3 | 100.0 ± 0.0 | 54.8 ± 1.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.-S.; Xu, X.; Jin, S.-H.; Lin, L.; Zhang, J.-J. Ovicidal and Insecticidal Activities of Pyriproxyfen Derivatives with an Oxime Ester Group. Molecules 2017, 22, 958. https://doi.org/10.3390/molecules22060958
Sun G-S, Xu X, Jin S-H, Lin L, Zhang J-J. Ovicidal and Insecticidal Activities of Pyriproxyfen Derivatives with an Oxime Ester Group. Molecules. 2017; 22(6):958. https://doi.org/10.3390/molecules22060958
Chicago/Turabian StyleSun, Guo-Shao, Xin Xu, Shu-Hui Jin, Le Lin, and Jian-Jun Zhang. 2017. "Ovicidal and Insecticidal Activities of Pyriproxyfen Derivatives with an Oxime Ester Group" Molecules 22, no. 6: 958. https://doi.org/10.3390/molecules22060958
APA StyleSun, G. -S., Xu, X., Jin, S. -H., Lin, L., & Zhang, J. -J. (2017). Ovicidal and Insecticidal Activities of Pyriproxyfen Derivatives with an Oxime Ester Group. Molecules, 22(6), 958. https://doi.org/10.3390/molecules22060958