Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Experiment Analysis
2.1.1. Effect of Ultrasonic Power on PSA Yield
2.1.2. Effect of Extraction Time on PSA Yield
2.1.3. Effect of Ultrasonic Temperature on PSA Yield
2.1.4. Effect of Ratio of Water to Raw Material on PSA Yield
2.2. Optimization of Extraction Conditions
2.2.1. Model Fitting Analysis
2.2.2. Response Surface Analysis of Extraction Yield of PSA
2.2.3. Optimization and Verification of Extraction Conditions
2.3. Results of UV and IR Analysis
2.4. SEM Analysis
2.5. Molecular Weight and Monosaccharides Composition of PSA
2.6. Antioxidant Activity of PSA In Vitro
2.6.1. DPPH Radical Scavenging Assay
2.6.2. Superoxide Anion Radical Scavenging Assay
2.6.3. Fe2+ Chelating Assay
2.6.4. ABTS+ Radical Scavenging Assay
2.7. Antimicrobial Activities of PSA
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Extraction of PSA by Ultrasonic-Assisted Extraction (UAE)
3.3. Experimental Design
3.4. Ultraviolet (UV) and Infrared Spectroscopy (IR) Analysis
3.5. Scanning Electron Microscopy (SEM)
3.6. Molecular Weight Determination
3.7. Monosaccharide Composition Analysis of PSA
3.8. In Vitro Antioxidant Activities
3.8.1. DPPH Radical Scavenging Activity
3.8.2. Superoxide Anion Radical Scavenging Activity
3.8.3. Fe2+ Chelating Activity
3.8.4. ABTS+ Radical Scavenging Activity
3.9. Antimicrobial Activities
3.10. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xu, T.; Wang, B.; Liu, X.; Feng, R.; Dong, M.; Chen, J. Microarray-based identification of conserved microRNAs from Pinellia ternata. Gene 2012, 493, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Zhao, Y.Y.; Cheng, X.L.; Lin, R.C.; Dai, Z.; Zhou, C. Metabonomic study of biochemical changes in the rat urine induced by Pinellia ternata (Thunb.) Berit. J. Pharm. Biomed. Anal. 2013, 85, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.H.; Xu, J.Y.; Xie, T.; Meng, X.; Lin, L.L.; He, L.L.; Wu, H.; Shan, J.J.; Wang, S.C. Effects of Pinellia ternata (Thunb.) Berit. on the metabolomic profiles of placenta and amniotic fluid in pregnant rats. J. Ethnopharmacol. 2016, 183, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, D.; Chen, J.; Wang, S. A polysaccharide from Pinellia ternata inhibits cell proliferation and metastasis in human cholangiocarcinoma cells by targeting of Cdc42 and 67kDa Laminin Receptor (LR). Int. J. Biol. Macromol. 2016, 93, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Zhao, Y.Y.; Cheng, X.L.; Dai, Z.; Zhou, C.; Bai, X.; Lin, R.C. General toxicity of Pinellia ternata (Thunb.) Berit. in rat: A metabonomic method for profiling of serum metabolic changes. J. Ethnopharmacol. 2013, 149, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Huang, X.X.; Zhang, M.Y.; Zhou, L.; Li, D.Q.; Cheng, Z.Y.; Li, L.Z.; Peng, Y.; Song, S.J. Chemical constituents from the tubers of Pinellia ternata (Araceae) and their chemotaxonomic interest. Biochem. Syst. Ecol. 2015, 62, 236–240. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (2015 Edition); Medical Science and Technology Press: Beijing, China, 2015; pp. 119–120. [Google Scholar]
- Su, T.; Zhang, W.W.; Zhang, Y.M.; Cheng, B.C.; Fu, X.Q.; Li, T.; Guo, H.; Li, Y.X.; Zhu, P.L.; Cao, H.; et al. Standardization of the manufacturing procedure for Pinelliae Rhizoma Praeparatum cum Zingibere et Alumine. J. Ethnopharmacol. 2016, 193, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Suo, Y.; Yang, Y.; Meng, J.; Hu, N. Optimization, characterization, and biological activity of polysaccharides from Berberis dasystachya Maxim. Int. J. Biol. Macromol. 2016, 85, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Lim, C.; Zhang, C.; Zeng, R.; Fu, C. Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities. Carbohydr. Polym. 2016, 148, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Li, F.; Xu, X.; Tang, J. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int. J. Biol. Macromol. 2017, 94, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.M. In vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydr. Polym. 2017, 170, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Gao, Z.; Hu, C.; Zhang, J.; Sun, X.; Rong, C.; Jia, L. Antioxidant, antibacterial and anti-aging activities of intracellular zinc polysaccharides from Grifola frondosa SH-05. Int. J. Biol. Macromol. 2017, 95, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, P.; Zhang, W.; Li, B.; Yang, R.; Luo, K. Study on anti-Ehrlich ascites tumour effect of Pinellia ternata polysaccharide in vivo. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 380–385. [Google Scholar] [PubMed]
- Zheng, Q.; Ren, D.; Yang, N.; Yang, X. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds. Int. J. Biol. Macromol. 2016, 91, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Patil, D.M.; Akamanchi, K.G. Ultrasound-assisted rapid extraction and kinetic modelling of influential factors: Extraction of camptothecin from Nothapodytes nimmoniana plant. Ultrason. Sonochem. 2017, 37, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Dranca, F.; Oroian, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 2016, 31, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Choudhary, R.; Watson, D.G.; Lightfoot, D.A. Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrason. Sonochem. 2015, 24, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 2017, 219, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem. 2016, 29, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; You, Q.; Jiang, Z.; Zhou, X. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides. Int. J. Biol. Macromol. 2016, 83, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Bo, R.; Ma, X.; Feng, Y.; Zhu, Q.; Huang, Y.; Liu, Z.; Liu, C.; Gao, Z.; Hu, Y.; Wang, D. Optimization on conditions of Lycium barbarum polysaccharides liposome by RSM and its effects on the peritoneal macrophages function. Carbohydr. Polym. 2015, 117, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.J.; Zhang, N.; Xiong, S.Y.; Li, S.G.; Yang, B.Q. Extraction of BaChumushroom polysaccharides and preparation of a compound beverage. Carbohydr. Polym. 2008, 73, 289–294. [Google Scholar]
- Zhang, Y.; Wang, H.; Wang, P.; Ma, C.; He, G.; Rahman, M.R. Optimization of PEG-based extraction of polysaccharides from Dendrobium nobile Lindl. and bioactivity study. Int. J. Biol. Macromol. 2016, 92, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Hayta, M.; İşçimen, E.M. Optimization of ultrasound-assisted antioxidant compounds extraction from germinated chickpea using response surface methodology. LTW Food Sci. Technol. 2017, 77, 208–216. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 2017, 95, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanutskin. Food Chem. 2010, 120, 1185–1192. [Google Scholar] [CrossRef]
- Han, N.; Wang, L.; Song, Z.; Lin, J.; Ye, C.; Liu, Z.; Yin, J. Optimization and antioxidant activity of polysaccharides from Plantago depressa. Int. J. Biol. Macromol. 2016, 93, 644–654. [Google Scholar]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydr. Polym. 2017, 157, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Optimisation of Pueraria isoflavonoids by response surface methodology using ultrasonic-assisted extraction. Food Chem. 2017, 231, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.H.; Liu, Y.; Wu, X.L.; Liu, L.Z.; Fu, W.; Song, D.D. Isolation, purification, characterization and immunostimulatory activity of polysaccharides derived from American ginseng. Carbohydr. Polym. 2017, 156, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Cheng, D.; Han, L.; Chen, Y.; Wang, C. Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola Frondosa fruiting body. Carbohydr. Polym. 2017, 157, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; You, L.J.; Abbasi, A.M.; Fu, X.; Liu, R.H. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydr. Polym. 2015, 130, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Yao, Q.; Zhao, M.; Qi, H. Phosphorylation oflow-molecular-weight polysaccharide from Enteromorpha linza withantioxidant activity. Carbohydr. Polym. 2013, 96, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, T.; Jiang, B.; Mu, W.; Miao, M. Characterization and antioxidant activity of Ginkgo biloba exocarp polysaccharides. Carbohydr. Polym. 2012, 87, 40–45. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Wang, W.; Li, Q.; Chen, Y.; Feng, W.; Zheng, D.; Zhao, T.; Mao, G.; Yang, L.; et al. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa. Int. J. Biol. Macromol. 2016, 93, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, C.; Sivakumar, M.; Ruckmani, K. Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities. Int. J. Biol. Macromol. 2016, 92, 682–693. [Google Scholar]
- Yuan, J.F.; Zhang, Z.Q.; Fan, Z.C.; Yang, J.X. Antioxidant effects and cytotoxicity of three purified polysaccharides from Ligusticum chuanxiong Hort. Carbohydr. Polym. 2008, 74, 822–827. [Google Scholar] [CrossRef]
- Lin, L.; Xie, J.; Liu, S.; Shen, M.; Tang, W.; Xie, M. Polysaccharide from Mesona chinensis: Extraction optimization, physicochemical characterizations and antioxidant activities. Int.J. Biol. Macromol. 2017, 99, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Chang, S.C.; Inbaraj, B.S.; Chen, B.H. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation ofantioxidant activity. Food. Chem. 2010, 120, 184–192. [Google Scholar] [CrossRef]
- Han, J.; Weng, X.; Bi, K. Antioxidants from a Chinese medicinal herb—Lithospermum erythrorhizon. Food Chem. 2008, 106, 2–10. [Google Scholar] [CrossRef]
- Han, Q.; Wu, Z.; Huang, B.; Sun, L.; Ding, C.; Yuan, S.; Zhang, Z.; Chen, Y.; Hu, C.; Zhou, L.; et al. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides. Int. J. Biol. Macromol. 2016, 92, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, W.P.; Zhang, H.S.; Huang, Q. Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohyd. Polym. 2012, 87, 614–619. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Heleno, S.A.; Diz, P.; Prieto, M.A.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem. 2016, 197 Pt B, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; Vázquez, J.A.; Murado, M.A. Crocin bleaching antioxidant assay revisited: Application to microplate to analyse antioxidant and pro-oxidant activities. Food Chem. 2015, 167, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, Y.; Li, W.; Wang, Z.; Shen, L. Optimization of polysaccharides extraction from Tricholoma mongolicum Imai and their antioxidant and antiproliferative activities. Carbohydr. Polym. 2015, 131, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Lü, H.; Gao, Y.; Shan, H.; Lin, Y. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera. Carbohydr. Polym. 2014, 107, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Lu, C.L.; Jiang, J.G.; Wang, M.; Wang, D.M.; Zhu, W. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu. Carbohydr. Polym. 2015, 130, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Dong, F.; Liu, X.; Lv, Q.; Yang, Y.; Liu, F.; Chen, L.; Wang, T.; Wang, Z.; Zhang, Y. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohydr. Polym. 2016, 140, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Peng, Q.; Yuan, Y.; Shen, J.; Xie, X.; Wang, M. Isolation, structures and bioactivities of the polysaccharides from jujube fruit (Ziziphus jujuba Mill.): A review. Food Chem. 2017, 227, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.B.; Peng, W.; Liu, Y.J.; Wu, N.; Zhao, C.B.; Xie, D.S.; Yan, D.; Zhang, X.F.; Tao, X.B.; Wu, C.J. Optimum extraction of polysaccharide from Areca catechu using response surface methodology and its Antioxidant Activity. J. Food. Process. Pres. 2017, 41, e12798. [Google Scholar] [CrossRef]
- Getachew, A.T.; Chun, B.S. Molecular modification of native coffee polysaccharide using subcritical water treatment: Structural characterization, antioxidant, and DNA protecting activities. Int. J. Biol. Macromol. 2017, 99, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, M.; Qin, C.; Lv, B.; Mao, Q.; Liu, Z. Structural characterization and evaluation of the antioxidant activities of polysaccharides extracted from Qingzhuan brick tea. Int. J. Biol. Macromol. 2017, 101, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.H.; Zhou, L.Y.; Li, W.; Liu, L.; Wang, D.D.; Zhang, W.N.; Hussain, S.; Tian, X.H.; Lu, Y.M. Structural elucidation of three antioxidative polysaccharides from Tricholoma lobayense. Carbohydr. Polym. 2017, 157, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, C.; Qu, D.; Chen, Y.; Huang, M.; Liu, Y. Antibacterial evaluation of sliver nanoparticles synthesized by polysaccharides from Astragalus membranaceus roots. Biomed. Pharmacother. 2017, 89, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shah, N.P. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. Food Chem. 2014, 165, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Gao, Y.; Lai, P.X. Chemical Composition, Antioxidant, Antimicrobial and Cytotoxic Activities of Essential Oil from Premna microphylla Turczaninow. Molecules 2017, 22, 381. [Google Scholar] [CrossRef] [PubMed]
- Huertas Méndez, N.J.; Vargas Casanova, Y.; Gómez Chimbi, A.K.; Hernández, E.; Leal Castro, A.L.; Melo Diaz, J.M.; Rivera Monroy, Z.J.; García Castañeda, J.E. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules 2017, 22, 452. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the PSAs are available from the authors. |
Run | Extraction Time (X1) (min) | Ultrasonic Temperature (X2) (°C) | Ultrasonic Power (X3) (W) | Extraction Yield (%) | |
---|---|---|---|---|---|
Actual Value | Predicted Value | ||||
1 | 50.00 | 80.00 | 220.00 | 11.93 | 11.80 |
2 | 50.00 | 70.00 | 180.00 | 11.26 | 11.48 |
3 | 40.00 | 70.00 | 220.00 | 12.77 | 12.61 |
4 | 40.00 | 80.00 | 180.00 | 9.44 | 9.34 |
5 | 40.00 | 60.00 | 260.00 | 9.03 | 9.13 |
6 | 40.00 | 70.00 | 220.00 | 12.59 | 12.61 |
7 | 40.00 | 70.00 | 220.00 | 12.88 | 12.61 |
8 | 40.00 | 80.00 | 260.00 | 11.82 | 11.81 |
9 | 30.00 | 70.00 | 260.00 | 10.91 | 10.69 |
10 | 50.00 | 70.00 | 260.00 | 11.96 | 12.09 |
11 | 50.00 | 60.00 | 220.00 | 11.14 | 10.91 |
12 | 30.00 | 60.00 | 220.00 | 6.13 | 6.25 |
13 | 30.00 | 80.00 | 220.00 | 10.09 | 10.32 |
14 | 30.00 | 70.00 | 180.00 | 6.89 | 6.76 |
15 | 40.00 | 70.00 | 220.00 | 12.36 | 12.61 |
16 | 40.00 | 70.00 | 220.00 | 12.43 | 12.61 |
17 | 40.00 | 60.00 | 180.00 | 7.05 | 7.06 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value (Prob > F) |
---|---|---|---|---|---|
Model | 76.16 | 9 | 8.46 | 121.22 | <0.0001 |
X1-Extraction time | 18.82 | 1 | 18.82 | 269.59 | <0.0001 |
X2-Ultrasonic temperature | 12.33 | 1 | 12.33 | 176.57 | <0.0001 |
X3-Ultrasonic power | 10.31 | 1 | 10.31 | 147.63 | <0.0001 |
X1X2 | 2.51 | 1 | 2.51 | 35.99 | 0.0005 |
X1X3 | 2.76 | 1 | 2.76 | 39.47 | 0.0004 |
X2X3 | 0.040 | 1 | 0.040 | 0.57 | 0.4738 |
X1^2 | 3.66 | 1 | 3.66 | 52.36 | 0.0002 |
X2^2 | 14.44 | 1 | 14.44 | 206.83 | <0.0001 |
X3^2 | 8.48 | 1 | 8.48 | 121.50 | <0.0001 |
Residual | 0.49 | 7 | 0.070 | ||
Lack of Fit | 0.29 | 3 | 0.098 | 2.03 | 0.2523 |
Pure Error | 0.19 | 4 | 0.048 | ||
Cor Total | 76.65 | 16 | |||
Standard deviation | 0.26 | R2 | 0.9936 | ||
C.V.% | 2.09 | Adj R2 | 0.9854 | ||
Adeq Precision | 31.341 | Pred R2 | 0.9345 |
Microorganism | PSA (mg/mL) | |
---|---|---|
MIC | MBC | |
Escherichia coli | 8 | >32 |
Staphylococcus aureus | 16 | >32 |
Candida albicans | >32 | >32 |
Independent Variables | Coded Levels of Variables | ||
---|---|---|---|
−1 | 0 | 1 | |
Extraction time (X1) (min) | 30 | 40 | 50 |
Ultrasonic temperature (X2) (°C) | 60 | 70 | 80 |
Ultrasonic power (X3) (W) | 180 | 220 | 260 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-J.; Mo, X.-L.; Tang, X.-Z.; Li, J.-H.; Hu, M.-B.; Yan, D.; Peng, W.; Wu, C.-J. Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction. Molecules 2017, 22, 965. https://doi.org/10.3390/molecules22060965
Liu Y-J, Mo X-L, Tang X-Z, Li J-H, Hu M-B, Yan D, Peng W, Wu C-J. Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction. Molecules. 2017; 22(6):965. https://doi.org/10.3390/molecules22060965
Chicago/Turabian StyleLiu, Yu-Jie, Xue-Lin Mo, Xiao-Zhang Tang, Jiang-Hua Li, Mei-Bian Hu, Dan Yan, Wei Peng, and Chun-Jie Wu. 2017. "Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction" Molecules 22, no. 6: 965. https://doi.org/10.3390/molecules22060965
APA StyleLiu, Y. -J., Mo, X. -L., Tang, X. -Z., Li, J. -H., Hu, M. -B., Yan, D., Peng, W., & Wu, C. -J. (2017). Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction. Molecules, 22(6), 965. https://doi.org/10.3390/molecules22060965