Myrtaceae Plant Essential Oils and their β-Triketone Components as Insecticides against Drosophila suzukii
Abstract
:1. Introduction
2. Results
2.1. Chemical Analyses of Active EOs
2.2. Fumigant Activity of EOs and their Major Components
2.3. Contact Toxicity of EOs and Their Major Components
3. Discussion
4. Materials and Methods
4.1. Insects
4.2. Chemicals and Fractionation of Essential Oils
4.3. Instrumental Analysis
4.4. Fumigant Toxicity Assay
4.5. Contact Toxicity Assay
4.6. Statistical Analyses
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Asplen, M.K.; Anfora, G.; Biondi, A.; Choi, D.S.; Chu, D.; Daane, K.M.; Gibert, P.; Gutierrez, A.P.; Hoelmer, K.A.; Hutchison, W.D; et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 2015, 88, 469–494. [Google Scholar] [CrossRef]
- Cini, A.; Anfora, G.; Escudero-Colomar, L.A.; Grassi, A.; Santosuosso, U.; Seljak, G.; Papini, A. Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J. Pest Sci. 2014, 87, 559–566. [Google Scholar] [CrossRef]
- Lasa, R.; Tadeo, E. Invasive drosophilid pests Drosophila suzukii and Zaprionus. indianus (Diptera: Drosophilidae) in Veracruz, Mexico. Fla. Entomol. 2015, 98, 987–988. [Google Scholar] [CrossRef]
- Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 2011, 67, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Goodhue, R.E.; Bolda, M.; Farnsworth, D.; Willams, J.C.; Zalom, F.G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control. Pest Manag. Sci. 2011, 67, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Dreves, A.J.; Cave, A.M.; Kawai, S.; Isaacs, R.; Miller, J.C.; Timmeren, S.V.; Bruck, D.J. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 2015, 108, 117–129. [Google Scholar] [CrossRef]
- Bruck, D.J.; Bolda, M.; Tanigoshi, L.; Klick, J.; Kleiber, J.; DeFrancesco, J.; Gerdeman, B.; Spitler, H. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag. Sci. 2011, 67, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Van Timmeren, S.; Isaacs, R. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop. Prot. 2013, 54, 126–133. [Google Scholar] [CrossRef]
- Knoll, V.; Ellenbroek, T.; Romeis, J.; Collatz, J. Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland their ability to parasitize the invasive Drosophila suzukii. Sci. Rep. 2017, 7, 40697. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Kim, J.; Yoon, K.A.; Lee, S.H.; Park, C.G. Biological activities of Myrtaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Pest Manag. Sci. 2017, 73, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Park, C.G.; Jang, M.; Yoon, K.A.; Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crops Prod. 2016, 89, 507–513. [Google Scholar] [CrossRef]
- Kim, J.; Jang, M.; Shin, E.; Kim, J.; Lee, S.H.; Park, C.G. Fumigant and contact toxicity activity of 22 wooden essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Pestic. Biochem. Physiol. 2016, 133, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jang, M.; Lee, K.T.; Yoon, K.A.; Park, C.G. Insecticidal and enzyme inhibitory activities of sparassol and its analogs against Drosophila suzukii. J. Agric. Food Chem. 2016, 64, 5479–5483. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Plant essential oils for pest and disease management. Crop. Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; Khalil, N.S.; Azeem, M.; Taher, E.A.; Göransson, U.; Pålsson, K.; Borg-Karlson, A.K. Chemical composition and repellency of essential oils from four medicinal plants against Ixodes ricinus (L.) nymphs (Acari: Ixodidae). J. Med. Entomol. 2012, 49, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Priestley, C.M.; Williamson, E.M.; Wafford, K.A.; Sattelle, D.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 2003, 140, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Enan, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part. C: Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- Tong, F.; Gross, A.D.; Dolan, M.C.; Coats, J.R. Phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor. Pest Manag. Sci. 2013, 69, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Coats, J.R. Quantitative structure–activity relationships of monoterpenoid binding activities to the housefly GABA receptor. Pest Manag. Sci. 2012, 68, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Renkema, J.M.; Wright, D.; Buitenhuis, R.; Hallett, R.H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 2016, 6, 21432. [Google Scholar] [CrossRef] [PubMed]
- Park, H.M.; Kim, J.; Chang, K.S.; Kim, B.S.; Yang, Y.J.; Kim, G.H.; Shin, S.C.; Park, I.K. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. J. Med. Entomol. 2011, 48, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kim, J.; Shin, S.C.; Lee, S.G.; Park, I.K. Antifungal activity of Myrtaceae essential oils and their components against three phytopathogenic fungi. Flavour. Frag. J. 2008, 23, 23–28. [Google Scholar] [CrossRef]
- Van Vuuren, S.F.; Docrat, Y.; Kamatou, G.P.P.; Viljoen, A.M. Essential oil composition and antimicrobial interactions of understudied tea tree species. S. Afr. J. Bot. 2014, 92, 7–14. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Porter, N.G.; Wilkins, A.L. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry 1999, 50, 407–415. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Park, I.K.; Kim, J.; Lee, S.G.; Shin, S.C. Nematicidal activity of plant essential oils and components from Ajowan (Trachyspermum. ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Nematol. 2007, 39, 275–279. [Google Scholar] [PubMed]
- Seo, S.M.; Kim, J.; Lee, S.G.; Shin, C.H.; Shin, S.C.; Park, I.K. Fumigant antitermitic activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica), caraway (Carum carvi), dill (Anethum graveolens), geranium (Pelargonium graveolens), and litsea (Litsea cubeba) oils against Japanese termite (Reticulitermes speratus Kolbe). J. Agric. Food Chem. 2009, 57, 6596–6602. [Google Scholar] [PubMed]
- Park, I.K.; Shin, S.C. Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus Kolbe). J. Agric. Food Chem. 2005, 53, 4388–4392. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.L.; Liu, Q.Z.; Liu, Z.L.; Wang, J.W. Insecticidal potential of clove essential oil and its constituents on Cacopsylla chinensis (Hemiptera: Psyllidae) in laboratory and field. J. Econ. Entomol. 2015, 108, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Waliwitiya, R.; Isman, M.B.; Verno, R.S.; Riseman, A. Insecticidal activity of selected monoterpenoids and rosemary oil to Agriotes obscurus (Coleoptera: Elateridae). J. Econ. Entomol. 2005, 98, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- Erland, L.A.E.; Rheault, M.R.; Mahmoud, S.S. Insecticidal and oviposition deterrent effects of essential oils and their constituents against the invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Crop. Prot. 2015, 78, 20–26. [Google Scholar] [CrossRef]
- Christoph, F.; Kaulfers, P.M.; Stahl-Biskup, E. A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of β-triketones. Planta Med. 2000, 66, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Reichling, J.; Koch, C.; Stahl-Biskup, E.; Sojka, C.; Schnitzler, P. Virucidal activity of a β-triketone-rich essential oil of Leptospermum scoparium (Manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med. 2005, 71, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.Y.; Kim, M.G.; Lee, H.S. Acaricidal activity of triketone analogues derived from Leptospermum scoparium oil against house-dust and stored-food mites. Pest Manag. Sci. 2009, 65, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Candy, K.; Melloul, E.; Bernigaud, C.; Chai, L.; Darmon, C.; Durand, R.; Botterel, F.; Chosidow, O.; Izri, A.; et al. In vitro activity of ten essential oils against Sarcoptes scabiei. Parasit. Vectors 2016, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Dayan, F.E.; Romagni, J.G.; Rimando, A.M. Natural products as sources of herbicides: current status and future trends. Weed Res. 2000, 40, 99–111. [Google Scholar] [CrossRef]
- Dayana, F.E.; Duke, S.O.; Sauldubois, A.; Singh, N.; McCurdy, C.; Cantrella, C. p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochemistry 2007, 68, 2004–2014. [Google Scholar] [CrossRef] [PubMed]
- Dumas, E.; Giraudo, M.; Goujon, E.; Halma, M.; Knhili, E.; Stauffert, M.; Batisson, I.; Besse-Hoggan, P.; Bohatier, J.; Bouchard, P.; et al. Fate and ecotoxicological impact of new generation herbicides from the triketone family: An overview to assess the environmental risks. J. Hazard. Mater. 2017, 325, 136–156. [Google Scholar] [CrossRef] [PubMed]
- Dalton, D.T.; Walton, V.M.; Shearer, P.W.; Walsh, D.B.; Caprile, J.; Isaacs, R. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag. Sci. 2011, 67, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Van Klink, J.W.; Brophy, J.J.; Perry, N.B.; Weavers, R.T. β-Triketones from Myrtaceae: Isoleptospermone from Leptospermum scoparium and Papuanone from Corymbia dallachiana. J. Nat. Prod. 1999, 62, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Perry, N.B.; Van Klink, J.W.; Brennan, N.J.; Harris, W.; Anderson, R.E.; Douglas, M.H.; Smallfield, B.M. Essential oils from New Zealand manuka and kanuka: chemotaxonomy of Kunzea. Phytochemistry 1997, 45, 1605–1612. [Google Scholar] [CrossRef]
- Brophy, J.J.; Goldsack, R.J.; Forster, P.I.; Clarkson, J.R.; Fookes, C.J.R. Mass spectra of some β-triketones from australian Myrtaceae. J. Essent. Oil Res. 1996, 8, 465–470. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds β-triketones are available from the authors. |
Compound | RI Values 1 | L. citratum | L. ericoides | L. scoparium |
---|---|---|---|---|
α-Pinene | 934 | - | 19.9 | 1.4 |
β-Pinene | 979 | 0.1 | - | - |
Myrcene | 989 | 0.3 | - | 0.4 |
Limonene | 1025 | - | 1.0 | - |
p-Cymene | 1027 | 0.1 | 0.4 | - |
1,8-Cineole | 1034 | - | 1.3 | - |
γ-Terpinene | 1059 | - | 0.6 | - |
Linalool | 1102 | 2.4 | - | - |
Citronellal | 1155 | 22.8 | - | - |
Isopulegol | 1162 | 3.2 | - | - |
Nerol | 1228 | 0.4 | - | - |
Citronellol | 1230 | 10.7 | - | - |
Neral | 1242 | 17.8 | - | - |
Geraniol | 1253 | 2.3 | - | - |
Geranial | 1272 | 33.4 | - | - |
Citronellyl acetate | 1350 | 1.1 | - | - |
α-Cubebene | 1350 | - | 2.1 | 4.7 |
α-Copaene | 1380 | - | 5.0 | 5.5 |
α-Gurjunene | 1412 | - | 0.7 | 1.1 |
β-Caryophyllene | 1426 | - | 1.4 | 3.0 |
6,9-Guaiadiene | 1444 | - | 1.8 | 1.8 |
trans-Muurola-3,5-diene | 1454 | - | 2.0 | 7.2 |
γ-Muurolene | 1476 | - | 2.7 | 5.7 |
α-Selinene | 1496 | - | 4.6 | 4.5 |
γ-Cadinene | 1523 | - | 3.7 | 4.9 |
Calamenene | 1528 | - | 13.9 | 13.6 |
Flavesone | 1537 | - | 8.7 | 11.7 |
α-Copaene-11-ol | 1539 | - | 0.6 | - |
Isoleptospermone | 1615 | - | 4.9 | 5.5 |
Leptospermone | 1627 | - | 14.0 | 17.2 |
Sum | 94.6 | 89.3 | 88.1 |
Essential Oil | LC50 (mg/L) | 95% CL (mg/L) | Slope ± SE | Effect Test | |
---|---|---|---|---|---|
χ2 | P | ||||
Male | |||||
Leptospermum citratum | 2.39 | 1.42–3.440 | 4.34 ± 1.26 | 26.84 | <0.0001 |
DDVP | 0.24 × 10−3 | 0.04×10−3–0.50 × 10−3 | 1.44 ± 0.60 | 20.81 | <0.0001 |
Female | |||||
Leptospermum citratum | 3.24 | 1.99–4.50 | 4.62 ± 1.37 | 28.34 | <0.0001 |
DDVP | 0.36 × 10−3 | 0.20 × 10−3–0.66 × 10−3 | 1.55 ± 0.90 | 22.38 | <0.0001 |
Essential Oil | LD50 (µg/fly) | 95% CL (µg/fly) | Slope ± SE | Effect Test | |
---|---|---|---|---|---|
χ2 | P | ||||
Male | |||||
Leptospermum citratum | 3.31 | 1.92–4.93 | 1.77 ± 0.50 | 25.19 | <0.0001 |
Leptospermum ericoides | 0.71 | 0.35–1.24 | 1.52 ± 0.53 | 26.96 | <0.0001 |
Leptospermum scoparium | 0.60 | 0.28–1.07 | 1.57 ± 0.59 | 24.37 | <0.0001 |
Kunzea ambigua | 7.34 | na–11.92 | 1.28 ± 0.87 | 2.31 | 0.1287 |
Pimenta dioica | 2.26 | 1.25–3.61 | 2.14 ± 0.78 | 22.24 | <0.0001 |
Syzygium aromaticum | 2.11 | 1.04–3.38 | 1.85 ± 0.67 | 19.35 | <0.0001 |
Cypermethrin | 0.05 × 10−3 | 0.02 × 10−3–0.54 × 10−3 | 2.09 ± 0.94 | 20.68 | <0.0001 |
Female | |||||
Leptospermum citratum | 5.22 | 3.18–7.66 | 1.56 ± 0.43 | 23.53 | <0.0001 |
Leptospermum ericoides | 1.23 | 0.75–2.17 | 1.72 ± 0.54 | 38.70 | <0.0001 |
Leptospermum scoparium | 1.10 | 0.60–1.86 | 1.37 ± 0.38 | 33.40 | <0.0001 |
Kunzea ambigua | 16.94 | 9.07–na | 1.32 ± 0.83 | 2.70 | 0.100 |
Pimenta dioica | 3.55 | 1.88–5.41 | 1.39 ± 0.38 | 20.36 | <0.0001 |
Syzygium aromaticum | 3.53 | 2.07–5.20 | 1.80 ± 0.50 | 25.73 | <0.0001 |
Cypermethrin | 0.06 × 10−3 | 0.02 × 10−3–0.12 × 10−3 | 1.51 ± 0.52 | 18.64 | <0.0001 |
Essential Oil | LD50 (µg/fly) | 95% CL (µg/fly) | Slope ± SE | Effect Test | |
---|---|---|---|---|---|
χ2 | P | ||||
Male | |||||
Leptospermum ericoides (NF) | 24.83 | 0.07–na | 0.33 ± 0.60 | 0.31 | 0.58 |
Leptospermum ericoides (PF) | 0.37 | 0.19–0.69 | 1.07 ± 0.31 | 27.77 | <0.0001 |
Leptospermum scoparium (NF) | 7.25 | 3.07–17.14 | 0.89 ± 0.63 | 2.13 | 0.14 |
Leptospermum scoparium (PF) | 0.38 | 0.21–0.67 | 1.37 ± 0.41 | 32.97 | <0.0001 |
Triketone fraction (97.1%) | 0.13 | 0.05–0.24 | 1.91 ± 0.80 | 23.42 | <0.0001 |
Female | |||||
Leptospermum ericoides (NF) | 86.99 | 8.61–na | 0.48 ± 0.84 | 0.34 | 0.56 |
Leptospermum ericoides (PF) | 0.65 | 0.38–1.15 | 1.52 ± 0.45 | 38.55 | <0.0001 |
Leptospermum scoparium (NF) | 22.19 | 6.23–na | 0.59 ± 0.69 | 0.78 | 0.38 |
Leptospermum scoparium (PF) | 0.57 | 0.34–0.98 | 1.75 ± 0.56 | 40.28 | <0.0001 |
Triketone fraction (97.1%) | 0.22 | 0.13–0.39 | 2.16 ± 0.82 | 34.14 | <0.0001 |
Essential Oil | Scientific Name | Extraction Part | Origin | Source |
---|---|---|---|---|
Leptospermum citratum organic | Leptospermum citratum (=L. petersonii) | Blossoms | Australia/Tasmania | Oshadhi |
Kanuka | Leptospermum ericoides (=Kunzea ericoides) | Leaves | South Africa | Oshadhi |
Manuka | Leptospermum scoparium | Leaves | New Zealand | Oshadhi |
Kunzea | Kunzea ambigua | Leaves | Australia | La Drome |
Allspice | Pimenta dioica | Berries | Jamaica | Oshadhi |
Clove bud | Syzygium aromaticum | Bud | Madagascar | La Drome |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.G.; Jang, M.; Shin, E.; Kim, J. Myrtaceae Plant Essential Oils and their β-Triketone Components as Insecticides against Drosophila suzukii. Molecules 2017, 22, 1050. https://doi.org/10.3390/molecules22071050
Park CG, Jang M, Shin E, Kim J. Myrtaceae Plant Essential Oils and their β-Triketone Components as Insecticides against Drosophila suzukii. Molecules. 2017; 22(7):1050. https://doi.org/10.3390/molecules22071050
Chicago/Turabian StylePark, Chung Gyoo, Miyeon Jang, Eunsik Shin, and Junheon Kim. 2017. "Myrtaceae Plant Essential Oils and their β-Triketone Components as Insecticides against Drosophila suzukii" Molecules 22, no. 7: 1050. https://doi.org/10.3390/molecules22071050
APA StylePark, C. G., Jang, M., Shin, E., & Kim, J. (2017). Myrtaceae Plant Essential Oils and their β-Triketone Components as Insecticides against Drosophila suzukii. Molecules, 22(7), 1050. https://doi.org/10.3390/molecules22071050